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1 Implementation Pipeline

We used PyTorch to implement the core functionalities of our approach. The codebase is structured into
two primary parts: main-pretrain and main-finetune.

Pretraining Phase (main-pretrain). In the main-pretrain section, we focus on the initial training phase
of our models. In this phase, which is crucial to establish a robust foundation for our models, we first
load the ShapeNet dataset and then apply our methods to train the models. algorithm 1 summarizes the
training steps for GeoMask3D (GM3D) and includes the pseudocode for the reconstruction of point clouds,
generation of geometric complexity, and the distillation of knowledge within the feature space.

Finetuning Phase (main-finetune). Once the pretraining is complete, we proceed to the main-finetune
part. In this stage, only the encoder of student Es from the pretrained models is carried forward. The output
of this phase is directly responsible for the experimental results presented in our paper.

To ensure complete transparency and reproducibility of our results, we have made all relevant materials
publicly available. This includes:

• The full source code for both main-pretrain and main-finetune phases.

• All log files containing the detailed results of our experiments

• Pretrained models for both pretraining and finetuning stages.

All these resources can be accessed through our GitHub repository. This repository includes everything
needed to understand our code, covering all aspects of the implementations and the reproduction of the
results. Moreover, the specifics of our network’s hyperparameters for the pretraining and fine-tuning phases
are comprehensively detailed in Table 1. Additionally, the pre-trained model for the Knowledge Teacher is
selected based on the baseline methods, Point-MAE and Point-M2AE.

2 Additional Visualization

Geometric Complexity. Fig. 1 illustrates the Geometric Complexity (GC) analysis of randomly selected
point clouds from the ShapeNet dataset. This illustration highlights the model’s capability to assess GC at
the patch level, where the red points denote areas of high GC, while the blue points indicate areas of low
GC.

Reconstructed Points. To elucidate the capabilities of Masked Autoencoders (MAEs) in processing point
cloud data, Fig. 2 provides a visual sequence involving the original input, the intermediate masking phase,
and the reconstructed output. The first column, titled “Input Point Cloud”, displays the entirety of the point
cloud data, illustrating the initial condition before any processing. The subsequent column, “Masked Point
Cloud”, reveals only the points that remain visible after a portion of the data has been masked. The final
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Algorithm 1 Pseudo-Code of GM3D in a PyTorch-like Style

# teacher inference
-, GCt = GM3Dt(X)
# curriculum patch selection
M = Mask-Generation(GCt, Nsel)
# student forward to compute objectives
Xrec, frecs , GCs = GM3Ds(Xv)
# knowledge teacher (frozen graph)
frecf = Ef (X)
# compute losses
# feature-space
Lrecf = MSE(frecs [M ], frecf [M ])
# point-space
Lrecp = Chamfer(Xrec[M ], X[M ])
# both spaces
Lrec = Lrecp + Lrecf

# geometric complexity
LGC = DRC(Lrec, GCs, M)
# final loss
L = Lrec + LGC

return L

column, “Reconstructed Point Cloud”, demonstrates the model’s ability to infer and restore the masked
parts of the point cloud. The visual comparison in Fig. 2 distinctly highlights the high accuracy of the
reconstructed points, underscoring the efficacy of our proposed method. It is noteworthy that these visual
results were obtained using Point-MAE+GM3D. For a fair and consistent comparison, the mask ratio used
here is like Point-MAE (60%).

3 Additional Analyses

Pretraining Phase. In Fig. 3, we illustrate the progression of SVM Accuracy throughout the pretraining
phase on the ModelNet40 dataset. The red curve represents the Point-M2AE model, while the blue curve
denotes the Point-M2AE enhanced with our GM3D method. It is evident from the graph that the incor-

Table 1: Hyperparameter configuration

Config Value

Optimizer AdamW
Base learning rate 1e-3
Weight decay 0.05
Momentum β1, β2 = 0.9, 0.95
α 1.0
β (After epoch 15) 1000.0
γ (After epoch 15) 10.0
Batch size (Point-MAE+GM3D) 256
Batch size (Point-M2AE+GM3D) 128
Learning rate schedule cosine decay
Pre-training epochs 400
Fine-tuning epochs 500
Augmentation (pretraining) random scaling and translation
Augmentation (finetuning) random rotation
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Figure 1: Visualization of GC values on diverse point clouds from the ShapeNet dataset.

poration of GM3D leads to a substantial improvement in SVM accuracy, reflecting the model’s enhanced
classification performance. A key observation is the accelerated convergence rate of the GM3D-augmented
model; it achieves a rapid increase in accuracy within the initial epochs, demonstrating not only the efficacy
of GM3D in facilitating faster learning but also indicating an enhanced ability to generalize from the training
data.

Fine-tuning Phase. Fig. 4 displays fine-tuning accuracy on the OBONLY dataset, revealing that the
integration of our GM3D module with Point-M2AE leads to the highest accuracy. Compared to the baseline
Point-M2AE and the model trained from scratch, Point-M2AE+GM3D demonstrates a more significant
improvement and exhibits less variability.

Integration of GeoMask3D into Point-FEMAE. In this section, we present an experimental evaluation
of integrating our GeoMask3D approach into the Point-FEMAE ? framework. Point-FEMAE employs two
types of masking strategies: global masking and local masking. To enhance its capability, we modified the
network by incorporating the geometric complexity decoder Ds

GC and replacing the original random global
masking strategy with our geometrically guided masking technique.

While Point-FEMAE also utilizes local masking, where Euclidean distances guide the selective masking of
tokens related to meaningful parts of the object, this strategy already contributes to capturing geometric
structures effectively. However, this local masking approach may overlap with the objectives of our Ge-
oMask3D, potentially reducing its distinct impact. Despite this, integrating these two methods provides
valuable insights into the effectiveness of geometrically guided masking.

To assess the effectiveness of our approach, we pre-trained Point-FEMAE+GM3D on the ShapeNet dataset
and evaluated it on the OBJ-ONLY dataset. The results, presented in Table 2, demonstrate that our
modification improves performance. For comparison, we reproduced the baseline results of Point-FEMAE
on this dataset using the original code and the pre-trained model available in the official repository.

Table 2: Point-FEMAE with and without GeoMask3D on the OBJ-ONLY dataset

Method OBJ-ONLY

S
S Point-FEMAE 92.08

S
S Point-FEMAE + GM3D 92.77

3



Published in Transactions on Machine Learning Research (03/2025)

Figure 2: Reconstruction results on the ShapeNet dataset.

Impact of Geometric-Guided Masking. To further analyze the contribution of geometric-guided
masking to the performance improvements observed in our method, we conducted an ablation study to
isolate its effect from the GC prediction task.

To investigate the isolated impact of GC prediction, our method is pre-trained using the Point-MAE backbone
with GC prediction but without geometric-guided masking. Instead of our masking strategy, we employed
random masking. The objective of this experiment was to determine whether GC prediction alone contributes
to the performance gains or if the synergy with geometric-guided masking is essential. We evaluated the
pretrained model on the OBJ-ONLY dataset, as presented in Table 3.
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Figure 3: Comparison of convergence speed during
the training phase (Point-M2AE).

0 100 200 300 400 500

Epochs
70

75

80

85

90

95

100

Ac
cu

ra
cy 87.6188.29

91.05

Fine-tuning Accuracy (%) on OBJONLY

From Scratch
Point-M2AE
Point-M2AE+GM3D

Figure 4: Fine-tuning vs. Training from Scratch on
SacnObjectNN (Point-M2AE).

As shown in the results, the model trained with both GC prediction and geometric-guided masking out-
performs the one using GC prediction alone. This highlights the necessity of integrating geometric-guided
masking with GC prediction to achieve optimal performance.

4 Time Analysis

In this section, we provide a detailed analysis of the computational resources required by our method com-
pared to the baseline Point-MAE backbone. All experiments were conducted under identical hardware
settings using an NVIDIA A6000 GPU with a batch size of 128.

4.1 Pre-Training

To evaluate the computational overhead introduced by our approach, we measured the pre-training time per
epoch. The results indicate that:

• Point-MAE requires approximately 2.8 minutes per epoch.

• Our method requires 4.3 minutes per epoch.

The additional 1.5 minutes per epoch in our method is not solely due to the inclusion of the knowledge
teacher model (which remains frozen during training), but also results from the computational procedures
involved in predicting geometric complexity.

4.2 Downstream Tasks

As highlighted in the main paper, in downstream tasks, only the encoder of the student model is utilized.
Since this encoder is identical to the one used in the baseline methods, our approach maintains computa-
tional efficiency during downstream inference. Thus, our method incurs no additional computational burden
compared to baseline methods in downstream tasks.

Table 3: Ablation study on the impact of Geometric-Guided Masking

Method OBJ-ONLY

S
S Point-MAE + GC Prediction + Random Masking 89.67

S
S Point-MAE + GC Prediction + Geometric-Guided Masking 90.36
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