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Table 4: Comparison of LGNN and NBA-GCN on Peptides-func.

Model training AP " test AP " test time per epoch # GPU usage (%) "
LGNN 0.4202 0.3778 87.761 97.10
NBA-GCN+LapPE 0.9724 0.7207 0.541 51.18

A COMPARISON WITH RELATED WORKS

This section delves into the detailed exploration of key related works, highlighting essential distinc-
tions from our NBA-GNN. In addition, we present simple experiments to prove the superiority of
our model.

A.1 LINE GRAPH NEURAL NETWORKS

Line Graph Neural Networks (LGNN) (Chen et al., 2017) were the pioneers in applying the non-
backtracking operator to GNNs. However, it is important to note that LGNN only utilizes non-
backtracking within a layer, whereas NBA-GNN applies non-backtracking across all layers. In
other words, our main contribution over LGNN is in consideration of the non-backtracking operator
specifically for the message redundancy problem. Notably, the computational complexity of LGNN
is acknowledged to be close to |V | log(|V |) by its authors.

In our experiments on Peptides-func, we compare the performance and complexity of LGNN
and NBA-GCN+LapPE, as detailed in Table 4. Given that LGNN was initially proposed using only
node degrees for node features, we incorporated an additional node feature encoder, similar to our
NBA-GNN setup. Specifically, we used a batch size of 64, hidden dimension of 24, and 4 layers for
LGNN. Refer to Appendix E.2 for the hyperparameters of NBA-GCN. The drawbacks of LGNN in
terms of time and space complexity become evident when compared to NBA-GNN.

A.2 REDUNDANT-FREE GRAPH NEURAL NETWORKS

Redundant-Free Graph Neural Networks (RFGNN) (Chen et al., 2022) shares the common moti-
vation with NBA-GNN, aiming to reduce redundant messages in the computation graph. RFGNN
achieves this by constructing a tree coined Truncated ePath Tree (TPT) for every node. TPT ensures
that there are no repeated nodes along the simple path from the root to the leaf, except for the root
node which can appear twice in the path. This approach differs significantly from NBA-GNN, which
eliminates redundancy by identifying non-backtracking edge adjacency.

In terms of complexity, RFGNN has a space and time complexity of O
⇣

|V |!
|V �t�1|!

⌘
, where |V | is

the number of nodes and t is the number of GNN layers. In contrast, NBA-GNN achieves superior
complexity with space complexity O(2|E|) and time complexity O(davg|E|), which remains irrel-

evant to the number of layers. The preprocessing process time complexity, involved in finding
non-backtracking edge adjacency, is O(|E|2). This scalability allows NBA-GNN to handle larger
graph dataset compared to RFGNN. Furthermore, in theoretical aspects, our work distinguishes it-
self by providing the sensitivity upper bound of non-backtracking updates, rather than comparing
the relative inference of paths.
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B PROOFS FOR SECTION 3.1

In this section, we present the findings discussed in Section 3.1. Similar to Di Giovanni et al. (2023),
we concentrate on the relationship between over-squashing and access time of non-backtracking
random walks. Our study establishes that the access time using a begrudgingly backtracking random
walk (BBRW) is smaller than that of a simple random walk (SRW) between two nodes, in tree
graphs. Also, it is noteworthy that the gap between these two access times increases as the length of
the walk grows.

We have derived formulas to compare the access times between BBRW and SRW. First, we show
that on the tree graph, the access time equals the sum of access times between neighboring nodes.
We note that the access time between neighboring nodes, which is the cut-point, can be represented
in terms of return time. The formulas for return time in Fasino et al. (2021) and Lemma 6 allow us
to derive the formulas for access time between neighboring nodes. Finally, we derive and compare
the access time of BBRW and SRW.

B.1 PRELIMINARIES

Simple and begrudgingly random walks. A random walk on a graph G = (V, E) is a sequence of
V-valued random variable x0, x1, x2 . . . where xn+1 is chosen randomly from neighborhood of xn.
Different types of random walks have different probabilities for selecting neighboring nodes.

Simple random walk (SRW) choose a next node j uniformly from the neighbors of current node i:

P (xn+1 = j|xn = i) =

(
1
di

if (i, j) 2 E
0 otherwise

.

On the other hand, begrudgingly backtracking random walk (BBRW) tries to avoid the previous
node when there is another option:

P (xn+2 = k|xn+1 = j, xn = i) =

8
><

>:

1
dj�1 when (j, k) 2 E , k 6= i, and |N (j) \ {i}| � 1

1 when (j, k) 2 E and |N (j) \ {i}| = 0
0 otherwise

.

Access time. Consider a SRW starting at a node i 2 V . Let Ti denote the time when a SRW first
arrived at node i, Ti := min{n � 0|xn = i}, and T i be the time when a random walk first arrived
at node i after the first step, T i := min{n > 0|xn = i}. With slight abuse of notation, we define
access time t(i, j) from i to j, access time t(i ! j, k) from i to k where x1 = j, and return time
t(i) in a graph G as follows:

t(i, j) := E[Tj |x0 = i]

t(i ! j, k) := E[Tk|x1 = j, x0 = i]

t(i; G) := E[T i|x0 = i]

We similarly denote access time and return time of BBRW as (t̃(i, j), t̃(i ! j, k)) and t̃(i; G),
respectively. Note that the first step of BBRW shows the same behavior as the SRW since there is
no previous node on the first step.

Finally, for a tree graph G and pair of nodes i, j in Proposition 1, we denote the unique paths between
i and j as (v0, . . . , vN ) with i = v0, j = vN . We also let N denote the distance between the nodes
i and j.

B.2 ACCESS TIME OF SIMPLE RANDOM WALKS

In this Section, we derive formulas for the access time of simple random walks on tree graphs,
Proposition 2. We show it by the following process:

1. We decompose the access time for two nodes i and j into a summation of access time of
neighboring nodes in the path, i.e., t(vn, vn+1) for n 2 0, · · · , N � 1. (Lemma 2)
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2. We evaluate the access time of neighboring nodes in the path, e.g., t(vn, vn+1), in using
the number of edges in a graph. (Lemma 3)

B.2.1 DECOMPOSITION OF ACCESS TIME

First, we show that the access time equals the sum of access times between neighboring nodes.
When a random walker travels from v0 to vN , it must pass through all nodes vn on the paths. We
can consider the entire time taken as the summation of the time intervals between when the walker
arrived at vn and when it arrived at vn+1. It is an intuitive way of understanding Lemma 2.
Lemma 2. Given a tree G and path (v0, . . . , vN ),

t(v0, vN ) =
N�1X

n=0

t(vn, vn+1).

Proof. The proof outline is as follows. Given a unique path (v0, . . . , vN ) between v0 and
vN , any walk between (v0, vN ) can be decomposed into a series of N � 1 walks between
(v0, v1), (v1, v2), . . . (vN�1, vN ) such that the walk between (vn, vn+1) does not contain a node
vn+1 except at the endpoint. The expected length of each walk is t(vn, vn+1).

To be specific, consider the following decomposition.

t(v0, vN ) = E[TvN |x0 = v0] =
N�1X

n=0

E[Tvn+1 � Tvn |x0 = v0] (6)

From the Markov property of SRW:

E[Tvn+1 � Tvn |x0 = v0] = t(vn, vn+1)

Thus,

t(v0, vN ) =
N�1X

n=0

E[Tvn+1 � Tvn |x0 = v0] =
N�1X

n=0

t(vn, vn+1)

B.2.2 ACCESS TIME BETWEEN NEIGHBORS

Now, we derive the formula for the access time between neighboring nodes.
Lemma 3. Given a tree graph G and adjacent nodes i, j, the associated access time t(i, j) is defined
as follows:

t(i, j) = 1 + 2|E(Gi)|,
where E(G) is edge set of graph G and Gi is the subtree produced by deleting edge (i, j) and choosing
connected component of i.

Proof. Given a random walk from i to j that only contains j once, every time the walk lands at the
node i, its future events can be categorized into two scenarios:

1. The walk transitions from node i to j based on transitioning with respect to the edge (i, j) 2
E with probability 1

di
. The walk terminates.

2. The walk fails to reach j and continues the walk in the subtree Gi until arriving at the node
i again . Note that the walk cannot arrive at node j without arriving at the node i in prior.
In other words, the walk continues for the return time of i with respect to the graph Gi.

The two scenarios implies that, every time the walk arrives at node i, the walk terminates with
probability 1

di
. Then the number of trials follow the geometric distribution and consequently, the

average number of trial is di. In other words, the walk falls into the scenario of type 2, for di � 1
times in average. We have to traverse at least one edge (i, j). The expected total penalty is the
product of average failure penalty and the average number of failure. Thus,

t(i, j) = 1 + (di � 1)t(i; Gi), (7)
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where t(i; Gi) is the return time of i with respect to the subgraph Gi. Since the return time is the ratio
of the sum of the degree to the degree of the node, as stated by Fasino et al. (2021), the following
equation holds:

t(i; Gi) =
2|E(Gi)|
di � 1

,

which directly implies our conclusion of t(i, j) = 1 + 2|E(Gi)|.

B.2.3 MAIN RESULT

Using Lemma 2 and Lemma 3, we arrive at our main result for SRW on trees.
Proposition 2. Given a tree G and pair of nodes i, j 2 V , the following equations holds for the
access time of SRW between u and v.

t(i, j) =
N�1X

n=0

(1 + 2|E(Gn)|), (8)

where E(G) is edge set of graph G and Gn is the subtree produced by deleting edge (vn, vn+1) and
choosing connected component of vn.

Proof. The proof is a straightforward combination of Lemma 2 and Lemma 3.

t(i, j) =
N�1X

n=0

t(vn, vn+1) =
N�1X

n=0

(1 + 2|E(Gl)|).

B.3 ACCESS TIME OF BEGRUDGINGLY BACKTRACKING RANDOM WALKS

In this section, we derive formulas for the access time of begrudgingly backtracking random walks
on tree graphs. As mentioned in the preliminaries, we use t̃ to denote the access time of begrudg-
ingly backtracking. At a high level, this section consists of the following proofs.

1. We decompose the access time for two nodes v0 and vN into summations of access time of
neighboring nodes in the path. (Lemma 4)

2. The decomposed term in 1. can be formulated using (i) the return time and (ii) the access
time between neighboring nodes. (Lemma 5)

3. The return time of a node can be formulated in terms of the number of edges and the degree
of a node. (Lemma 6)

4. The access time between neighboring nodes can be formulated using the number of edges
and the degree of the node. (Lemma 7)

B.3.1 DECOMPOSITION OF ACCESS TIME

We start by decomposing the access time t̃(i, j) similar to the one in Lemma 2. However, a key
difference exists in the BBRW random walk. When the walk first arrives at node vn, it previously
passed the node vn�1. Therefore, we cannot return to vn�1 upon the first failure to reach vn+1.
Lemma 4. Consider a tree G and path (v0, . . . , vN ). Then the access time of BBRW between node
v0 and vN can be derived as follows:

t̃(v0, vN ) = t̃(v0, v0 ! v1) +
N�1X

l=1

 
t̃(vn�1 ! vn, vn+1) � 1

!

Proof. The proof is similar to Lemma 2 such that we decompose the walk into a series of N�1 walks
between (v0, v1), (v1, v2), . . . , (vN�1, vN ) such that the walk between vn, vn+1 does note contain
a node vn+1 except at the endpoint. The expected length of each walk is t̃(vn�1 ! vn, vn+1) � 1.
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(a) Figure of nodes i, j, k, l in B.3.2
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(b) Subtree Gi produced by deleting edge (i, j) and choosing
connected components to node i

Figure 6: References for section B.3.2

Note that t̃(vn�1 ! vn, vn+1) counts the length of walk from vn�1 to vn+1, hence should be
substracted by represent the length of walk from vn to vn+1.

To be specific, the proof of Lemma 2, we mentioned that Equation (6) holds for general random
walks.

t̃(v0, vN ) =
N�1X

n=0

E[Tvn+1 � Tvn |x0 = v0]

When the BBRW random walk reaches vn at Tvn , it previously passed the node vn�1. (i.e.,
xTvn�1 = vn�1). Therefore, we can think the random walk after the time t = Tvn � 1 as ran-
dom walk starting at vn�1 with the second node x1 = vn. Thus,

E[Tvn+1 � Tvn |x0 = v0] = t̃(vn�1 ! vn, vn+1) � 1 for l � 1.

B.3.2 EXPRESSING TRANSITION-CONDITIONED ACCESS TIME USING SUBGRAPH-RETURN
TIME.

We further prove the following formula for computing the transition-conditioned access time
t̃(vn�1 ! vn, vn+1).
Lemma 5. Given a tree G = (V, E) and three nodes i, j, and k such that (i, j), (j, k) 2 E ,

t̃(i ! j, k) � 1 = t̃(j, k) � di � 1

dj
t̃(i; Gi) � 2

dj
, (9)

where t̃(i; H) is return time of node i in a subgraph H, and Gi is the subtree produced by deleting
edge (i, j) and choosing connected components of i.

Proof. We start with establishing basic equalities for access time of BBRW.

The first equality describes how the access time of a random walk from i ! j to k can be expressed
by its subset j ! l, k where l 6= i due to the non-backtracking property.

t̃(i ! j, k) � 1 =
1

dj � 1
+

X

l2N (j)\{i,k}

1

dj � 1
t̃(j ! l, k) (10)

The next equality describes how the access time from j to k can be decomposed by considering
subsequent transitions to some l in the neighborhood of j.

t̃(j, k) =
1

dj

X

l2N (j)

t̃(j ! l, k), (11)

When plugging in Equation (11) into Equation (10), one can see that we need to consider l = i, k
for t̃(j ! l, k). In case of k, it is trivially 1. For the case of i, i.e., t̃(j ! i, k), it can be defined as
follow:

t̃(j ! i, k) = 1 + (di � 1)t̃(i; Gi) + t̃(i ! j, k). (12)
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This is similar to Equation (7), where Gi describes how the walk from j ! i to k can be divided into
two scenarios: (i) continues the walk in Gi or (ii) i transitions into j with probability 1/(di � 1).

Starting from Equation (10), one can derive the following relationship:

t̃(i ! j, k) � 1 =
1

dj � 1
· 1 +

X

l2N (j)\{i,k}

1

dj � 1
t̃(j ! l, k)

(a)
=

1

dj � 1
+

1

dj � 1

"
X

l2N (j)

t̃(j ! l, k) � t̃(j ! i, k) � t̃(j ! k, k)

#

(b)
=

1

dj � 1
+

1

dj � 1

"
dj t̃(j, k) � t̃(j ! i, k) � 1

#

(c)
=

1

dj � 1

"
dj t̃(j, k) � (di � 1)t̃(i; Gi) � t̃(i ! j, k) � 1

#
,

where (a) is from Equation (10), (b) is from Equation (11) and t̃(j ! k, k) = 1, (c) is from
Equation (12).

Now, by multiplying dj � 1 on both sides, we get

(dj � 1)

 
t̃(i ! j, k) � 1

!
= dj t̃(j, k) � (di � 1)t̃(i; Gi) � t̃(i ! j, k) � 1

= dj t̃(j, k) � (di � 1)t̃(i; Gi) �
 
t̃(i ! j, k) � 1

!
� 2.

Thus, we can conclude for t̃(i ! j, k) � 1:

t̃(i ! j, k) � 1 = t̃(j, k) � di � 1

dj
t̃(i; Gi) � 2

dj
.

B.3.3 RETURN TIME WITH RESPECT TO A SUBGRAPH

Now we need the formula for the return time t̃(i; G) with respect to a tree-graph G. For the return
time, we prove that the return time of BBRW is less than or equal to that of SRW.
Lemma 6. Given a tree G = (V, E) and a node i, the return time of i is,

t̃(i; G) =
2|E|
di

(13)

Proof. We can think the tree as rooted tree where root is i. We use mathematical induction with tree
height of i.

Consider the base case where the height of tree is 1. Then, whatever we choose as the next node x1

from x0 = i, we return to i at second transition (i.e., x2 = i) since all the neighbors of i is leaf node.
Since di = |E| for tree with height 1, t̃(i; G) = 2 = 2|E|

di
.

Now, assume that the lemma holds for the tree with a height less than k � 1. It suffices to show that
the lemma also holds for a tree with height k + 1 and its root i.

From the same perspective in the proofs of the Lemma 3, we can view the random walk returning to
i as follows:

1. We choose a node x1 = l from N (i) uniformly. Then, from node l, we return to l to reach
i. (i.e., we have to pay penalty amounts to return time of l)
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2. In node l, we try to reach i by selecting edge (l, i) with probability 1
dl�1 . Thus, the average

number of failure of failure is dl � 2.

3. If we fail to reach i from l, we should return to l for a next chance to reach i. i.e., a average
failure penalty amounts to a return time of l in subtree with root l.

Hence,

t̃(i; G) = 1 +
X

l2N (i)

1

di

(
1 + t̃(l; Gl) ·

 
(dl � 2) + 1

!)
= 2 +

X

l2N (i)

1

di
· t̃(l; Gl) · (dl � 1),

where t̃(l; G) is return time of l with respect to G and Gl is the subtree with root l.

Since the subtree with root l has height less than k, t̃(l; Gl) = 2|E(Gl)|
dl�1 . Therefore,

t̃(i; G) = 2 +
1

di

X

l2N (i)

t̃(l; Gl) · (dl � 1)

= 2 +
1

di

X

l2N (i)

2|E(Gl)|
dl � 1

· (dl � 1)

= 2 +
1

di

X

l2N (i)

2|E(Gl)|

=

2

 
di +

P
l2N (i) |E(Gl)|

!

di

=
2|E|
di

B.3.4 ACCESS TIME BETWEEN NEIGHBORS

For access time between neighbors, we get the similar result to Lemma 3.
Lemma 7. Given a tree G and adjacent nodes i, j,

t̃(i, j) = 1 + 2|E(Gi)| · di � 1

di
, (14)

where E(G) is edge set of graph G, and Gi is the subtree produced by deleting edge (i, j) and
choosing connected component of i.

Proof. From the same perspective in the proofs of the Lemma 3, we analyse success probability for
each trial.

For the first trial, success probability is 1
di

since there is no previous node. After the first trial,
success probability is fixed to 1

di�1 . On the each trial, the average failure penalty amounts to t̃
0(i),

which is the return time of i on subtree Gi.

Thus, average number of trial until first success is,

(Average number of trial) =
1

di
· 1 +

di � 1

di
·
 

1 + (di � 1)

!

The average number of failure is as follows:
(Average number of failure) = (Average number of trial) � 1

=
1

di
· 1 +

di � 1

di
· (1 + di � 1) � 1

=
(di � 1)2

di
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Thus, expected total penalty is as follows:

(Expected total penalty) = t̃(i; Gi) · (di � 1)2

di

Since t̃(i; Gi) = 2|E(Gi)|
di�1 by Lemma 6, t̃(u, v) = 1 + 2|E(Gi)|di�1

di
.

B.3.5 MAIN RESULT

Combining the results provides the following theorem.
Proposition 3. Given a tree G and pair of nodes i, j, the following equations holds for the access
time of BBRW between i and j.

t̃(i, j) =
N�1X

n=0

 
1 + 2|E(Gn)| · dvn � 1

dvn

!
�

N�1X

l=1

2|E(Gn�1)|
dvn

�
N�1X

l=1

2

dvn

,

where E(G) is the edge set of G and Gn is the subtree produced by deleting edge (vn, vn+1) and
choosing connected component of vn.

Proof. By Lemma 4 and Equation (9),

t̃(v0, vN ) = t̃(v0, v1) +
N�1X

l=1

(
t̃(vn�1 ! vn, vn+1) � 1

)

= t̃(v0, v1) +
N�1X

l=1

(
t̃(vn, vn+1) �

dvn�1 � 1

dvn

t̃
0(vn�1) � 2

dvn

)

=
N�1X

n=0

t̃(vn, vn+1) �
N�1X

l=1

dvn�1 � 1

dvn

t̃
0(vn�1) �

N�1X

l=1

2

dvn

=
N�1X

n=0

 
1 + 2|E(Gl)| · dvn � 1

dvn

!
�

N�1X

l=1

2|E(Gl�1)|
dvn

�
N�1X

l=1

2

dvn

B.4 PROOF OF PROPOSITION 1

Finally, we compare the access time of two random walks in a tree. Recall Proposition 1.
Proposition 1. Given a tree G = (V, E) and a pair of nodes i, j 2 V , the access time of begrudgingly
backtracking random walk is equal or smaller than that of a simple random walk, where the equality
holds if and only if the random walk length is 1.

Proof. Let E(G) be the edge set of G and Gn be the subtree produced by deleting edge (vn, vn+1)
and choosing connected component of vn. Then,

t̃(v0, vN ) � t(v0, vN ) =
N�1X

n=0

 
1 + 2|E(Gn)| · dvn � 1

dvn

!
�

N�1X

l=1

2|E(Gn�1)|
dvn

�
N�1X

l=1

2

dvn

�
N�1X

n=0

(1 + 2|E(Gn)|)

= �
N�1X

n=0

2|E(Gn)|
dvn

�
N�1X

l=1

2|E(Gn�1)|
dvn

�
N�1X

l=1

2

dvn

 0
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Therefore the access time of two nodes are always less or equal in begrudgingly backtracking ran-
dom walk than simple random walks, where equality holds for random walks with length 1.
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C PROOFS FOR SECTION 4.1

C.1 PRELIMINARIES

Let G be a graph with a set of n vertices V , a set of m edges E 2 V2. We use xi to denote the
node-wise feature for i 2 V , and di for the degree of node i 2 V . The adjacency matrix A 2 Rn⇥n

encodes the connectivity of graph G. For node i 2 V , we define the set of incident outgoing edges
of i as N+

e (i), the set of incident incoming edges of i as N�

e (i), and let Ne(i) = N+
e (i)[N�

e (i) be
the set of all incident edges of node i. Also, recall the non-backtracking matrix B 2 {0, 1}2|E|⇥2|E|

and the incidence matrix C 2 R2|E|⇥|V|:

B(`!k),(j!i) =

⇢
1 if k = j, ` 6= i
0 otherwise

, C(k!j),i =

⇢
1 if j = i or k = i
0 otherwise

.

We also define Dout and Din as the out-degree and in-degree matrices of NBA-GNN, respectively,
counting the number of outgoing and incoming edges for each edge. These are diagonal matrices
with (Dout)(j!i),(j!i) =

P
`!k B(j!i),(`!k) and (Din)(j!i),(j!i) =

P
`!k B(`!k),(j!i), for

each index j ! i. Next, we introduce bB as the normalized non-backtracking matrix augmented
with self-loops: bB = (Dout +I)�

1
2 (B+I)(Din +I)�

1
2 . Then one obtains the following sensitivity

bound of NBA-GNN. We also let C̃ denote a matrix where C̃(k!j),i = C(k!j),i + C(j!k),i.

Consequently, one can express our NBA-GNN updates:

h(t+1)
j!i = �(t)

0

@h(t)
j!i,

X

(k,`)2E

bB(`!k),(j!i) 
(t)
⇣
h(t)

`!k, h(t)
j!i

⌘
1

A , (15)

where �(t) and  (t) corresponds to the update and the aggregation as described in Equation (3).
Next, the node-wise aggregation step can be described as follows:

hi = �

0

@
X

(j,k)2E

C(k!j),i⇢
⇣
h(T )

k!j

⌘
,
X

(j,k)2E

C(j!k),i⇢
⇣
h(T )

j!k

⌘
1

A . (16)

C.2 PROOF OF LEMMA 1

The original sensitivity bound for a hidden representation for node e and initial feature of node s is
defined as following.

Proposition 4. Sensitivity bound. (Topping et al., 2022) Assume an MPNN defined in Equa-
tion (15). Let two nodes i, j 2 V with distance T . If |r�(t)|  ↵ and |r (t)|  � for 0  t < T ,
then

�����
@h(T )

j

@xi

�����  (↵�)T ( bAT )j,i. (17)

Now, we show that the sensitivity bound for non-backtracking GNNs can be defined as following.
Following (Topping et al., 2022), we assume the node features and hidden representations are scalar
for better understanding.

Lemma 1. Consider two nodes i, j 2 V with distance T given a (T � 1)-layer NBA-GNN as
described in Equation (3) and Equation (4). Suppose |r�(t)|, |r�|  ↵, |r (t)|, |r⇢|  �, and
|r�|  � for 0  t < T . Then the following holds:

����
@hj

@xi

����  (↵�)T �(C̃> bB(T�1)C̃)j,i.
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Proof. Just a straight calculation using the chain rule is enough to derive the above upper bound.
����
@hj

@xi

���� =

������
@1�@2⇢

0

@
X

k!`2N�
e (j)

@h(T�1)
k!`

@xi

1

A+ @1�@3⇢

0

@
X

k!`2N+
e (j)

@h(T�1)
k!`

@xi

1

A

������
(18)

=

������
@1�@2⇢

0

@
X

k!`2N�
e (j)

@h(T�1)
k!`

@xi

1

A

������
(19)

 ↵�

0

@
X

k!`2N�
e (j)

�����
@h(T�1)

k!`

@xi

�����

1

A , (20)

(21)

where the bound for the derivatives were |r�|  ↵, |r⇢|  �.

Thus considering the message update from Equation (15),

@h(T�1)
k!`

@xi
= @1�

(T�2) @h(T�2)
k!`

@xi
+ @2�

(T�2)

0

@
X

k0!`02N�
e (k)

bBk0!`0,k!`
@h(T�2)

k!`

@xi

1

A

= @2�
(T�2)

0

@
X

k0!`02N�
e (k)

bBk0!`0,k!`
@h(T�2)

k!`

@xi

1

A ,

since the distance between node i and node j is at least T , therefore
@h(T�2)

k!`

@xi
= 0.

Now, let the path from node i to node j as s(i, j), where st denotes the t-th node in the walk s, i.e.,
s0 = i, sT = j. Using the bound of the derivative of functions, we can iterate like the following.

�����
@h(T�1)

k!`

@xi

����� (22)

 ↵�

0

@
X

k0!`02N
�
e (k)

bBk0!`0,k!l

�����
@h(T�2)

k!l

@xi

�����

1

A (23)

 (↵�)T�1

 
X

(s0,...,sT )2s(i,j)

bBs0!s1,s1!s2 · · · · · bBsT�2!sT�1,sT�1!sT ·

�����
@h(0)

s0!s1

@xi

�����

!

(24)

= (↵�)T�1

 
X

(s0,...,sT )2s(i,j)

T�1Y

t=1

bBst�1!st,st!st+1

�����
@h(0)

s0!s1

@xi

�����

!
(25)

 (↵�)T�1�

 
X

(s0,...,sT )2s(i,j)

 
T�1Y

t=1

bBst�1!st,st!st+1

!!
(26)

Substitute the inequality Equation (26) into Equation (20) to get the final result. Then, we can get
����
@hj

@xi

����  (↵�)T �

0

@
X

(s0,...,sT )2s(i,j)

 
T�1Y

t=1

bBst�1!st,st!st+1

!1

A

= (↵�)T �(C̃> bBT�1C̃)j,i

(27)

since paths can be expressed using the power of adjacency-type matrix.
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C.3 PROOF OF PROPOSITION 1

We have defined the sensitivity bound for NBA-GNNs. Now, we show that the sensitivity bound of
NBA-GNNs are bigger than the sensitivity bound of GNNs.

Theorem 1. Let bA denote the degree-normalized matrix. Then, for any pair of nodes i, j 2 V with
distance T , the sensitivity bound of NBA-GNN is larger than that of conventional GNNs (Topping
et al., 2022), i.e., (C̃> bBT�1C̃)j,i � ( bAT )j,i. For d-regular graphs, (C̃> bBT�1C̃)j,i decays slower
by O(d�T ), while ( bAT )j,i decays with O((d + 1)�T ).

Proof. Identical to the notations above, we denote the list of nodes from node i to node j as path
s(i, j) where s(i, j) = (s0 = i, s1, · · · , sT�1, sT = j).

( bAT )j,i =
X

(s0,...,sT )2s(i,j)

bAs0,s1 · · · bAsT�1,sT (28)

=
X

(s0,...,sT )2s(i,j)

(di + 1)�
1
2 · (dj + 1)�

1
2 ·

T�1Y

t=1

(dst + 1)�1 (29)

(C̃> bBT�1C̃)j,i =
X

(s0,...,sT )2s(i,j)

d
�

1
2

s0 · bBs0!s1,s1!s2 · · · bBsT�2!sT�1,sT�1!sT · d
�

1
2

sT (30)

=
X

(s0,...,sT )2s(i,j)

d
�

1
2

s0 · d�1
s1

· · · d�1
sT�1

· d
�

1
2

sT (31)

=
X

(s0,...,sT )2s(i,j)

d
�

1
2

s0 · d
�

1
2

sT ·
T�1Y

t=1

d�1
st

(32)

(33)

Now, for a path (s0 = i, . . . , sT = j),

(di + 1)�
1
2 (dj + 1)�

1
2

T�1Y

t=1

(dst + 1)�1  d
�

1
2

i d
�

1
2

j

T�1Y

t=1

d�1
st

(34)

Each term in (C̃> bBT�1C̃)j,i is larger than ( bAT )j,i, thus (C̃> bBT�1C̃)j,i � ( bAT )j,i is trivial.

For d-regular graphs, di = d, 8i 2 V . Therefore the sensitivity bound can can be written as follow-
ing:

( bAT )j,i = (d + 1)�T

(C̃> bBT�1C̃)j,i = d�T .

So (C̃> bBT�1C̃)j,i decays slower by O(d�T ), while ( bAT )j,i decays with O((d + 1)�T ).
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D PROOFS FOR SECTION 4.2

To assess the expressive capabilities, we initially make an assumption about the graphs, considering
that it is generated from the Stochastic Block Model (SBM), which is defined as follows:
Definition 1. Stochastic Block Model (SBM) is generated using parameters (n, K,↵, P ), where n
denotes the number of vertices, K is the number of communities, ↵ = (↵1, ...,↵K) represents the
probability of each vertex being assigned to communities V1, ..., VK , and Pij denotes the probability
of an edge (v, w) 2 E between v 2 Vi and w 2 Vj .

Numerous studies have focused on the problem of achieving exact recovery of communities within
the SBM. However, these investigations typically address scenarios in which the average degree is
at least on the order of ⌦ (log n) (Abbe, 2017). It is well-established that the information-theoretic
limit in such cases can be reached through the utilization of the spectral method, as demonstrated
by (Yun & Proutiere, 2016). In contrast, when dealing with a graph characterized by the average
degree much smaller, specifically o (log n), recovery using the graph spectrum becomes a more
challenging endeavor. This difficulty arises due to the fact that the n1�o(1) largest eigenvalues
and their corresponding eigenvectors are influenced by the high-degree vertices, as discussed in
(Benaych-Georges et al., 2019).

However, real-world benchmark datasets often fall within the category of very sparse graphs. For
example, the citation networks dataset discussed in (Sen et al., 2008) has an average degree of
less than three. In such scenarios, relying solely on an adjacency matrix may not be an efficient
approach for uncovering the hidden graph structure. Fortunately, an alternative strategy is available
by utilizing a non-backtracking matrix as follows.

D.1 PROOF OF THEOREM 2

Let’s rephrase the formal version of Theorem 2 as follows:

Theorem 2. Consider a Stochastic Block Model (SBM) with parameters
�
n, 2,

�
1
2 , 1

2

�
,
�

a
n , b

n

��
,

where (a + b) satisfies the conditions of being at least !(1) and no(1). In such a scenario, the
non-backtracking graph neural network can accurately map from graph G to node labels, with the
probability of error decreasing to 0 as n ! 1.

In (Stephan & Massoulié, 2022), the authors demonstrate that the non-backtracking matrix exhibits
valuable properties when the average degree of vertices in the graph satisfies !(1) and no(1). When
K = 2, we define a function �(v) for v 2 V , such that �(v) = 1 if v is in the first class, and
�(v) = �1 in the second class. Then, they establish the following proposition:
Proposition 5. (Stephan & Massoulié, 2022) Suppose we have a SBM with parameters�
n, 2,

�
1
2 , 1

2

�
,
�

a
n , b

n

��
. In this case, we have two eigenvalues µ1 > µ2 of ndiag(↵)P , and the

eigenvector �2 corresponding to µ2, where v-th component is set to �(v). Then, for any n larger
than an absolute constant, the eigenvalues �1 and �2 of the non-backtracking matrix B satisfies
|�i�µi| = o(1), and all other eigenvalues of B are confined in a circle with radius (1+o(1))

q
a+b
2 .

Also, there exists an eigenvector ⌫2 of the non-backtracking matrix B associated with �2 such that

h⌫2, ⇠2i �

s

1 � 8

(a + b)(a � b)2
+ o(1) := 1 � f(a, b)

where ⇠2 = T⇥�2

kT⇥�2k
, T 2 {0, 1}2m⇥n, Tei = 1{e2 = i} and ⇥ 2 {0, 1}n⇥2, ⇥ij = 1 if the vertex i

is in the j-th community, and 0 otherwise.

The proposition above highlights that the non-backtracking matrix possesses a spectral separation
property, even in the case of very sparse graphs. Moreover, the existence of an eigenvector ⌫2 such
that h⌫2, ⇠2i = 1 � o(1) suggests that this eigenvector contains information about the community
index of vertices. The foundation for these advantageous properties of the non-backtracking matrix
B in sparse scenarios can be attributed to the observation that the matrix Bk shares similarities
with the k-hop adjacency matrix, while Ak is predominantly influenced by high-degree vertices.
Consequently, we can establish the following theorem:
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Lemma 8. Suppose we have a SBM with parameters defined in Proposition 5. Then, there exists a
function of the eigenvectors of the non-backtracking matrix that can accurately recover the original
community index of vertices.

The proof for Lemma 8 can be found in Appendix D.3 In the following, we will demonstrate that
the non-backtracking GNN can compute an approximation to the top K eigenvectors mentioned in
Lemma 8. To achieve this, we first require the following lemma:
Lemma 9. Assuming that the non-backtracking matrix B has a set of orthonormal eigenvectors ⌫i

with corresponding eigenvalues �1 > ... > �K � �K+1 � ... � �2m, then there exists a sequence
of convolutional layers in the non-backtracking GNNs capable of computing the eigenvectors of the
non-backtracking matrix.

For the proof of Lemma 9, please refer to Appendix D.4. With this lemma in mind, we can observe
that a sequence of convolutional layers, followed by a multilayer perceptron, can approximate the
function outlined in Lemma 8, leveraging the universal approximation theorem. This argument leads
to Theorem 2.

D.2 PROOF OF THEOREM 3

Let’s rephrase the formal version of Theorem 3 as follows:

Theorem 3. Consider two graphs, one generated from a SBM (G) with parameters�
n, 2,

�
1
2 , 1

2

�
,
�

a
n , b

n

��
and the other from an Erdős–Rényi model (H) with parameters (n, c

n ), for
some constants a, b, c > 1. When (a � b)2 > 2(a + b), the non-backtracking graph neural network
is capable of distinguishing between G and H with probability tending to 1 as n ! 1.

To establish Theorem 3, we rely on the following Proposition 6 from (Bordenave et al., 2015):
Proposition 6. Suppose we have two graphs G and H as defined in the formal statement of Theorem
3. Then, the eigenvalues �i(B) of the non-backtracking matrix satisfy the following:

�1(BG) =
a + b

2
+o(1),�2(BG) =

a � b

2
+o(1), and |�k(BG)| 

r
a + b

2
+o(1) for k > 2

�1(BH) = c + o(1) and |�2(BH)| 
p

c + o(1)

Proposition 6 informs us that by examining the distribution of eigenvalues, we can discern whether a
graph originates from the Erdős–Rényi model or the SBM. Leveraging Lemma 9, we can obtain the
top two normalized eigenvectors of the non-backtracking matrix using convolutional layers, denoted
as ⌫1 and ⌫2. Applying the non-backtracking convolutional layer to these vectors yields resulting
vectors with `2-norms corresponding to �i(B). Consequently, we can distinguish between the two
graphs, G and H, by examining the output of the convolutional layer in the non-backtracking GNN.

D.3 PROOF OF LEMMA 8

Let us revisit the matrix T , defined as Tei = 1{e2 = i}, and its pseudo-inverse denoted as
T+ = D�1T>, where D is a diagonal matrix containing the degrees of vertices on the diago-
nal. Considering the definition of ⇠2 as provided in Proposition 5, we can deduce the label of vertex
v. Specifically, if (T+⇠2)v > 0, it implies that the vertex belongs to the first class; otherwise, it
belongs to the other class.

Additionally, we are aware that | (T+⌫2 � T+⇠2)i |2 = O(f(a, b)) as indicated in Proposition 5,
considering the property that the sum of each row of T+ is equal to 1. Consequently, by exam-
ining the signs of elements in the vector T+⌫2, we can classify nodes without encountering any
misclassified ones.

D.4 PROOF OF LEMMA 9

Proof. Suppose we have f( 2m) arbitrary vectors x1, ..., xf and a matrix X = [x1, ..., xf ] 2
R2m⇥f , which has x1, ..., xf as columns. Without loss of generality, we assume that kxvk2 = 1,
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and let xj =
P2m

i=1 c(j)i ⌫i for 1  j  f . We will prove the lemma by showing that if we multiply
X by B and repeatedly apply the Gram–Schmidt orthnormalization to the columns of the resulting
matrix, the j-th column of the resulting matrix converges towards the direction of ⌫j . Further, we
will show that there exists a series of convolutional layers equivalent to this process.

First, we need to show Bkx1 converges to the direction of ⌫1. Bkx1 can be expressed as:

Bkx1 = �k
1

 
c(1)1 ⌫1 + c(1)2

✓
�2
�1

◆k

⌫2 + ... + +c(1)2m

✓
�2m

�1

◆k

⌫2m

!
.

Let’s fix ✏ > 0 and take K0 such that for all k � K0, the inequality
⇣

�2
�1

⌘k
< ✏|c(1)1 |

4m holds.
Furthermore, we define the following for brevity:

e(k)` :=

8
><

>:

Akx1

kAkx1k
for ` = 1,

u(k)
`���u(k)
`

���
where u(k)

` = GS(Be(k�1)
` ) for ` � 2.

(35)

Then, the distance between e(k)1 and sign
⇣
c(1)1

⌘
⌫1 is

���e(k)1 � sign
⇣
c(1)1

⌘
⌫1
���
2
=

��������

c(1)1 ⌫1 +
P2m

i=2

⇣
�i
�1

⌘k
c(1)i ⌫i

r
(c(1)1 )2 +

P2m
i=2

⇣
�i
�1

⌘2k
(c(1)i )2

� sign
⇣
c(1)1

⌘
⌫1

��������
2

(a)
<

��������

c(1)1 ⌫1 � sign
⇣
c(1)1

⌘r
(c(1)1 )2 +

P2m
i=2

⇣
�i
�1

⌘2k
(c(1)i )2⌫1

r
(c(1)1 )2 +

P2m
i=2

⇣
�i
�1

⌘2k
(c(1)i )2

��������
2

+
✏
2

=
�|c(1)1 |+

r
(c(1)1 )2 +

P2m
i=2

⇣
�i
�1

⌘2k
(c(1)i )2

r
(c(1)1 )2 +

P2m
i=2

⇣
�i
�1

⌘2k
(c(1)i )2

+
✏
2

(b)



r
P2m

i=2

⇣
�i
�1

⌘2k
(c(1)i )2

r
(c(1)1 )2 +

P2m
i=2

⇣
�i
�1

⌘2k
(c(1)i )2

+
✏
2

(c)
< ✏,

where (a) and (c) are obtained from the assumption
⇣

�2
�1

⌘k
< ✏|c(1)1 |

4m , and for (b) we use the inequal-

ity
p

x2 + y2  |x| + |y|.
Moreover, we assume that for all 1  ` < L and any ✏` > 0, there exists K` such that for all
k � K`,

���e(k)` � sign
⇣
c(`)`

⌘
⌫`

��� < ✏`. To simplify the notations, we define K0 = max1`<L K`

and z(k)` = e(k)` � sign
⇣
c(`)`

⌘
⌫` for all `. Then, we must show there exists KL such that for all

k � KL,
���z(k)L

��� < ✏L. With no loss of generality, let’s assume that sign
⇣
c(`)`

⌘
= 1 for all `.

Furthermore, let us fix ✏L > 0 and ✏` = min(1, ✏0) for 1  ` < L. Then, u(k)
L for k � K0 can be

written as
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u(k+1)
L = Be(k)L �

X

i<L

he(k+1)
i , Be(k)L ie(k+1)

i

= Be(k)L �
X

i<L

⇣
h⌫i, Be(k)L i⌫i + hz(k+1)

i , Be(k)L i⌫i + h⌫i + z(k+1)
i , Be(k)L iz(k+1)

i

⌘

(a)
=
X

i�L

h⌫i, Be(k)L i⌫i � y(k)
L , (36)

where (a) comes from the definition y(k)
L :=

P
i<Lhz(k+1)

i , Be(k)L i⌫i + h⌫i + z(k+1)
i , Be(k)L iz(k+1)

i .

Then, we can deduce
���y(k)

L

���  3L✏0dmax
p

2m by the following lemma.

Lemma 10. Let B 2 R2m⇥2m be an non-backtracking matrix of the graph G, and dmax be the
maximum degree of vertices in G. Then, kAxk2 < ✏xdmax

p
2m if the `2-norm of the vector x 2 R2m

is less than ✏x.

Proof.

kBxk2 =

vuuut
X

i

0

@
X

j

bijxj

1

A
2

<

vuuut
X

i

✏2x

0

@
X

j

bij

1

A
2

 ✏xdmax
p

2m

In contrast, for any integer p > 0, u(k+p)
L is

u(k+p)
L =

X

i�L

h⌫i, Be(k+p�1)
L i⌫i � y(k+p)

L

=
1���u(k+p�1)

L

���

X

i�L

*
⌫i,
X

j�L

h⌫j , Be(k+p�2)
L i�j⌫j �By(k+p�2)

L

+
⌫i � y(k+p)

L

=
1���u(k+p�1)

L

���

X

i�L

⇣
�ih⌫i, Be(k+p�2)

L i � h⌫i, By(k+p�2)
L i

⌘
⌫i � y(k+p)

L

=
1���u(k+p�1)

L

���

X

i�L

h⌫i, Be(k+p�2)
L i�i⌫i �

1���u(k+p�1)
L

���

X

i�L

h⌫i, By(k+p�2)
L i⌫i � y(k+p)

L

...

=
1

Qp�1
j=1

���u(k+j)
L

���

X

i�L

h⌫i, Be(k)L i�p�1
i ⌫i

�
p�1X

j=1

1���u(k+j)
L

���

0

@
X

i�L

h⌫i, By(k+j�1)
L i�p�j�1

i ⌫i

1

A� y(k+p)
L

=
1

Qp�1
j=1

���u(k+j)
L

���

X

i�L

h⌫i, Be(k)L i�p�1
i ⌫i

�
p�1X

j=1

1���u(k+j)
L

���

0

@
X

i�L

h⌫i, By(k+j�1)
L i�p�j�1

i ⌫i

1

A� y(k+p)
L

(a)
= C0�

p�1
L

 
h⌫L, Be(k)L i⌫L +

X

i>L

h⌫i, Be(k)L i
✓

�i

�L

◆p�1

⌫i

!

�
X

i�L

p�1X

j=1

Cj

⇣
h⌫i, By(k+j�1)

L i�p�j�1
i ⌫i

⌘
� y(k+p)

L ,
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where (a) stems from the definitions C0 = 1
Qp�1

j=1

���u(k+j)
L

���
and Cj = 1���u(k+j)

L

���
.

Now, define ê(k+p)
L :=

u(k+p)
L

C0�p�1
L h⌫L,Be(k)

L i
. Then,

ê(k+p)
L = ⌫L +

X

i>L

h⌫i, Ae(k)L i
h⌫L, Be(k)L i

✓
�i

�L

◆p�1

⌫i �

P
i�L

Pp�1
j=1 Cj

⇣
h⌫i, By(k+j�1)

L i�p�j�1
i ⌫i

⌘
� y(k+p)

L

C0�
p�1
L h⌫L, Be(k)L i

.

(37)

Take p0 such that
⇣

�i
�L

⌘p0�1
 ✏h⌫L,Be(k)

L i

4(L�N)h⌫i,Be(k)
L i

, then, the `2-norm of the second term of (37) is

less than ✏L/4.

Meanwhile, the `2-norm of the third term in (37) is upper-bounded by

3L✏0dmax
p

2m

C0�
p�1
L h⌫L, Be(k)L i

0

@Cdmax
p

2m
X

i�L

�p�2
i � 1

�i � 1
+ 1

1

A ,

where C := maxp�1
j=1 Cj .

Therefore, if we take ✏0 <
✏C0�p�1

L h⌫L,Be(k)
L i

12Ldmax
p
2m

⇣
Cdmax

p
2m
P

i�L
�p�2
i �1
�i�1 + 1

⌘�1

, we can get
���ê(k+p)

L � ⌫L

��� < ✏L/2 for p > p0. Finally, the upper bound of
���z(k)L

��� is
���z(k)L

��� 
���e(k+p)

L � ê(k+p)
L

���+
���ê(k+p)

L � ⌫L

���
(a)
<
���
���ê(k+p)

L

���� 1
���+

✏L
2

(b)
 ✏L,

where (a) follows from e(k+p)
L =

ê(k+p)
L���ê(k+p)
L

���
, and (b) is obtained from the inequality 1 � ✏L 

���ê(k+p)
L

���� 1  1 + ✏L.
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E EXPERIMENT DETAILS

In this section, we provide details of NBA-GNN implementation and experiments.

E.1 IMPLEMENTATION

Message initialization and aggregation. For message initialization and final aggregation of mes-
sages, we have proposed functions �,�, ⇢. To be specific, the message initialization can be written
as following:

h(0)
i!j =

⇢
�(eij , xi, xj) (if eij exists)
�(xi, xj) (otherwise)

.

For our experiments, we use concatenation for �, weighted sums for �, and average for ⇢.

Non-backtracking updates. Here, we provide the details of using the non-backtracking operator
in our NBA-GNNS. To begin, let’s revisit the non-backtracking matrix B 2 {0, 1}2|E|⇥2|E| from
Section 4.1 defined as follows:

B(`!k),(j!i) =

⇢
1 if k = j, ` 6= i
0 otherwise

.

Returning to our NBA-GNN, the non-backtracking message passing update for a hidden feature
h(t)

j!i at the (t + 1)-th layer, introduced in Section 3.2, is expressed as follows:

h(t+1)
j!i = �(t)

✓
h(t)

j!i,
n
 (t)

⇣
h(t)

k!j , h
(t)
j!i

⌘
: k 2 N (j) \ {i}

o◆
, (3)

where �(t) and  (t) are backbone-specific non-linear update and permutation-invariant aggregation
functions at the t-th layer, respectively. Using the non-backtracking matrix B, we can rewrite Equa-
tion (3) as following:

H(t+1) = �(t)
✓

H(t), (t)
⇣
B>H(t), H(t)

⌘◆
, (38)

where H(t) 2 R2|E|⇥d are edge-wise features, i.e., each row representing h(t)
j!i.

Now, the NBA-GNN implementation example in Section 3 using GCN (Kipf & Welling, 2016) as a
backbone, can be written as the following:

h(t+1)
j!i = h(t)

j!i +
1

|N (j)| � 1
W

(t)
X

k2N (j)\{i}

h(t)
k!j .

Recall the out-degree and in-degree matrices of NBA-GNN, denoted as Dout and Din, where
(Dout)(j!i),(j!i) =

P
`!k B(j!i),(`!k) and (Din)(j!i),(j!i) =

P
`!k B(`!k),(j!i), for each

index j ! i. We also introduced the normalized non-backtracking matrix augmented with self-
loops as bB = (Dout + I)�

1
2 (B + I)(Din + I)�

1
2 . In summary, Equation (5) can be expressed as

follows:

H(t+1) = bBH(t)
W

(t). (39)
Hence, the message passing update in NBA-GCN is equivalent to the multiplication of non-
backtracking operator and edge-wise features.

E.2 LONG RANGE GRAPH BENCHMARK

Dataset statistics. From LRGB (Dwivedi et al., 2022), we experiment for 3 tasks: graph
classification (Peptides-func), graph regression (Peptides-struct), and node classification
(PascalVOC-SP). We provide the dataset statistics in Table 5. Note that for PascalVOC-SP, we
use SLIC compactness of 30 and edge weights are based only on super-pixels coordinates.

Experiments Details All experiment results are averaged over three runs and trained for 300 epochs,
with a ⇠500k parameter budget. Baseline scores were taken from each paper.
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Table 5: Statistics of LRGB datasets

Dataset
Total Total Avg Mean Total Avg Avg Avg

Graphs Nodes Nodes Deg. Edges Edges Short. Path. Diameter

PascalVOC-SP 11,355 5,443,545 479.40 8.00 43,548,360 3,835.17 8.05 ± 0.18 19.40 ± 0.65
Peptides-func 15,535 2,344,859 150.94 2.04 4,773,974 307.30 20.89 ± 9.79 56.99 ± 28.72
Peptides-struct 15,535 2,344,859 150.94 2.04 4,773,974 307.30 20.89 ± 9.79 56.99 ± 28.72

Table 6: Best hyperparameters for each GNN, dataset in LRGB benchmark

Model Dataset # Param. # Layers hidden dim. dropout Batch size # epochs

GCN
PascalVOC-SP 472k 12 180 0.7 30 200
Peptides-func 510k 10 186 0.1 200 300
Peptides-struct 505k 20 144 0.1 200 300

GINE
PascalVOC-SP 472k 12 180 0.7 30 200
Peptides-func 502k 10 144 0.1 200 300
Peptides-struct 503k 10 144 0.1 200 300

GatedGCN
PascalVOC-SP 486k 10 96 0.25 30 200
Peptides-func 511k 10 96 0.1 200 300
Peptides-struct 511k 8 108 0.1 200 300

• All experiments are averaged over three seeds, 0⇠2.
• Baseline numbers were took from the lrgb benchmak (Dwivedi et al., 2022) and table1 of

DRew(Gutteridge et al., 2023).
• We use an AdamW optimizer(Loshchilov & Hutter, 2018) with lr decay=0.1 , min lr=1e-5,

momentum=0.9, and base learning rate lr=0.001 (0.0005 for PascalVOC-SP).
• We use cosine scheduler with reduce factor=0.5 , schedule patience=10 with 50 warm-up.
• Laplacian positional encoding were used with hidden dimension 16 and 2 layers.
• We use the ”Atom Encoder”, ”Bond Encoder” for Peptides-func, Peptides-struct

from based on OGB molecular feature (Hu et al., 2020; 2021), and the ”VOCNode En-
coder”, ”VOCEdge Encoder” for PascalVOC-SP.

• PascalVOC-SP results in Figure 5a all use the same setup described above.
• Peptides-func results in Figures 5b and 5c all use the same setup described above.
• GCN results in Figures 5a to 5c use the hyperparameters from (Tönshoff et al., 2023).

We searched the following range of hyperparameters, and report the best in Table 6.

• We searched layers 6 to 12 for PascalVOC-SP 2, layers 5 to 20 for Peptides-func and
Peptides-struct.

• The hidden dimension was chosen by the maximum number in parameter budget.
• Dropout was searched from 0.0⇠0.8 for PascalVOC-SP in steps of 0.1, and 0.1⇠0.4 in

steps of 0.1 for Peptides-func and Peptides-struct.
• We used the batch size of 30 for PascalVOC-SP on GPU memory, and 200 for
Peptides-func and Peptides-struct.

E.3 TRANSDUCTIVE NODE CLASSIFICATION

We conducted experiments involving three citation networks (Cora, CiteSeer, and Pubmed in (Sen
et al., 2008)), and three heterophilic datasets (Texas, Wisconsin, and Cornell in (Pei et al., 2019)), fo-
cusing on transductive node classification. Our reported results in Table 3 are the averages obtained
from 10 different seed runs to ensure robustness and reliability.

For the citation networks, we employed the dataset splitting procedure outlined in (Yang et al.,
2016). In contrast, for the heterophilic datasets, we randomly divided the nodes of each class into
training (60%), validation (20%), and testing (20%) sets.
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During the model training process, we utilized the AdamW optimizer (Loshchilov & Hutter,
2018) with a learning rate of 3e-5. The training duration spanned 1,000 epochs for citation net-
works and 100 epochs for heterophilic datasets. Following training, we selected the best epoch
based on validation accuracy for evaluation on the test dataset. The model’s hidden dimension
and dropout ratio were set to 512 and 0.2, respectively, consistent across all datasets, after fine-
tuning these hyperparameters on the Cora dataset. Additionally, we conducted optimization for
the number of convolutional layers within the set {1, 2, 3, 4, 5}. The results revealed that the op-
timal number of layers is typically three for most of the models and datasets. However, there
are exceptions, such as CiteSeer-GatedGCN, PubMed-{GraphSAGE, GraphSAGE+NBA+PE},
Texas-GatedGCN+NBA, Wisconsin-{GraphSAGE+NBA, GraphSAGE+NBA+PE} and Cornell-
{GraphSAGE, GraphSAGE+NBA, GraphSAGE+NBA+PE, GatedGCN+NBA}, where the opti-
mal number of layers is found to be four. Furthermore, for Cora-{GraphSAGE+NBA+PE,
GAT+NBA},CiteSeer-GraphSAGE+NBA, and Cornell-GatedGCN+NBA+PE.

For reference, we have provided a summary of dataset statistics in Table 7

Table 7: Statistics of the datasets for the node classification task

Dataset
Total Num Num Dim Num

Graphs Nodes Edges Features Classes

Cora 1 2,708 10,556 1,433 7
CiteSeer 1 3,327 9,104 3,703 6
PubMed 1 19,717 88,648 500 3
Texas 1 183 309 1,703 5
Wisconsin 1 251 499 1,703 5
Cornell 1 183 295 1,703 5
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F TIME AND SPACE COMPLEXITY

Space complexity. NBA-GNNs construct message for every edge considering directions, and con-
nects them in a non-backtracking matter. This requires 2|E| number of messages, and (davg � 1)|E|
connections among messages, where davg is the average degree of the graph. This has not been a
bottleneck at practice, and can be reduced by adjusting the batch size.

Time complexity. As we connect the messages in a non-backtracking matter, we must calculated
the relation between edges in the pre-processing process. This non-backtracking edge adjacency
can be computed in O(|E|2), and O(davg|E|) if the data is provided in the form of adjacency list.
However, this is only required once per data, can be pre-computed, independent with the number of
layers, and re-used for runs.
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