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Abstract

Goals play a central role in the study of agentic behavior. But what is a goal, and
how should we best represent them? The traditional reinforcement learning answer
is that all goals are expressible as the maximization of future rewards. While parsi-
monious, such a definition seems insufficient when viewed from both the perspective
of humans specifying goals to machines and autotelic agents that self-propose tasks
to explore and learn. We offer a critical perspective on the distillation of all goals
directly into reward functions. We identify key features we believe goal representa-
tions ought to have, and then offer a proposal we believe meets those considerations.

The concept of “goals” is central to the study of reinforcement learning (RL) and agentic behavior
more generally. But what is a goal? The traditional answer within the RL community is that all
goals are expressible in an identical fashion — the maximization of the (discounted) sum of future
(scalar) rewards (the reward hypothesis, Sutton, 2004). In this sense, goals are simply preferences
over state-action histories (Bowling et al., 2023). While potentially universal and parsimonious, such
a granular definition seems insufficient for several reasons.

First, consider training a household cleaning robot through reinforcement learning. The robot should
act safely, without getting stuck, avoid collisions with objects and beings, be efficient, and not run
out of battery. Instead of representing a reward value for each state transition, people specify and
discuss such goals in more abstract and communicable terms. How can we create machines that
can learn to achieve goals specified in these more abstract but intuitive ways? Second, consider
the ways that people construct goals for themselves. For instance, children create playful goals for
themselves during play, such as making a “truck-carrier truck” or “taking my stuffed animals to the
bookstore.” These self-proposed goals help children learn how to structure problem spaces and search
for solutions (Chu & Schulz, 2020; Lillard, 2015; Andersen et al., 2023). How can we create agents
that propose rich, structured, and creative goals for themselves, fostering self-guided learning?

In this paper, we argue that thinking about goals merely as low-level reward functions to be max-
imized is insufficient. Instead, we propose a re-imagining of the role and representation of goals
within RL. We argue that if we want to develop agents that accomplish diverse tasks across different
environments, we need agents that can propose and pursue rich, complex, and creative goals. Our
proposal draws inspiration from the cognitive science of how humans think about and create goals.
Although several of the ideas summarized here have important antecedents in the prior RL (Oudeyer
et al., 2007; Colas et al., 2022) and cognitive science (Molinaro & Collins, 2023; Chu et al., 2024)
literature, we aim to provide a succinct and compact argument for this cluster of emerging ideas.

1 Key desiderata in the representation of goals

We begin by proposing key desiderata for the representation of goals in humans and machines: (1)
abstraction, (2) temporal extension, (3) compositionality, and (4) grounding in behavior. These are
semantic aspects of goals that we believe goal representations should support and make accessible
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to agents; representation formats that fail to promote these qualities will struggle to represent the
breadth and complexity of possible goals. We review how existing goal representation approaches
fare under these properties (Figure 1 summarizes our findings). We focus our discussion on methods
that explicitly present an agent with a goal, such as methods that leverage target positions (place the
agent or manipulator in a particular position, e.g. Plappert et al., 2018) or image-based observations
(match the agent’s observation to a goal image, e.g. Florensa et al., 2018; Warde-Farley et al.,
2018; Nair et al., 2018). We also discuss language-based approaches, including ones where the
environment specifies a natural language task (Hill et al., 2019), approaches procedurally generating
goals from minimal, limited grammars (Colas et al., 2020; Akakzia et al., 2021), language-based
exploration approaches (Du et al., 2023b), and methods that use large multimodal models to marry
language and image observations (Rocamonde et al., 2024; Baumli et al., 2023). We then consider
an alternative approach that seems to meet these desiderata that relies on more explicit, symbolic
program representations of goals. Our purpose in this comparison is to highlight the relative merits
of different representations and stimulate a discussion of how the field should think about goals.
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Figure 1: Toward Complex and Structured Goals in Reinforcement Learning. We sum-
marize our observations across four broad categories of goal representations and several desiderata
of goal semantics. Across the several considerations we examine (table rows), we note that prevail-
ing goal representations (either implicitly encoded to the agent as a reward function or specified
as a target observation or embedding) facilitate goal grounding but struggle with other desiderata.
Conversely, goals represented in natural language or as programs (§2) enable many representational
considerations but are substantially harder to ground to behavior.

1.1 Abstraction

Abstraction is a core property of human concept representations (Murphy, 2004; Hampton, 2003;
Yee, 2019). In addition to concrete and tangible goals, we can also consider goals at varying levels
of abstraction. While the representation and pursuit of abstract goals have received less attention
(Gollwitzer & Moskowitz, 1996; Chu et al., 2024), there is evidence people abstractly represent the
values of different options in light of changing goals (De Martino & Cortese, 2023). Human goals
can be highly specific, such as stacking a particular set of blocks on a desk. People can also abstract
away towards a goal like stacking any available object on any available surface. At the opposite end
of the spectrum, goals can be entirely abstract, such as “do something fun”, “act safely” or “learn
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new things.” We consider two separate questions regarding abstractions: (1) to what degree do
different goal representations facilitate representing these types of abstract goals? and (2) to what
degree do different goal representations enable flexibly abstracting components of a specific goal,
such as moving from “stack blue blocks on the desk” to “stack as many objects as you can?”

Representing abstract goals: Humans can conceive of and act in accordance with both specific
and abstract goals. For example, a person can aim to reach a desired state (e.g., the finish line of a
marathon) or more abstract goals (e.g., living a healthy lifestyle). Some abstract goals can partly be
mapped onto traditional reward functions. For example, “be efficient” mapped onto a small per-step
penalty, or “be safe” into a penalty for incapacitation. Such mappings, however, can be limited. They
require researchers to pre-specify important behaviors and map them onto rewards. For instance, a
penalty for incapacitation might capture some safety-related objectives but miss other ones. They
might also struggle to generalize between environments, as an appropriate per-step penalty in one
domain might be extreme in another. Other abstract goals may be more challenging to map onto
rewards (e.g., “help the other agent but don’t trivialize the task for them”). Fundamentally, this
approach requires researchers to consider edge cases and map them onto rewards, as opposed to
specifying principles for a system and allowing it to discover how to best embody them.

Abstracting goal components: Consider an example domain of object manipulation using a
robotic arm. Any particular configuration of objects, such as placing the blue block on the red block,
could be specified using a visual observation (or, for that matter, a symbolic state representation).
If we train a robot to accomplish many different stacking configurations, we might hope its policy
generalizes to novel ones. However, even if it does, we would not be able to abstractly specify the
goal of stacking any two objects on each other (or, say, stacking a non-block object on a block).

Language, of course, offers a way forward. Early approaches leveraged minimal language-generating
grammars to represent limited goals in specific domains (Colas et al., 2020; Akakzia et al., 2021).
More recently, advancements in large language models (LLMs) facilitate specifying goals using the
flexibility of natural language. In section subsection 1.4, we will fully consider the challenge of
grounding a goal representation to identify its achievement; for the time being, we remark that
language-based approaches are split into two main categories. One class of approaches leverages
environments where state representations are either symbolic (facilitating captioning) or include
a natural language component. These include work from Hill et al. (2019) emitting language in-
structions from the environment and language-for-exploration approaches such as ELLM (Du et al.,
2023b) and LMA3 (Colas et al., 2023). A second class of approaches uses multimodal models to bind
between language and image observations, using VLMs to detect success (Du et al., 2023a) or offer
rewards (Rocamonde et al., 2024; Baumli et al., 2023). While these approaches show great promise
and appear to scale well, current work has not explicitly measured their ability to supervise goals
with specific objects compared to their abstract counterparts.

1.2 Temporal extension

One particular kind of abstraction that merits separate discussion is abstraction over time. Humans
find it natural to consider goals that require more than a single moment in time to evaluate and
achieve. For example, some goals might be achieved with a single well-executed action but require
longer to evaluate, such as making a basketball trick shot (“over the second rafter, off the floor,
nothing but net”, as Michael Jordan does in a 1993 McDonald’s commercial). At the other extreme,
human goals may extend over arbitrarily long time horizons; a man in the UK set out to park in
each and every spot in a large parking lot required over six years to do so (Yuhas, 2021 thanks to
Chu et al., 2024). As the parking lot had 211 spots, naively representing the full space of previously
parked spots would require 2211 states, an unfathomably large number, and yet we can intuitively
understand and pursue such a goal. If we can represent and evaluate goals with sequential preferences
over arbitrary time horizons, can we endow artificial agents with a similar ability?

Goal representations in reinforcement learning, to date, have largely eschewed this complexity. If
we specify a goal through an observation, e.g. a robotic manipulator position or configuration of
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objects, that format does not enable temporal extension. While trajectory demonstrations have
long been used for learning (Schaal, 1996) or as specifications to infer a reward function from (Ng &
Russell, 2000), prior work does not directly specify goals as trajectories. Similarly, language-based
approaches tend to compare a language-specified goal to an embedding of the current environment
state. As improvements in VLMs facilitate reasoning over longer contexts, nothing in principle limits
them from being used to offer reward over longer sets of observations; Du et al. (2023a) demonstrate
this by fine-tuning Flamingo (Alayrac et al., 2022) to score success on short clips. In these settings,
goals are usually represented by natural language descriptions — which would also challenge agents
to learn to condition long-term policies on a single goal description or to generate suitable subgoals
to assist in pursuing the goal. A final class of approaches explicitly represents temporal tasks. These
methods use temporal logic (Littman et al., 2017; Icarte et al., 2018b; 2022), latent-space subgoals
(Fang et al., 2022), or combine both by specifying tasks textually in temporal logic (Leon et al.,
2022). These approaches offer promising templates for defining extended goals; it is unclear at
present if they also facilitate other desiderata, such as abstraction and compositional specification.

1.3 Compositionality

The human ability to compositionally combine concepts to represent and understand the world
around us is well-studied (Murphy, 2004; Ward, 1994; Frankland & Greene, 2020; Lake & Baroni,
2023). This compositionality extends to our goals: once we can set a goal for ourselves like “build
a block tower” and “throw balls onto the desk”, we can extend this to novel goals like “build a
block tower on the desk” or “throw balls at the block tower.” RL approaches often evaluate the
ability of their agents to learn compositional policies (e.g., holding out some goal configurations and
evaluating agents on the held-out goals). Here we consider how goal representations can facilitate
the ability to generate compositional goals as is required for autotelic agents that learn by creating
new tasks for themselves (Colas et al., 2022; Akakzia et al., 2021).

We begin by examining representing world states, such as object configurations, through their (usu-
ally image-based) observation. Generating observations that match compositions is trivial: if we can
place the red cube on the blue cube, and separately the blue cube on the yellow cube, we can also
stack all three cubes. However, systematically composing these combinations is harder; it is unclear
how to compose observations of “red on blue” and “blue on yellow” to produce an observation that
would guide toward “red on blue on yellow.” The compositionality of natural language (Goldberg,
2015) facilitates leveraging natural language for compositional goal descriptions. While natural lan-
guage goal representations likely compose well, the ability to detect goal achievement may not be a
trivial consequence: for instance, while SuccessVQA (Du et al., 2023a) detects goal satisfaction for
new agents on old tasks, it falls to near-chance performance on held-out goals. Logical operations,
such as conjunctions and negation, offer another type of compositional test. While Hill et al. (2019)
demonstrate compositional generalization to held-out objects, their language-based approach fails
to generalize to negations of previous instructions; the explicitly logical method proposed by Leon
et al. (2022) fares better. In summary, compositionality offers three nested challenges: generating
compositional goals, rewarding their achievement, and training agents to pursue them.

1.4 Grounding in behavior

Human goal representations enable many different types of processes. For example, people can act
instrumentally toward goals, be it in a model-free fashion or by planning how to achieve them. They
can observe another agent acting and infer their likely goal (Jara-Ettinger, 2019). They can also
evaluate their own or another agent’s behavior with respect to a stated goal and identify whether
or not and how successful they are in achieving it. This last ability is critical to training agents to
pursue these goals: if we cannot ground a goal to behaviors that accomplish it, we cannot provide a
reward signal or other feedback. Therefore, we evaluate the various goal representations we survey
on how concrete their semantics are, and how much effort is required to ground them to behaviors.
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Image- or single-state-based goals are the most trivial to ground. If we can generate a state represen-
tation or observation, and define a distance metric over state (or latent) space, we can reward goals
using this metric. While not all distance metrics and state representations offer an equally good sig-
nal towards goal achievement (Akella et al., 2023), some representations even allow interpolating in
latent space to plan toward a goal (Eysenbach et al., 2024). Grounding language-based goals depends
on both the environment and the complexity of the goal. With environments that admit a language
state description, grounding can be implemented as a similarity comparison between embeddings
of the state and goal without additional engineering efforts. Symbolic states allow hard-coding a
state captioning system; Du et al. (2023b) offer evidence that agents using a hard-coded captioner
fare better than those using a learned one, indicating that caption quality can be a bottleneck.
Environments using visual observations and language goals use multimodal models to align between
the modalities. These approaches appear to benefit from increasing model scale (Rocamonde et al.,
2024; Baumli et al., 2023), but how such approaches fare with increasingly elaborate goals is an open
question; evidence from video-based tasks suggests models’ ability to reason about complex queries
over long videos remains limited compared to humans’ (Rawal et al., 2024).

2 Program representations of goals

Given these desiderata, we consider another approach to representing goals, by treating them as
symbolic programs. Specifically, we examine a proposal to model human goal generation as synthe-
sizing reward-producing programs (Davidson et al., 2024). These are symbolic programs explicitly
representing goal semantics, supporting compositional recombination, that are interpretable to de-
tect partial or complete goal achievement. Goals have long been implicitly specified to agents using
programs as the reward functions implemented in artificial simulation environments. Here, we con-
sider explicitly endowing agents with access to symbolic program goal representations. We consider
programs under the set of desiderata surveyed above and then discuss several implications.

2.1 Goal program desiderata

Abstraction: Abstracting within components of programs is rather natural. Taking as an example
the LISP-like syntax adopted by Davidson et al. (2024), modifying a goal to act over different
objects requires modifying a variable declaration, as objects are referenced via variable quantification.
Abstracting a goal to a superordinate relation might require further modification; but as programs
explicitly denote semantics, defining a grammar that facilitates abstraction is achievable.

Temporal extension: (stateful) program representations could encode goals with arbitrarily long
time horizons. For instance, the representation used by Davidson et al. (2024) is interpreted into a
state machine that then acts as a reward function, inspired by reward machines (Icarte et al., 2018a;
2022). Such programs have not yet been used to train agents, though, leaving the question open of
how to best embed them as goals on which to condition an agent’s behavior.

Compositionality: Programs are naturally compositional to the extent defined by their syntax—
program-based approaches trivially allow combining multiple reward signals (e.g. Eureka and Dr.
Eureka’s (Ma et al., 2023; 2024) generated reward functions), and the program goals generated by
Davidson et al. (2024) allow composing separate preferences to structure an overall goal.

Grounding in behavior: Grounding programs depends on the environment’s state representation
and the nature of the programs. For example, Eureka and Dr. Eureka generate Python reward
functions (and do not require a custom interpreter) and operate directly on environment states (aided
by inspecting environment source code). At the other end, Davidson et al. (2024) implemented a
custom interpreter to parse their domain-specific language into state machines, which also operate
over symbolic state representations. Grounding is simplified by approaches that interpret into the
same language used to specify environments, and by symbolic states; conversely, if an environment
does not admit a symbolic representation at all, grounding programs to it may be challenging.
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2.2 Goal programs and goal-conditioned policies

One key property separating some of the approaches reviewed in this paper from others is whether or
not the agent’s policy is goal-conditioned. We view this distinction as crucial because to condition
the policy on a goal, it needs to be represented in a suitable fashion (usually as an embedding
in some high-dimensional space). This naturally encourages representations that either match the
observations the agent learns to embed as they interact with the environment, or textual observations
embeddable using a language model. Program-based goals (implemented by reward functions) have
been used in non-goal-conditioned settings by the Eureka family of methods, and more broadly,
every simulated environment requires specifying a function to compute reward. Conversely, no prior
works embedded a goal program in a manner that enables an agent to condition its policy on the
program, and it is unclear if single embeddings would fully capture the rich semantics of programs.

2.3 The agent-environment boundary and the many uses of goal representations

The goal-conditioning distinction relates to the broader question of where to draw the agent-
environment boundary. A narrow view of a reinforcement learning agent is one where the agent’s
only interaction with the concept of a goal is through the environment-defined reward function.
Introducing explicit goals to the agent has several benefits. Goal-conditioned agents allow learning
a single policy capable of pursuing distinct goals, hopefully facilitating generalization to novel goals
with minimal further learning. Agents may also propose their own goals to better explore their
environment and develop baseline skills, as proposed in Colas et al.’s (2022) autotelic framework.

Our desiderata for goal representations are motivated in part by the many ways in which people use
their goal representations. We can use a goal to guide our behavior or to plan toward achieving it.
We can also attempt to infer another agent’s goal from watching them behave (not unlike inverse
RL), or evaluate an agent’s progress toward a known goal (playing the part of a success detector or
reward function). From the perspective of reinforcement learning, perhaps the agent-environment
boundary also passes somewhere within the human mind, and we can consider the RL agent to only
model the policy learning aspect (which may be neurally separate from other aspects of decision-
making, see Niv, 2009, for a review). However, if we are interested in building agents that can
propose and pursue their own goals and maybe even infer ours and assist us in solving them, we
should consider how to represent goals in a manner that facilitates these separate yet related skills.

3 Discussion

We offer an argument to revisit the role and representation of goals in reinforcement learning. We
present several desiderata for goal representations, inspired by the many functions of goals in human
cognition, and review how current RL methods fare under these considerations. We then discuss
a recent proposal to explicitly represent goals as symbolic, evaluable programs and situate it with
respect to the agent-environment boundary question. We conclude with a few discussion points:

We chose to highlight a specific set of desiderata, which we do not view as all-encompassing. We
hope this work fosters a discussion about what properties are helpful in constructing effective goals.
For instance, communication is another key property of goals, one that might be particularly crucial
in multi-agent or human-machine collaboration settings. Another desirable quality might be the
ability to generate goals to maximize a more generalized information-seeking principle, such as
learning progress or empowerment—though it remains to be seen if this is a property of the goal
representation or of the goal-generating algorithm.

We note that representing abstract goals to agents remains an open challenge. One path to scale up
manually implemented auxiliary rewards is to build on approaches such as Eureka and Dr. Eureka
(Ma et al., 2023; 2024), which use LLMs to synthesize task-specific reward functions (coupled with
safety-related instructions). Programs, which naturally offer abstraction mechanisms, offer one
alternative toward explicitly specifying abstract goals to agents. Another way forward might come
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from AI alignment research, which develops methods designed to impart desired behaviors to LLMs.
For instance, constitutional AI (Bai et al., 2022) tries to improve the ability of models to act in
accordance with a set of principles; however, developing the supervision signal over agent interactions
in arbitrary environments, as opposed to textual LLM outputs, may require substantial work.

If we propose sequential preferences over temporally extended goals as a desirable property, how
does that interact with the Markov assumption? A state representation that incorporates physical
information about a single moment in time may not suffice to reason about temporal goals. Consider
the challenge of making a shot “over the second rafter, off the floor, nothing but net.” We could
detect each of these conditions as they happen (e.g., the ball is over a particular rafter), but we could
not define this goal as a reward function over singular moments. While this particular goal might
be resolved by treating a short time horizon as the state, we believe that for any (finite) horizon, we
could construct a goal requiring reasoning beyond it. However, for any temporally extended goal, we
envision there exists some auxiliary state construction that transforms the goal to be Markovian, in
line with the reward machines proposed by Icarte et al. (2018a). We highlight two open questions.
First, how can these approaches be married to goal-conditioned RL to train agents to construct and
solve many such goals? Second, what can we learn from human cognition about solving temporally
extended goals? Do people construct task-specific MDPs, or how else do we pursue such behavior?

Finally, though we draw inspiration from human psychology, we note that psychology, too, offers
limited definitions of goals. Goals are prevalent across psychological research (Dweck, 1992; Austin &
Vancouver, 1996), having been studied from perspectives such as motivation (Hyland, 1988; Eccles
& Wigfield, 2002; Brown, 2007), personality and social psychology (Fishbach & Ferguson, 2007;
Pervin, 2015), and learning and decision-making (Moskowitz & Grant, 2009; Molinaro & Collins,
2023; Chu et al., 2024). For all these efforts, goals are often discussed absent a technical definition,
and when one is provided, it is often vague or simplified, e.g., defining goals as future objects to be
approached or avoided (Elliot & Fryer, 2008). Future work should strive to reconcile between the
richness of goals and goal-directed behavior and the narrow scope of definitions offered.
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