Appendix for “Self-Interpretable Model with
Transformation Equivariant Interpretation”

Yipei Wang, Xiaoqian Wang *
Department of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47907
wang4865@purdue.edu, joywang@purdue.edu

1 Experimental Setup

All experiments are conducted @ NVIDIA Dual RTX5000 GPUs with the Intel Xeon W-2145 CPU
and NVIDIA Dual RTX6000 GPUs with the Intel 19-9960X CPU.

First, we define the family of geometric transformations to which we want SITE to be equivariant as
constrained parametric affine transformations [4]: 7z = {Ij : 8 ~ B}, where 8 € R®. And B is
defined to constrain the affine transformations to be compositions of rotations in [—7/2, 7/2] and
translation in [—h/2, h/2], where h denotes the width and the length of input data.

During experiments, the model configurations can be divided into two different settings according to
the complexity of the dataset. For MNIST [6], as it is simple, and the intrinsic structures are distinct
by pixels among classes, the structure of SITE degenerates from G o F} to G by setting F} to be the
identical operator. That is, z = F (x) = x. Correspondingly, the generator GG instead maps input x to
its prototypes G;(x),7 = 1,- - - , c. Hence the structure of SITE is built to be an autoencoder-based
structure, where there are c parallel decoders. As for CIFAR-10 [5], due to the need for upsampling
in visualization, the image data are resized to 128 x 128. The feature extractor F is built based on
ResNet-18 [3]. Here F : R3*128x128 _, RI10x16x16 - Apd for the generator G, it consists of ¢ = 10
(number of categories) parallel autoencoders, such that G; : R10X16X16 _, R10x16X16 Both MNIST
and CIFAR-10 datasets are split into the training and validation sets by default. And all presented
examples are from the validation sets. We also test on more complex datasets like Food-101 [[1] to
demonstrate the scalability of SITE. Please refer to the Appendix 3] for details. Besides, in order
to balance the classification loss and the transformation loss we set the scalar factor to be A = 5
throughout the training phase.

2 More Examples on CIFAR-10

In this section, we present more results of SITE on the CIFAR-10 dataset as a supplement to Fig.
3 in the main body of the paper. Here we only present correctly classified examples. We sample 3
images for each class from the default validation set of CIFAR-10. The interpretations of SITE are
shown in Fig[I{T0] Here the first rows are the untransformed and the transformed images, while
the second rows are the corresponding interpretations. And two adjacent columns are a pair of
untransformed and transformed images. The results of ten classes are listed alphabetically, that is, Fig.
[T for airplanes, Fig. 2] for birds, Fig. [3]for cars, Fig. @ for cats, Fig. [5|for deer, Fig. [6]for dogs, Fig.
for frogs, Fig. [§]for horses, Fig. [9]for ships, and finally Fig. [I0]for trucks. It can be clearly found that
SITE can accurately highlight the important features of both untransformed and transformed images
in classification. Besides, SITE also demonstrates great self-consistency, as the highlighted areas
preserve very similar shapes between the untransformed and transformed images.
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Figure 1: Additional examples of class “Airplane”. The first row shows the original images, and the

second row shows the heatmaps learned from SITE.
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Figure 2: Additional examples of class “Bird”.
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Figure 3: Additional examples of class “Car”.

3 More Examples in Comparison

In this section, we present more comparison results among SITE and the post-hoc methods mentioned
above. This is a supplement to Fig. 4 in the main body of the paper. The companions include:
back-propagation methods such as Grad-CAM [9], excitation back-propagation [14], guided back-
propagation [[I1], gradient [10], DeConvNet [13], and linear approximation. And also there are
perturbation methods such as randomized input sampling (RISE) [8] and extremal perturbation
(EP) [2]]. The various comparing methods are implemented through the TorchRay toolkit [2]]. To
illustrate the comparison results consistently, we use heatmaps of the same settings to visualize
the interpretations of all methods. Since the interpretations of different models are obtained in
very different ways, the visualizations of them are performed separately. Hence the heatmaps
only demonstrate the relative importance of pixels within each interpretation itself. The results
are presented in Fig. [TT] In Fig. [TT] we demonstrate a similar result as shown in the main body.
Although all methods present good results for the transformed images, post-hoc methods show less



Figure 5: Additional examples of class “Deer”.
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Figure 6: Additional examples of class “Dog”.

Figure 7: Additional examples of class “Frog”.
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Figure 8: Additional examples of class “Horse”.
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Figure 9: Additional examples of class “Ship”.

Figure 10: Additional examples of class “Truck”.

faithful interpretations when dealing with untransformed images. This is because the model is trained
on transformed images. And therefore, we can claim that post-hoc methods are not faithful to the
predictions.

4 Benchmarking Attribution Methods

The Benchmarking Attribution Methods (BAM) [12]] are evaluations to the correctness of attribution
interpretation methods. The BAM dataset consists of artificial images, which are combinations of
the scene dataset MiniPlaces [[13] and objects dataset MSCOCO [7]. The dataset is constructed
by overlaying the scaled objects on the scenes. Since there are 10 classes for both objects and
scenes dataset, there are 100 classes of BAM dataset after the composition. And each class has 1000
images. Using the same dataset, with different labels, the BAM dataset can be denoted by X, and X,
where &, has labels for the objects, while X has labels for the scenes. An attribution interpretation
method is considered to be reasonable only when it can highlight correct areas — if trained on &,
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(p) DeConvNet (q) Lnr. Approx. (r) Gradient (s) RISE (t) EP

Figure 11: Additional comparisons of interpretations from SITE and post-hoc methods. Here
SITE accurately captures the important features in both transformed and untransformed images.
However, most of the post-hoc methods can only have comparable results on transformed images
(where the model is trained), but fail on the untransformed image.

the highlighted area should be the objects, and vice versa. We train SITE on both datasets, and
present the attribution interpretations by comparing them with other post-hoc methods mentioned
above. The results are shown in Fig. [T2]and[I3] Here Fig. [I2](a)(f) are repeated just for an aligned
illustration. In Fig.[T2] we present the results on an (correctly classified) untransformed image from
the validation set of BAM. It can be found that most methods present reasonable interpretations of
the prediction result. That is, they highlight correct areas for corresponding models (trained on X’s
and &,). However, from Fig. @ where the image is transformed, SITE shows more self-consistent
and faithful interpretations than the comparing methods. Here the two images Fig. [13](a)(f) are for
object and scene datasets, respectively, and are thereby randomly transformed separately. From Fig.
[[3[b)(c) we can find that SITE outperforms Grad-CAM in highlighting the object area.

5 Results on Food-101 Dataset

Food-101 [T] is a fine-grained food image dataset. It is much more complicated than CIFAR-10 and
MNIST. We use this to demonstrate the scalability of SITE. The dataset contains 101 categories
and 1000 images per category. The 1000 images of each category are split into the training (750)
and validation (250) subsets. Images are randomly transformed during both the training and the
validation phases. We resize all images to 128 x 128, and use the same structure F7, G as CIFAR-10.
The difference is that the number of categories is ¢ = 101 instead of 10. Under this setting, F}
contains around 11.2m parameters, while G contains around 3.4m parameters. As a result, SITE only
increases the number of parameters by 30% for such a complex dataset. The accuracy results of
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Figure 12: The comparison among different interpretation methods on BAM dataset. The sample
is from the untransformed validation set. The interpretations in the first and the third rows ((a)-(e),
(k)-(0)) are to the model that is trained on X, (with labels for objects). And the interpretations in
the second and the last rows ((g)-(h), (p)-(t)) are to the model that is trained on X5 (with labels for
scenes).

both SITE and the backbone model (ResNet-18) are shown in Table[I] And the interpretations are
illustrated in Fig. [T4 SITE obviously preserves great self-consistency between transformed and
untransformed images.

Model | Accuracy

SITE 63.91%
black-box backbone (ResNet-18) | 64.04%

Table 1: The expressiveness results of SITE and the corresponding black-box model on Food-101.

6 Pointing Game

In order to further demonstrate the superiority of SITE in the interpretation quality compared with
post-hoc models, we also carry out the pointing game experiment [14] on the annotated MNIST
dataset. In the pointing game, an interpretation method calculates an interpretation map w of the input
x w.r.t. the class c. The method scores a hit every time the largest value of s falls in the image region
Q) within the tolerance 7. () is the region containing the object for the objects dataset (or excluding
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Figure 13: The comparison among different interpretation methods on BAM dataset. The sample is
from the transformed validation set. The interpretations in the first and the third rows ((a)-(e), (k)-(0))
are to the model that is trained on X, (with labels for objects). And the interpretations in the second
and the last rows ((g)-(h), (p)-(t)) are to the model that is trained on X (with labels for scenes).

the object for the scenes dataset). The ratios i _’iif”,ss are shown in Table |2l As the baseline, we also
include the post-hoc interpretations to the backbone models. It can be found that SITE outperforms
all post-hoc models in the pointing game experiment. Similar to the experiments we conduct, all
methods are trained with the same set of randomly transformed images (which includes the identity
mapping, i.e., original images) and explain the same model. Thus, the significantly higher hit ratio by
SITE in pointing game evaluation validated the improvement of SITE in transformation equivariance.

Table 2: The pointing game results on annotated MNIST dataset.

Transformed Untransformed
W SITE  Backbone | SITE  Backbone
Interpreter
SITE 0.9993 - 0.9996 -

Gradient 0.5423 0.8992 | 0.7741 0.9540
GradCAM 0.7726  0.7730 | 0.8138  0.8062

Linear Approx. 0.6540 0.9577 0.8381 0.9856
DeconvNet 0.2546  0.6895 0.3128  0.6553
Excitation BP 0.3588  0.9892 | 04716  0.9979
Guided BP 0.4664  0.9974 | 0.8825  0.9990




Figure 14: SITE Interpretations on Food-101

7 Failure Case Analysis

There’s no perfect model that does not make any mistake. Therefore, the interpretations of the
misclassified data, i.e. the failure cases, are very important. On the one hand, it can give users
comprehensible feedback to the mistake by revealing its reasoning. On the other hand, it can help
model designers to better understand and debug it, and it can also provide insights into the training
data. Based on the structure of SITE, we can easily present the interpretation to the predicted logits
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Figure 15: Failure cases of of predictions on CIFAR-10. The first row images (a)(b)(c)(d)(e) are input
images in the default validation set of CIFAR-10, where SITE makes wrong predictions. The second
and the third rows (f)-(0) are the interpretations SITE makes to the true classes. The second row is
the heatmaps themselves, while the third row is the heatmaps overlayed on the input images. The
fourth and the last rows (p)-(y) are the interpretations SITE makes to the predicted (wrong) classes.
The fourth row is the heatmaps themselves, while the last row is the heatmaps overlayed on the input
images. The five columns are truck, car, plane, bird, and ship, respectively. And they are classified to
be ship, plane, cat, frog, and ship, respectively.

of arbitrary classes. Here in Fig. [I5] we present five examples where SITE fails in predictions. For
clarity concerns, we omit transformations here and use original CIFAR-10 data directly. The first
row is the input images from the validation set of CIFAR-10. The second and the third rows are
the interpretations of the true class, while the last two rows are the interpretations of the predicted
(wrong) class.



From Fig. [T5(a)(f)(k)(p)(u), we can see that a truck is predicted to be a ship by SITE. The interpreta-
tion of the prediction to the ship class is shown in (p)(u) and the interpretation to the truck class is
shown in (f)(k). We can find that SITE focuses mainly on wheels for trucks but on the main body for
ships.

Similarly, by comparing Fig. b)(g)(l)(q)(v), we can deduce that SITE discriminates this car as a
plane mainly because of the lateral view of the front windshield as shown in (q)(v). It is possible that
SITE treats it as an airfoil. This can also provide an insight to the training data that there should be
more lateral view of cars. And the prediction to the car class is due to the wheels of the object, as
shown in (g)(D).

And in Fig. [T5(c)(h)(m)(r)(w). We can see that SITE misclassifies a plane to a cat. With the
interpretations shown in (r)(w), we can find this misclassification is because the white airflow fools
SITE to treat it as a hairy cat.

In Fig. [I3[d)(i)(n)(s)(x), a baby bird is classified to be a frog. We can find it is classified to be a frog
mainly because of the main body as shown in (s)(x), while for the bird class it is mainly because of
the head.

Finally, from Fig. [15(e)(§)(0)(t)(y), the image of a deer is classified to be a ship because of the
horizontal ship-like structure that is behind the deer, as shown in (j)(0). And it captures the features
of the deer for the deer class as shown in (t)(y).

From the above-mentioned examples, we can see that even when making wrong predictions, the
faithfulness of SITE still lead to reasonable interpretations, which benefit human to understand and
debug the model, and also to enhance the training dataset.
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