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ABSTRACT

Distributed optimisation algorithms have emerged as a superior approach to solving
applied problems, including the training of machine learning models. To accom-
modate the diverse ways in which data can be stored across devices, these methods
must be adaptable to a wide range of situations. At the uppermost level, two
orthogonal regimes of distributed algorithms are distinguished: horizontal and ver-
tical. Nevertheless, irrespective of the manner in which data is distributed among
workers, communication between them can become a critical bottleneck during par-
allel training, particularly in the case of high-dimensional and over-parameterised
models. Therefore, it is crucial to enhance current methods with strategies that min-
imize the amount of data transmitted during training while still achieving a model
of similar quality. This paper introduces two accelerated algorithms with various
compressors, working in the regime of horizontal and vertical data division. By
adapting variance reduction technique of non-distributed methods for stochastics,
caused by compression, we were able to achieve one of the best asymptotics for the
horizontal case. Additionally, we provide one of the first theoretical convergence
guarantees for the vertical regime. In our experiments, we demonstrate superior
practical performance compared to other popular approaches.

1 INTRODUCTION

As machine learning continues to gain popularity, it is essential for training algorithms to maintain
exceptionally high performance in order to effectively address real-world issues. To increase the
quality of models’ predictions, larger datasets are used. However, training models on a huge amount
of samples on a single machine can be very time-consuming, which is why faster optimization
approaches are needed.

To address this problem, the scientific community came to distributed algorithms, where the calcula-
tion process is divided among different devices (also called machines, nodes, clusters, or workers).
Such parallel computation can be used in situations, where data is distributed across several machines,
as in the cases of classical distributed Verbraeken et al. (2020) and federated learning approaches
(Konečný et al., 2017). The latter can be divided into two different regimes. One of these is horizontal
federated learning, which is the most popular and extensively studied approach. In this scenario, each
worker possesses their own collection of samples, but share the same set of features. A different
situation is considered in the vertical case (Zhang et al., 2021), where every device has a unique set of
features of the same samples. The practical use of the latter regime can be seen in a simple example,
where a digital finance company wants to evaluate the risk of approving a loan. To make a qualified
prediction, it needs to collect different types of data (features) from the same person (sample). For
example, online shopping information from an E-commerce company or average monthly deposit and
account information from a bank. However, legal restrictions or competition between participants
prevent these organizations from sharing data, which is why a vertical case is suitable in this situation
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(Gu et al., 2020). But classical distributed and horizontal federative learning methods can not be
forgotten, as they can show a great performance in accelerating training speed (Goyal et al., 2018).

However, parallelization of a task practically does not lead to an ideal decrease in time. That
means that having N devices does not accelerate task by N times. This happens because of limited
ability of networks to exchange information. Thus, the key bottleneck of parallel computation is the
communication part. There have been considered several ways of dealing with this issue Konečnỳ et al.
(2016); Smith et al. (2018), but in our paper we concentrate solely on reducing communication cost
of each iteration by decreasing the size of sending information also known as compression technique
Chilimbi et al. (2014); Alistarh et al. (2017). Due to reducing quality of communicated information,
gradient descent methods perform greater amount of iterations, but overall time complexity can be
reduced. In our paper, we consider compression operators with the following properties:

Definition 1.1. We say that the compression operator Q is unbiased, if

E [Q(x)] = x , ∀x ∈ Rd.

We also assume that there exists a constant ω ≥ 1, such:

E
[
∥Q(x)− x∥2

]
≤ ω∥x∥2 , ∀x ∈ Rd.

We say that the compressor operator Q has density coefficient β, if Q(x) requires in β times less
space complexity than x.

Table 1: Summary of bounds for iteration complexities for finding an ε-solution. Convergence is
measured by the distance to the solution.

Regime Reference Iteration complexity

H
or

iz
on

ta
l

QSGD Alistarh et al. (2017) (1) O
(

L
µ

(
1 + ω

n

)
log 1

ε

)
DIANA Mishchenko et al. (2023) O

((
L
µ

(
1 + 2ω

n

)
+ ω

)
log 1

ε

)
VR-DIANA Horváth et al. (2019) O

((
L
µ

(
1 + ω

n

)
+ ω

)
log 1

ε

)
ADIANA Li et al. (2020) (2) O

((√
L
µ

(
1 +

√(
ω
n +

√
ω
n

)
ω

)
+ ω

)
log 1

ε

)
ADIANA He et al. (2024) (3) O

((√
L
µ

(√
ω2

n + 1

)
+ ω

)
log 1

ε

)
MARINA Gorbunov et al. (2022) (4) O

((
L
µ

(
1 + ω√

n

)
+ ω

)
log 1

ε

)
MASHA Beznosikov et al. (2023) (5) O

((
L
µ

√(
w + ω2

n

)
+ ω

)
log 1

ε

)
Three Pillars Algorithm Beznosikov and Gasnikov (2023) (5, 6) O

((
L
µ

√
n + n

)
log 1

ε

)
Algorithm 1(This paper) O

((√
L
µ

(√
ω2

n + 1

)
+ ω

)
log 1

ε

)

Ve
rt

ic
al

AVFL Cai et al. (2022); CE-VFL Sun et al. (2023);
No theoretical results

SecureBoost+ Chen et al. (2021); eHE-SecureBoost Xu et al. (2021);

CVFL Castiglia et al. (2023) No concrete number of iterations (7)

Algorithm 2(This paper) O
((√

L̄
µ s + s

)
log 1

ε

)
(1) correct tuning of step size, no convergence with fixed step size; (2) this is the complexity derived in the original paper Li
et al. (2020); (3) this is the complexity derived by a refined analysis in the preprint He et al. (2024) (4) under PŁ condition;
(5) for VI and SPPs; (6) for PermK compressor; (7) for special compressor convergence rate is O( 1√

K
), no guaranties in

the case of arbitrary compressor;
Notation: µ = constant of strong convexity, L = smoothness constant of the target function, ω = compression constant

(see Definition 1.1), n = number of workers, s = number of samples, L̄ = 1
s

s∑
i=1

Li

1.1 RELATED WORKS

Unbiased compression. An idea to shrink the vector was researched in (Nesterov, 2012). This work
developed a variant of single-node gradient descent in which only some random coordinates are
updated at every step. Later, in the literature on compression, operators of this kind began to be called
“RandK” (Beznosikov et al., 2024). In the paper by (Richtárik and Takáč, 2013), coordinate descent
method was adapted for distributed optimization. Generalization with arbitrary unbiased compressor
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was firstly introduced in QSGD paper (Alistarh et al., 2017), but this method does not converge to the
true solution, but rather to some neighbourhood, dependent on functions’ variance (Gorbunov, 2021).

Variance reduction. The problem mentioned above is characterized by a non-zero limit in the
optimal point of the variance of stochastic gradient. A technique of choosing a vector of step direction
to fix this challenge is called variance reduction. Firstly used in standard optimization problem
Johnson and Zhang (2013); Nguyen et al. (2017) and later was adapted for distributed optimization in
DIANA (Mishchenko et al., 2023), by compressing not gradient itself, but rather gradient difference,
and later for non-convex distributed case in MARINA (Gorbunov et al., 2022). This technique is also
used in variational inequalities, for example, in (Beznosikov et al., 2023).

Acceleration. The optimal algorithm for a non-distributed strongly convex problem, which uses
variance reduction technique, is Katyusha (Allen-Zhu, 2018). It is based on acceleration technique,
called by authors “negative momentum” with the combination of stochastic adjustment of the gradient
in the old point. Vector, in which gradient is calculated, updates with the loop, which is theoretically
no more effective than an update with a certain probability represented in L-Katyusha (Kovalev
et al., 2019), but is difficult to perceive and empirically slower.

1.2 OUR CONTRIBUTIONS

• Horizontal regime. We propose L-Katyusha-based (Kovalev et al., 2019) algorithm with hori-
zontal data division – DHPL-Katyusha, in which every worker compresses and sends the difference
between gradients of its own function in new and old points, after which regular L-Katyusha
algorithm is performed locally. The asymptotics of our algorithm is compared with other pop-
ular approaches in Table 1. Unlike QSGD (Alistarh et al., 2017), DIANA (Mishchenko et al.,
2023), VR-DIANA (Horváth et al., 2019), MASHA (Beznosikov et al., 2023) and Three Pillars
Algorithm (Beznosikov and Gasnikov, 2023), our algorithm is accelerated (e.g. has asymptotics
proportional to

√
L
µ , where L is a smoothness constant and µ is a constant of strong convexity), and

in comparison with the improved version of ADIANA, DHPL-Katyusha has the same asymptotics,
but shows better empirical results in experiments.

• Vertical regime. We strive to present DVPL-Katyusha and DVPL-Katyusha with
scalar compression (Algorithm 2 and 3 respectively) — algorithms with compression work-
ing under the assumption of the vertical data division. The first one uses RandK compressor, and the
second utilize MSE loss and arbitrary (with respect to Definition 1.1) compressor. In both algorithms
every worker sends its own part of scalar values, needed to calculate total loss, and then perform
other part of L-Katyusha locally with its own set of features. We estimate the asymptotics in
such settings and show a lower bound for scalar compression on a constructive example. We are
one of the first to present algorithm with vertical regime and guaranties for theoretical convergence.
Other approaches, represented in Table 1, such as AVFL (Cai et al., 2022), CE-VFL (Sun et al.,
2023), SecureBoost+ (Chen et al., 2021) and eHE-SecureBoost (Xu et al., 2021) do not have
it. The CVFL algorithm (Castiglia et al., 2023) has theoretical convergence rates only for special
compressors, but also lacks concrete convergence guarantees.

• Various compressors. We obtain similar estimates for different compressors. By obtaining ω from
Definition 1.1, we research RandK operator, which retains only K random coordinates from a vector.
In this paper, we also implement one of the state-of-the-art compressor PermK (Szlendak et al., 2021),
which distributes random permutations of vector components across all workers to compute only
on them. As PermK can be represented in the form of several correlated compressors, ω can not be
defined for it. Thus, a slightly different analysis is used in order to develop a proof.

• Numerical experiments. In numerical experiments, we illustrate the most important properties of
the new methods. The results correspond to the theory developed.

2 HORIZONTAL CASE

In this section, we provide an algorithm for the horizontal division of data, which we call
DHPL-Katyusha (Algorithm 1). We state the standard distributed learning problem: each worker
has its own dataset, on which it can calculate the loss. The target loss function, which we need to
minimize, is obtained by summarizing and averaging all workers’ losses. Formally, it can be written
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in the form of:

min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
. (1)

Communications between nodes can be centralized, e.g. they can be managed only by the server,
which in gradient approaches collects functions’ gradients, averages them, does subsequent calculation
to find a new point and broadcasts it to other devices. Such setting is considered to be popular,
especially in theory. Another way of organizing communications is a decentralized setup, where
all devices are connected in a single network with specific topology and, unlike centralized, can
communicate with each other through networks’ edges. In our work, we prefer the latter one.
Also, in our paper we research both correlated and uncorrelated compressors, therefore to make
algorithm suitable for different ways of organizing communications we change the name of specific
communication operation with the word “broadcast”.

2.1 INTRODUCTION OF DHPL-KATYUSHA

At the beginning of the k-th iteration of DHPL-Katyusha, every worker computes xk locally, as a
convex combination of zk, wk and yk and broadcasts it to all other workers (line 3). After this, each
worker already has the same old and new point and therefore can compute the difference between
local gradients in the current point xk and in the old point wk in the same manner (line 4). Then, each
worker applies a local compressor and sends this difference to everyone else (line 5, line 6). Having
done that, every device is able to find the average of all compressed differences and add full gradient
in wk (stored locally on each device) to apply the variance reduction technique (line 7). After that,
“negative momentum” idea is used from (Kovalev et al., 2019) (line 8, line 9). Finally, wk is updated
to the actual point, based on a coin flip, which all workers do with the same random seed (line 10). If
wk is adjusted, the uncompressed gradient is calculated by AllReduce procedure (line 13).

Algorithm 1 DHPL-Katyusha

Input: initial y0 = w0 = z0 ∈ Rd, step size η = min

{
θ2

(1+θ2)θ1
,

L̃
L θ2

(1+θ2)θ1

}
, where L̃ = Lω

n ,

σ = µ

L̃
, parameters θ1, θ2 ∈ R and probability p ∈ (0, 1] (every worker has the same random seed

for calculating p).
1: for k = 0, 1, 2, . . .K do
2: for i = 1 . . . n in parallel do
3: xk ← θ1z

k + θ2w
k + (1− θ1 − θ2)y

k

4: gki ← ∇fi(xk)−∇fi(wk)

5: g̃ki ← Qi(g
k
i )

6: Using communications broadcast g̃ki

7: Compute g̃k ← 1
n

n∑
i=1

g̃ki +∇f(wk)

8: zk+1 ← 1
1+ησ (ησx

k + zk − η

L̃
g̃k)

9: yk+1 ← xk + θ1(z
k+1 − zk)

10: wk+1 ←
{
yk, with probability p

wk, with probability 1− p

11: if wk+1 = yk then
12: Using communications broadcast∇fi(wk+1)

13: Compute∇f(wk+1) = 1
n

n∑
i=1

∇fi(wk+1)

14: end if
15: end for
16: end for
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2.2 CONVERGENCE RESULTS

To prove the asymptotics of DHPL-Katyusha we need to make the following assumptions for the
problem (1).

A 1. Functions fi : Rd → R are L-smooth for some L > 0,∀i ∈ 1, n:

fi(y) ≤ fi(x) + ⟨∇fi(x), y − x⟩+ L
2 ∥y − x∥2 , ∀x, y ∈ Rd.

A 2. The function f : Rd → R is µ - strongly convex for some µ > 0:

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ
2 ∥y − x∥2 , ∀x, y ∈ Rd.

In the original paper (Kovalev et al., 2019), one of the steps in the proof of the asymptotics of
L-Katyusha, which is called as Lemma 6, is the estimation of a term ∥g̃k −∇f(xk)∥2. It can be
formally written in the following form:

Lemma 1. For the original L-Katyusha algorithm, the norm of the difference between the
calculated and the real gradient can be estimated as

∥gk −∇f(xk)∥2 ≤ 2L
(
f(wk)− f(xk)− ⟨∇f(xk), wk − xk⟩

)
.

However, in our paper, gk is changed to g̃k, and therefore, it is needed to utilize additional inequalities
to gain similar terms for an upper estimate of ∥g̃k −∇f(xk)∥2. As similar inequality is proven for
several algorithms, we give the following definition:

Definition 2.1. In Katyusha-based algorithm we call L̃ the efficient Lipschitz constant, if it is the
smallest constant, such that:

∥g̃k −∇f(xk)∥2 ≤ 2L̃
(
f(wk)− f(xk)− ⟨∇f(xk), wk − xk⟩

)
.

In supplementary materials below it is shown in Lemma 6 that for DHPL-Katyusha L̃ = Lω
n .

Note, that for the case L̃ ≥ L we can use all Lipschitz inequalities that were used in (Kovalev et al.,
2019), but for L̃ and therefore conclude a proof. But not always this property is satisfied, and we
need to use another inequalities. Using this fact, we can formulate the convergence Theorem 1, which
one can find in supplementary materials below.

We choose the concrete p with the aim of reducing the average amount of information sent in
each communication procedure. At each iteration, on average, workers communicate at a cost of
O
(

1
β + p

)
. Therefore, p should be equal to 1

β to get a gain in asymptotics. Other parameters we
choose are similar to that of L-Katyusha (Kovalev et al., 2019).

Corollary 1. Denote β as a density coefficient of compressor operator Q from Definition 1.1.

Let p = 1
β , θ1 = min {

√
2σβ
3 , 1

2}, θ2 = 1
2 . Then after K = O

((√
L
µ

(√
β ω

n + 1
)
+ β

)
log 1

ε

)
iterations E

[
ΨK
]
≤ εΨ0, where, the Lyapunov function ΨK is defined as ΨK := ZK+YK+WK .

Total information sent by DHPL-Katyusha with such parameters, is

O

((√
L

µ

(√
1

β

ω

n
+ 1

)
+ 1

)
log

1

ε

)
.

2.3 RANDK AND PERMK COMPARISON

For RandK compressor, the exact ω is equal to d
K (Beznosikov et al., 2024). Therefore, using Lemma

6 we get the efficient Lipschitz constant L̃RandK =
(

d
nK + 1

)
L, which is always greater than L.

As Qi for PermK operator are correlated, the analysis for it is slightly different from the original
DHPL-Katyusha. But we still managed to find its efficient Lipschitz constant and therefore can
estimate asymptotics for it. As shown in supplementary materials below, L̃PermK = L.
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3 VERTICAL CASE

In this section, we introduce the Katyusha-based algorithm of distributed optimization with vertical
data division, which is named as DVPL-Katyusha. We state the problem of minimization of the
linear loss function. This can be formally written as:

min
x∈Rd

L(Ax, b) :=
1

s

s∑
j=1

Lj(A
T
j x, bj)

 , (2)

where b ∈ Rs is a vector of targets, A ∈ Rs×d is a feature matrix, s is a number of samples and d is a
number of features. We denote Aj as a j-th row of matrix A.

In the vertical setup, we assume that every worker has its own set of features, which is formally
represented, as a set of columns of the feature matrix A. Thus, we can rewrite the dot product AT

j x
in the form of:

AT
j x =

n∑
i=1

AT
jixi, (3)

where as Ai and xi we denote submatrix and point subvector corresponding to the set of i-th worker’s
features, n is a number of devices.

Compressor in DVPL-Katyusha is basically a RandK compressor Beznosikov et al. (2024), which
originally compresses data by choosing random coordinates with certain probabilities and broadcasts
information only from them. The main difference in our case is that every worker has the same
random seed for such choice, therefore it can be viewed as an analogue to batching technique for the
vertical case.

3.1 INTRODUCTION OF DVPL-KATYUSHA

In DVPL-Katyusha every worker has its own set of features. Therefore, unlike the horizontal
regime, in the vertical case all operations are performed on subvectors, corresponding to individual
worker’s components. We denote such subvectors with the same letter as the vector itself, but with
lower index i. Similar to DHPL-Katyusha (Algorithm 1) at each iteration every worker sets xk

i as
a convex combination of zki , w

k
i and yki (line 3). A gradient calculated on the j-th sample depends on

the dot product of AT
j and a point in which we want to perform a computation. This is why, to perform

a step, we need to obtain dot products ⟨AT
j , x

k⟩ and ⟨AT
j , w

k⟩ for every sample, chosen by RandK.
We want to select samples with large Lipschitz constant more often, therefore, we select each sample
with probability Lj

sL̄
. As every worker can compute only its own part of this sum (in our denotations

for a single sample j it is ⟨AT
ji, x

k
i ⟩ or ⟨AT

ji, w
k
i ⟩), all such parts from every chosen sample should

be broadcasted in order to compute gk (line 4, line 6). After this, a standard momentum part of
Katyusha is performed locally (line 9, line 10), after which wk is updated with some probability,
with every worker having the same random seed for it (line 11).

3.2 CONVERGENCE RESULTS

As in DHPL-Katyusha, we need to assume our target function to be strong convex and worker’s
functions to be L-smooth.

A 3. Functions Li : Rd → R are L-smooth for some L > 0,∀i ∈ 1, s:

Li(y)≤Li(x)+⟨∇Li(x), y−x⟩+ L
2 ∥y − x∥2 , ∀x, y ∈ Rd.

Algorithm 2 DVPL-Katyusha

Input: initial y0 = w0 = z0 ∈ Rd, step size η = θ2
(1+θ2)θ1

, σ = Kµ
L̄

if L̄
K ≥ L or else σ = µ

L ,
parameters θ1, θ2 ∈ R and probability p ∈ (0, 1], every worker has the same random seed for RandK

random. RandK selects j-th sample with probability pj =
Lj

sL̄
.

1: for k = 0, 1, 2, . . .K do
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2: for i = 1 . . . n in parallel do
3: xk

i ← θ1z
k
i + θ2w

k
i + (1− θ1 − θ2)y

k
i

4: Compute Xk
i = RandK

(∥∥〈AT
ji, x

k
i

〉∥∥
j=1,s

)
5: Compute W k

i = RandK
(∥∥〈AT

ji, w
k
i

〉∥∥
j=1,s

)
6: Using communications broadcast Xk

i and W k
i

7: Jk = {jk1, · · ·, jkn} - indices, selected by RandK

8: gki ← 1
K

∑
j∈Jk

1
spj
∇Lj

(
n∑

i=1

Xk
ij , bj

)
i

− 1
K

∑
j∈Jk

1
spj
∇Lj

(
n∑

i=1

W k
ij , bj

)
i

+

∇L
(
Awk, b

)
i

9: zk+1
i ← 1

1+ησ (ησx
k
i + zki −

η

L̃
gki )

10: yk+1
i ← xk

i + θ1(z
k+1
i − zki )

11: wk+1
i ←

{
yki , with probability p

wk
i , with probability 1− p

12: if wk+1
i = yki then

13: for j = 1 . . . s do
14: Compute

〈
AT

ji, w
k
i

〉
15: Using communications broadcast

〈
AT

ji, w
k
i

〉
16: end for
17: Compute ∇L

(
Awk, b

)
i

18: end if
19: end for
20: end for

A 4. The function L : Rd → R is µ - strongly convex for some µ > 0:

L(y) ≥ L(x) + ⟨∇L(x), y − x⟩+ µ
2 ∥y − x∥2 , ∀x, y ∈ Rd.

To estimate the asymptotics of the algorithm, we need to get a bound of the efficient Lipschitz

constant for DVPL-Katyusha. Denote L̄ as 1
s

s∑
i=1

Li. To do so, we formulate Lemma 12 which

states that L̃ = max
{
L, L̄

K

}
. In this case L if always less than L̃, therefore knowing the efficient

Lipschitz constant, we can formulate convergence Theorem 2, which can be found in supplementary
materials below. After choosing concrete parameters, we can get an estimation for a total number of
iterations and sent information.

Corollary 2. Let p = K
s , θ1 = min {

√
2σsK

3 , 1
2}, θ2 = 1

2 . If L̄
K ≥ L, then after N =

O
((√

sL̄
µ + s

)
log 1

ε

)
iterations E

[
ΨN
]
≤ εΨ0, where the Lyapunov function ΨN is defined

as ΨN := ZN + YN +WN . If L > L̄
K , then after O

((√
sKL
µ + s

)
log 1

ε

)
iterations, the same

accuracy is achieved.

The average information cost of a single iteration is O (K + ps). Therefore, we choose p as K
s to

asymptotically reduce it.

3.3 SCALAR COMPRESSORS

This section introduces DVPL-Katyusha with scalar compression, which is the gener-
alization of Algorithm 2 with the compressors that operate on the workers’ parts of the dot product
AT

jix
k
i . For simplicity, only the MSE loss function will be considered in this section, which can be
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(a) mushrooms (b) a5a (c) w3a

Figure 1: Comparison of different algorithms for solving optimization problem from section 4.1 in
horizontal case on LIBSVM datasets mushrooms, a5a and w3a.

(a) mushrooms (b) a5a (c) w3a

Figure 2: Comparison of different algorithms for solving optimization problem from section 4.2 in
vertical case on LIBSVM datasets mushrooms, a5a and w3a.

formally expressed as:

min
x∈Rd

f(x) := 1

s

∥∥∥∥∥
n∑

i=1

Aixi − b

∥∥∥∥∥
2
 . (4)

The practical utility of the MSE loss function is significant, as linear models are quick to train
and can serve as effective benchmarks. Additionally, large models such as neural networks can
leverage a trained model to generate features and then utilize only the final linear layer. Furthermore,
implementing privacy mechanisms in vertical federated learning is simpler with this approach through
linear models, like in (Huang et al., 2022). Like in Algorithm 2, we need to assume L-smoothness and
µ strong convexity of our problem. In the MSE loss, this can be written in terms of eigenvalues.

A 5. The matrix ATA has all eigenvalues bounded in a segment of [µ,L].

To estimate the asymptotics of the algorithm, we need to get a bound of the efficient Lipschitz
constant for DVPL-Katyusha with scalar compression. As stated in Lemma 13, L̃ =

L

1 + ω
s·

s∑
j=1

L2
j

µ2

.

3.4 PERMK COMPRESSOR

Beside RandK and scalar operators, we have also implemented another compression strategy (Szlen-
dak et al., 2021). In PermK every worker choose its own set of samples, which can not intersect with
any other set. After that, each worker do AllReduce with calculated values. Therefore, we can prove

Lemma 14, which states that L̃Perm = 2L
s

s∑
j=1

L2
j

µ2 . Unlike horizontal regime, RandK has a superior
theoretical asymptotics on PermK.

4 NUMERICAL EXPERIMENTS

The code of all the tests described below can be found at the link to our github.

8
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4.1 BINARY CLASSIFICATION IN THE HORIZONTAL REGIME

As assumed in our paper, in horizontal case we present our target function as the following finite sum:

min
x∈Rd

{
f(x) =

1

n

n∑
m=1

fm(x)

}
,

where fm(x) = 1
s/n

∑s/n
i=1 log(1 + exp(−yiaTi x)) + λ

2 ∥x∥
2
2 – the sum here is taken with samples

(ai, yi) from the local dataset of the m-th worker, λ = L/100 – L here is the target function’s f(x)
smoothness constant.

In our experiments on horizontal case, we have n = 100 devices involved in the training process and
compare DHPL-Katyusha in combination with Rand1% and PermK compressors with accelerated
algorithm ADIANA and vanilla GD and AGD, running in the same distributed setting. All of the
plots on the Figure 1 are constructed for the convergence with tuned parameters. It is known from
the article Chan et al. (2007) that the AllReduce of vectors of size d takes time proportional to the
magnitude of 2n−1

n d, where d is the size of the vectors transmitted in this way. On the x-axis, we
postponed either d

β or d, depending on the outcome of the coinflip produced during the iteration.
Thus, on the x-axis, we have a number proportional to the number of numpy.doubles (without taking
into account the 2n−1

n multiplier that is the same for all the plots) transmitted during the entire
learning process.

As it was expected in theory, our algorithm has an advantage over AGD with a total communication
complexity of O

(√
L
µ

)
due to the n term in the denominator of our algorithm’s best complexity –

O
(√

L
nµ

)
. More than that, PermK clearly performs better than Rand1% in such setup, as can be

seen from the graph.

4.2 LINEAR REGRESSION IN THE VERTICAL REGIME

In the case of vertical data partition, again, we present our target function as:

min
x∈Rd

{
f(x) =

1

s

s∑
i=1

li(a
T
i x, yi) +

λ

2
∥x∥22

}
,

where ai ∈ Rd, yi ∈ {−1, 1},∀i ∈ 1, . . . , s, λ = L/100. li : R2 → R: li(aTi x, yi) = (aTi x− yi)
2.

We also conducted experiments to compare DVPL-Katyusha in combination with Rand1%, Natural
Dithering Horváth et al. (2019) and PermK with vertical versions of regular gradient descent and
its Nesterov acceleration in the same distributed setting. Number of workers in the experiments we
conducted is n = 5. And again, on the x-axis, we postpone either b

β or s for each iteration, without
taking into account the coefficient 2n−1

n , which is the same for all implementations.

Overall, it is clear from the graph that there is a significant acceleration of convergence compared to
the naive implementation of the Nesterov approach in a vertically distributed mode (when devices
share all s values of their local models, after which they calculate their part of the gradient and
produce a Nesterov descent based on it) and with the same implementation of ordinary gradient
descent.

CONCLUSION

Thus, the introduction of the effective Lipschitz constant we used turned out to be very productive,
which allowed us to build performative optimization algorithms for strongly convex smooth problems
in both vertical and horizontal regimes. The effectiveness of the algorithms built in this way is
confirmed in practice, and our DVPL-Katyusha algorithm in combination with the widespread RandK
correlated compressor is characterized by the highest performance in a vertical format known to the
community today, while DHPL-Katyusha is not inferior to modern horizontal solutions in terms of
optimality.
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J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon. Federated learning:
Strategies for improving communication efficiency, 2017.

D. Kovalev, S. Horvath, and P. Richtarik. Don’t jump through hoops and remove those loops: Svrg
and katyusha are better without the outer loop, 2019.

Z. Li, D. Kovalev, X. Qian, and P. Richtárik. Acceleration for compressed gradient descent in
distributed and federated optimization. arXiv preprint arXiv:2002.11364, 2020.
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P. Richtárik and M. Takáč. Distributed coordinate descent method for learning with big data, 2013.
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A DVPL-KATYUSHA WITH SCALAR COMPRESSION

Here we provide the Algorithm 3 pseudocode.

Algorithm 3 DVPL-Katyusha with scalar compression

Input: initial y0 = w0 = z0 ∈ Rd, step size η = θ2
(1+θ2)θ1

, σ = µ

L̃
, where L̃ = L

1 + ω
s·

s∑
j=1

L2
j

µ2

,

parameters θ1, θ2 ∈ R and probability p ∈ (0, 1], every worker has the same random seed for RandK
random. RandK selects j-th sample with probability pj =

1
s .

1: for k = 0, 1, 2, . . .K do
2: for i = 1 . . . n in parallel do
3: xk

i ← θ1z
k
i + θ2w

k
i + (1− θ1 − θ2)y

k
i

4: Compute Dk
i = RandK

(∥∥〈AT
ji,x

k
i −wk

i

〉∥∥
j=1,s

)
5: Jk = {jk1, · · ·, jkn} - indices, selected by RandK

6: Using communications broadcast Qi

(
Dk

i

)
7: gki ← 2

bs

∑
j∈Jk

AT
ji

n∑
i=1

Qi (Dij) +
2
s

(
ATAwk −AT b

)
i

8: zk+1
i ← 1

1+ησ (ησx
k
i + zki −

η

L̃
gki )

9: yk+1
i ← xk

i + θ1(z
k+1
i − zki )

10: wk+1
i ←

{
yki , with probability p

wk
i , with probability 1− p

11: if wk+1
i = yki then

12: for j = 1 . . . s do
13: Compute

〈
AT

ji, x
k
i − wk

i

〉
14: Using communications broadcast

〈
AT

ji, x
k
i − wk

i

〉
15: end for
16: Compute 2

s

(
ATAwk−AT b

)
i

17: end if
18: end for
19: end for

B AUXILIARY LEMMAS

Lemma 2. (Lemma 12 from (Kovalev et al., 2019)) For a random vector x ∈ Rd and any y ∈ Rd,
the variance of y can be represented in a form:

E
[
∥x− E [x] ∥2

]
= E

[
∥x− ∥y∥2

]
− E

[
∥E [x]− y∥2

]
(5)

The next lemma is a form of Young’s inequality:

Lemma 3. ∀a, b ∈ Rd, β > 0 the following inequality holds:

⟨a, b⟩ ≥ −∥a∥
2

2β
− β∥b∥2

2
(6)

The next lemma is a consequence of Jensen’s inequality applied to x 7→ ∥x∥2.

12
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Lemma 4. For any vectors a1, a2, . . . , ak ∈ Rd, the following inequality holds:∥∥∥∥∥
k∑

i=1

ai

∥∥∥∥∥
2

≤ k

k∑
i=1

∥ai∥2 . (7)

C HORIZONTAL PARTITION

Although this might seem trivial, we further rely on gradient unbiasedness. Thus,

Lemma 5. In Algorithm 1 E
[
g̃k
]
= ∇f(xk).

Proof: Using Tower Property we get:

g̃k
(7)
:=

1

n

n∑
i=1

Qi

(
∇fi(xk)−∇fi(wk)

)
+∇f(wk)

(1.1)
= ∇f(xk) (8)

Lemma 6. (Revised Lemma 6 from (Kovalev et al., 2019) for horizontal case In Algorithm 1 the
following holds:

E
[
∥g̃k −∇f(xk)∥2

]
≤ 2Lω

n

(
f(wk)− f(xk)− ⟨∇f(xk);wk − xk⟩

)
(9)

L̃ =
Lω

n

Proof:

E
[∥∥g̃k −∇f(xk)

∥∥2] (7)
= E

∥∥∥∥∥ 1n
n∑

i=1

Qi

{
∇fi(xk)−∇fi(wk)

}
+∇f(wk)−∇f(xk)

∥∥∥∥∥
2


= E

∥∥∥∥∥ 1n
n∑

i=1

(
Qi

{
∇fi(xk)−∇fi(wk)

}
−
{
∇fi(xk)−∇fi(wk)

})∥∥∥∥∥
2


=
1

n2

n∑
i=1

E
[∥∥Qi

{
∇fi(xk)−∇fi(wk)

}
−
{
∇fi(xk)−∇fi(wk)

}∥∥2]
+

1

n2

∑
i ̸=l

E[⟨Qi

{
∇fi(xk)−∇fi(wk)

}
−
{
∇fi(xk)−∇fi(wk)

}
,

Ql{∇fl(xk)−∇fl(wk)} −
{
∇fl(xk)−∇fl(wk)

}
⟩]

(1.1)
=

1

n2

n∑
i=1

E
[∥∥Qi

{
∇fi(xk)−∇fi(wk)

}
−
{
∇fi(xk)−∇fi(wk)

}∥∥2]
(1.1)

≤ ω

n2

n∑
i=1

E
[∥∥∇fi(xk)−∇fi(wk)

∥∥2]
(1)

≤ ω

n2

n∑
i=1

2L
(
fi(w

k)− fi(x
k)− ⟨∇fi(xk);wk − xk⟩

)
(2)

≤ 2Lω

n

(
f(wk)− f(xk)− ⟨∇f(xk);wk − xk⟩

)
□

Lemmas 7, 8, as already stated in the main section, are obtained from the original lemmas by
replacing the Lipschitz constant of the gradient with a constant ω

n times greater than the one given by
Assumption 1. We now need to show that nothing changes in how lemmas 7, 8 behave at their core,
although an Algorithm has experienced slight changes:

13
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Lemma 7. (Revised Lemma 7 from (Kovalev et al., 2019) for horizontal case) In Algorithm 1 the
following holds:

⟨g̃k, x∗ − zk+1⟩+ µ

2

∥∥xk − x∗∥∥2 ≥ L̃

2µ

∥∥zk − zk+1
∥∥2 + Zk+1 − 1

1 + ησ
Zk (10)

Proof: First we define zk+1:

zk+1 (8)
:=

1

1 + η µ

L̃

(
η
µ

L̃
xk + zk − η

L̃
g̃k
)

→ g̃k =
L̃

µ

(
zk − zk+1

)
+ µ

(
xk − zk+1

)
Thus:

⟨g̃k, zk+1 − x∗⟩ = µ⟨xk − zk+1, zk+1 − x∗⟩+ L̃

η
⟨zk − zk+1, zk+1 − x∗⟩

=
µ

2

(
∥xk − x∗∥2 − ∥xk − zk+1∥2 − ∥zk+1 − x∗∥2

)
+

L̃

2η

(
∥zk − x∗∥2 − ∥zk − zk+1∥2 − ∥zk+1 − x∗∥2

)
≤ µ

2
∥xk − x∗∥2 + L̃

2η

(
∥zk − x∗∥2 − (1 + ησ)∥zk+1 − x∗∥2

)
− L̃

2η
∥zk − zk+1∥2

□

Which concludes the proof

Now let us show that Lemma 8 can be rewritten in the same manner, replacing L - Lipschitz constant
with the new L̃.
Lemma 8. (Revised Lemma 8 from (Kovalev et al., 2019) for horizontal case In Algorithm 1 we
have:

1

θ1

(
f(yk+1)− f(xk)

)
− θ2

2L̃θ1

∥∥g̃k −∇f(xk)
∥∥2 ≤ L̃

2η

∥∥zk+1 − zk
∥∥2 + ⟨g̃k, zk+1 − zk⟩ (11)

Proof: Firstly, we will prove this lemma in the case of ω
n > 1. From Algorithm 1, one can see that

yk+1 ← xk + θ1(z
k+1− zk). Below we will introduce an empty term, use L̃-smoothness of function

f(x) and, after that, utilize Lemma 6, where β = ηθ1
L̃(1−ηθ1)

:

L̃

2η
∥zk+1 − zk∥2 + ⟨g̃k, zk+1 − zk⟩ =

1

θ1

(
L̃

2ηθ1
∥θ1

(
zk+1 − zk

)
∥2 + ⟨g̃k, θ1

(
zk+1 − zk

)
⟩

)

=
1

θ1

(
L̃

2ηθ1
∥yk+1 − xk∥2 + ⟨g̃k, yk+1 − xk⟩

)

=
L̃

2θ1
∥yk+1 − xk∥2 + 1

θ1
⟨∇f(xk), yk+1 − xk⟩

+
L̃

2θ1

(
1

ηθ1
−1
)
∥yk+1 − xk∥2 + 1

θ1
⟨g̃k−∇f(xk), yk+1 − xk⟩)

≥ 1

θ1

(
f(yk+1)− f(xk)

)
+

L̃

2θ1

(
1

ηθ1
− 1

)
∥yk+1 − xk∥2

+
1

θ1
⟨g̃k −∇f(xk), yk+1 − xk⟩

14
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≥ 1

θ1

(
f(yk+1)− f(xk)− ηθ1

2L̃(1− ηθ1)
∥g̃k −∇f(xk)∥2

)

=
1

θ1

(
f(yk+1)− f(xk)− θ2

2L̃
∥g̃k −∇f(xk)∥2

)
The last equality was received due to η = θ2

(1+θ2)θ1
. Thus, we derive:

1

θ1

(
f(yk+1)− f(xk)

)
− θ2

2L̃θ1
∥g̃k −∇f(xk)∥2 ≤ L̃

2η
∥zk+1 − zk∥2 + ⟨g̃k, zk+1 − zk⟩

This is a part of the lemma for the case ω
n ≤ 1, e.g. L̃ ≤ L.

L̃

2η
∥zk+1 − zk∥2 + ⟨g̃k, zk+1 − zk⟩ =

1

θ1

(
L̃

2ηθ1
∥θ1

(
zk+1 − zk

)
∥2 + ⟨g̃k, θ1

(
zk+1 − zk

)
⟩

)

=
1

θ1

(
L̃

2ηθ1
∥yk+1 − xk∥2 + ⟨g̃k, yk+1 − xk⟩

)

=
L

2θ1
∥yk+1 − xk∥2 + 1

θ1
⟨∇f(xk), yk+1 − xk⟩

+
L

2θ1

(
1

L

L̃
ηθ1
− 1

)
∥yk+1 − xk∥2 + 1

θ1
⟨g̃k −∇f(xk), yk+1 − xk⟩)

≥ 1

θ1

(
f(yk+1)− f(xk)

)
+

L

2θ1

(
1

L

L̃
ηθ1
− 1

)
∥yk+1 − xk∥2

+
1

θ1
⟨g̃k −∇f(xk), yk+1 − xk⟩

≥ 1

θ1

(
f(yk+1)− f(xk)−

L

L̃
ηθ1

2L̃(1− L

L̃
ηθ1)
∥g̃k −∇f(xk)∥2

)

=
1

θ1

(
f(yk+1)− f(xk)− θ2

2L
∥g̃k −∇f(xk)∥2

)

The last inequality was obtained by using Young’s inequality in the form of ⟨a, b⟩ ≥ −∥a∥2

2β −
β∥b∥2

2

for β =
L

L̃
ηθ1

L(1−L

L̃
ηθ1)

.

The last equality was received due to η =
L̃
L θ2

(1+θ2)θ1
.

Using that L̃ ≤ L, we get that:

1

θ1

(
f(yk+1)− f(xk)− θ2

2L
∥g̃k −∇f(xk)∥2

)
≥ 1

θ1

(
f(yk+1)− f(xk)− θ2

2L̃
∥g̃k −∇f(xk)∥2

)
And finally we get:

1

θ1

(
f(yk+1)− f(xk)

)
− θ2

2L̃θ1
∥g̃k −∇f(xk)∥2 ≤ L̃

2η
∥zk+1 − zk∥2 + ⟨g̃k, zk+1 − zk⟩

□

Lemma 9, however, does not require any changes in the proof at all, because it is based only on the
definition of wk+1 from Algorithm 1.
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Lemma 9. (Revised Lemma 9 from (Kovalev et al., 2019) for horizontal case) We have:

E
[
f(wk+1)

]
= (1− p) f(wk) + pf(yk) (12)

Proof: From the definition of wk+1 from Algorithm 1 and definition of mathematical expatiation we
get the result.

□

Lemma 10. (Revised Lemma 10 from (Kovalev et al., 2019) for horizontal case, proof for Theorem
1) Considering lemmas 6–9, we get:

Zk

[
1

1 + ησ

]
+ Yk [(1− θ1(1− θ2))] +Wk

[
1− pθ1

1 + θ1

]
≥ E

[
Zk+1 + Yk+1 +Wk+1

]
(13)

Proof: Using strong convexity (Assumption 2) and adding an empty term, we get:

f(x∗) ≥ f(xk) + ⟨∇f(xk), x∗ − xk⟩+ µ

2
∥xk − x∗∥2

≥ f(xk) + ⟨∇f(xk), x∗−zk + zk − xk⟩+ µ

2
∥xk − x∗∥2

From Algorithm 1, zk − xk := θ2
θ1

(
xk − wk

)
+ 1−θ1−θ2

θ1

(
xk − yk

)
, thus:

f(x∗) ≥ f(xk) + ⟨∇f(xk), x∗−zk + zk − xk⟩+ µ

2
∥xk − x∗∥2

= f(xk) +
µ

2
∥xk − x∗∥2 + ⟨∇f(xk), x∗ − zk⟩

+
θ2
θ1
⟨∇f(xk), xk − wk⟩+ 1− θ1 − θ2

θ1
⟨∇f(xk), xk − yk⟩

Applying convexity to the last term, utilizing unbiasedness of the gradient and adding an empty term,
we derive:

f(x∗) ≥ f(xk) +
µ

2
∥xk − x∗∥2 + ⟨∇f(xk), x∗ − zk⟩

+
θ2
θ1
⟨∇f(xk), xk − wk⟩+ 1− θ1 − θ2

θ1
⟨∇f(xk), xk − yk⟩

≥ f(xk) +
θ2
θ1
⟨∇f(xk), xk − wk⟩+ 1− θ1 − θ2

θ1

(
f(xk)− f(yk)

)
+ E

[µ
2
∥xk − x∗∥2⟨g̃k, x∗−zk+1⟩+ ⟨g̃k, zk+1 − zk⟩

]
= f(xk) +

θ2
θ1
⟨∇f(xk), xk − wk⟩+ 1− θ1 − θ2

θ1

(
f(xk)− f(yk)

)
+ E

[µ
2
∥xk − x∗∥2 + ⟨g̃k, x∗ − zk+1⟩+ ⟨g̃k, zk+1 − zk⟩

]
Using Lemma 7, we get:

f(x∗) = f(xk) +
θ2
θ1
⟨∇f(xk), xk − wk⟩+ 1− θ1 − θ2

θ1

(
f(xk)− f(yk)

)
+ E

[µ
2
∥xk − x∗∥2 + ⟨g̃k, x∗ − zk+1⟩+ ⟨g̃k, zk+1 − zk⟩

]
≥ f(xk) +

θ2
θ1
⟨∇f(xk), xk − wk⟩+ 1− θ1 − θ2

θ1

(
f(xk)− f(yk)

)
+ E

[
Zk+1 − 1

1 + ησ
Zk

]
+ E

[
⟨g̃k, zk+1 − zk⟩+ L̃

2η
∥zk − zk+1∥2

]

= f(xk) +
θ2
θ1
⟨∇f(xk), xk − wk⟩+ 1− θ1 − θ2

θ1

(
f(xk)− f(yk)

)
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+ E
[
Zk+1 − 1

1 + ησ
Zk

]
+ E

[
⟨g̃k, zk+1 − zk⟩+ L̃

2η
∥zk − zk+1∥2

]

Utilizing Lemma 8, we transform an underlined summand:

f(x∗) = f(xk) +
θ2
θ1
⟨∇f(xk), xk − wk⟩+ 1− θ1 − θ2

θ1

(
f(xk)− f(yk)

)
+ E

[
Zk+1 − 1

1 + ησ
Zk

]
+ E

[
⟨g̃k, zk+1 − zk⟩+ L̃

2η
∥zk − zk+1∥2

]

≥ f(xk) +
θ2
θ1
⟨∇f(xk), xk − wk⟩+ 1− θ1 − θ2

θ1

(
f(xk)− f(yk)

)
+ E

[
Zk+1 − 1

1 + ησ
Zk

]
+ E

[
1

θ1

(
f(yk+1)− f(xk)

)
− θ2

2L̃θ1
∥g̃k −∇f(xk)∥2

]
≥ f(xk) +

θ2
θ1
⟨∇f(xk), xk − wk⟩+ 1− θ1 − θ2

θ1

(
f(xk)− f(yk)

)
+ E

[
Zk+1 − 1

1 + ησ
Zk +

1

θ1

(
f(yk+1)− f(xk)

)]
− E

[
θ2

2L̃θ1
∥g̃k −∇f(xk)∥2

]
Finally, using Lemma 6 to evaluate the last summ and, we get:

f(x∗) ≥ f(xk) +
θ2
θ1
⟨∇f(xk), xk − wk⟩+ 1− θ1 − θ2

θ1

(
f(xk)− f(yk)

)
+ E

[
Zk+1 − 1

1 + ησ
Zk +

1

θ1

(
f(yk+1)− f(xk)

)]
− E

[
θ2

2L̃θ1
∥g̃k −∇f(xk)∥2

]
≥ f(xk) +

θ2
θ1
⟨∇f(xk), xk − wk⟩+ 1− θ1 − θ2

θ1

(
f(xk)− f(yk)

)
+ E

[
Zk+1 − 1

1 + ησ
Zk +

1

θ1

(
f(yk+1)− f(xk)

)]
− θ2

2L̃θ1
E
[
2L̃
(
f(wk)− f(xk)− ⟨∇f(xk);wk − xk⟩

)]
= f(xk) +

θ2
θ1
⟨∇f(xk), xk − wk⟩+ 1− θ1 − θ2

θ1

(
f(xk)− f(yk)

)
+ E

[
Zk+1 − 1

1 + ησ
Zk +

1

θ1

(
f(yk+1)− f(xk)

)]
− θ2

θ1
E
[
f(wk)− f(xk)− ⟨∇f(xk);wk − xk⟩

]
= −θ2

θ1
f(wk)− 1− θ1 − θ2

θ1
f(yk) +

[
Zk+1 − 1

1 + ησ
Zk +

1

θ1
f(yk+1)

]
As one can see, this result corresponds exactly to the formulation of Lemma 10 from the original
article, with the only difference that now everywhere we have the constant L̃ instead of L, which
leads us to the same final expression:

Zk

[
1

1 + ησ

]
+ Yk [(1− θ1(1− θ2))] +Wk

[
1− pθ1

1 + θ1

]
≥ E

[
Zk+1 + Yk+1 +Wk+1

]
(14)

□

Theorem 1. Let Assumptions 1, 2 be hold. Denote L̃ as Lω
n and x∗ as the solution for the problem

1. Then after k iterations of DHPL-Katyusha

E
[
Zk+1 + Yk+1 +Wk+1

]

17
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≤ 1

1 + ησ
Zk + (1− θ1(1−θ2))Yk +

(
1− pθ1

1 + θ1

)
Wk,

where:

Zk :=
L̃(1 + ησ)

2η
∥zk − x∗∥2,

Yk :=
1

θ1

(
f(yk)− f(x∗)

)
,

Wk :=
θ2(1 + θ1)

pθ1

(
f(wk)− f(x∗)

)
.

Lemma 11. (The efficient Lipschitz constant for PermK compressor in the horizontal case)
For DHPL-Katyusha with PermK compressor, the efficient Lipschitz constant is equal to L.

Proof: Denote Qi as a PermK compressor that operates on i-th function. Therefore, we get:

E
[∥∥g̃k −∇f(xk)

∥∥2] = E

∥∥∥∥∥ 1n
n∑

i=1

Qw
i

{
∇fi(xk)−∇fi(wk)

}
+∇f(wk)−∇f(xk)

∥∥∥∥∥
2


= E

∥∥∥∥∥ 1n
n∑

i=1

Qi

{
∇fi(xk)−∇fi(wk)

}
− 1

n

n∑
i=1

{
∇fi(xk)−∇fi(wk)

}∥∥∥∥∥
2


≤ E

A 1

n

n∑
i=1

∥∥∇fi(xk)−∇fi(wk)
∥∥2 −B

∥∥∥∥∥ 1n
n∑

i=1

∇fi(xk)−∇fi(wk)

∥∥∥∥∥
2


≤ E

[
A
1

n

n∑
i=1

∥∥∇fi(xk)−∇fi(wk)
∥∥2]

≤ 2LA
(
f(wk)− f(xk)− ⟨∇f(xk), wk − xk⟩

)
The first inequality is obtained by using A-B inequality from (Szlendak et al., 2021), the second
inequality we get by utilizing the positive definiteness of the norm and the last inequality is obtained
by using an analogy with 5.

In the case n ≥ d we have A = d−1
n−1 ≤ 1, and in the case n < d we have A = 1. Combining these

cases, we get the estimation for the efficient Lipschitz constant as 1.

D VERTICAL CASE

In this section, we provide the complete proofs for our results in the vertical case.

Lemma 12. (Revised Lemma 6 from (Kovalev et al., 2019) for vertical case) In Algorithm 2 the
following holds:

E
∥∥gk(xk)−∇L

(
Axk, bj

)∥∥2
≤ 2max

{
L, L̄

K

}(
∇L

(
Awk, b

)
−∇L

(
Axk, b

)
− ⟨∇L

(
Axk, b

)
;wk − xk⟩

)
Proof:
E||gk(xk) − ∇L

(
Axk, bj

)
||2

= EJk

∥∥∥∥∥∥ 1

K

∑
j∈Jk

1

spj

[
∇Lj

(
n∑

i=1

Xij , bj

)
−∇Lj

(
n∑

i=1

Wij , bj

)]
+∇L

(
Awk, bj

)
−∇L

(
Axk, bj

)∥∥∥∥∥∥
2

=
1

K
Ei∼D

∥∥∥∥∥
(

1

spj

[
∇Lj

(
n∑

i=1

Xij , bj

)
−∇Lj

(
n∑

i=1

Wij , bj

)])
−
(
∇L

(
Awk, bj

)
+∇L

(
Axk, bj

))∥∥∥∥∥
2
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≤ 1

K
Ei∼D

∥∥∥∥∥ 1

spj

[
∇Lj

(
n∑

i=1

Xij , bj

)
−∇Lj

(
n∑

i=1

Wij , bj

)]∥∥∥∥∥
2

≤ 1

K

s∑
j=1

2Lj

s2pj

(
∇L

(
Awk, b

)
−∇L

(
Axk, b

)
− ⟨∇L

(
Axk, b

)
;wk − xk⟩

)
=

2L̄

K

(
∇L

(
Awk, b

)
−∇L

(
Axk, b

)
− ⟨∇L

(
Axk, b

)
;wk − xk⟩

)
≤ 2max

{
L,

L̄

K

}(
∇L

(
Awk, b

)
−∇L

(
Axk, b

)
− ⟨∇L

(
Axk, b

)
;wk − xk⟩

)
Using the above Lemma we can proof Theorem 2:

Theorem 2. Let assumptions 3 and 4 be hold. Denote L̃ as max
{
L, L̄

K

}
and x∗ as the solution

for the problem 2. Then after k iterations of DVPL-Katyusha

E
[
Zk+1 + Yk+1 +Wk+1

]
≤ 1

1 + ησ
Zk + (1− θ1(1−θ2))Yk +

(
1− pθ1

1 + θ1

)
Wk,

where:

Zk :=
L̃(1 + ησ)

2η
∥zk − x∗∥2,

Yk :=
1

θ1

(
f(yk)− f(x∗)

)
,

Wk :=
θ2(1 + θ1)

pθ1

(
f(wk)− f(x∗)

)
.

Lemma 13. (Revised Lemma 6 from (Kovalev et al., 2019) for vertical case with scalar compres-
sion) In Algorithm 3 the following holds:

E||gk(xk)−∇f(xk)||2 ≤ 2L
(
f(wk)− f(xk)− ⟨∇f(xk);wk − xk⟩

)
·

1 + ω

s
s∑

j=1

L2
j

µ2


Proof:

E
[∥∥gk(xk)−∇f(xk)

∥∥2] = E


∥∥∥∥∥∥ 1

bs

∑
j∈{J}

[
2

n∑
i=1

Qi

(
⟨AT

ji, x
k
i − wk

i ⟩
)]

AT
j +∇f(wk)−∇f(xk)

∥∥∥∥∥∥
2


≤ 1

b2s
· bs
∑
j∈J

·E

∥∥∥∥∥2
n∑

i=1

Qi

(
⟨AT

ji, x
k
i − wk

i ⟩
)
AT

j +∇f(wk)−∇f(xk)

∥∥∥∥∥
2


Here we used a Cauchy-Bunyakovsky-Schwarz inequality. The next step is to evaluate the term
within mathematic expectancy.

E

∥∥∥∥∥2
n∑

i=1

Qi

(
⟨AT

ji, x
k
i − wk

i ⟩
)
AT

j +∇f(wk)−∇f(xk)

∥∥∥∥∥
2


= E

∥∥∥∥∥2AT
j

n∑
i=1

Qi

(
⟨AT

ji, x
k
i − wk

i ⟩
)
− 2

s
ATA(xk − wk)

∥∥∥∥∥
2
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= E

∥∥∥∥∥2AT
j

n∑
i=1

Qi

(
⟨AT

ji, x
k
i − wk

i ⟩
)∥∥∥∥∥

2
+ E

[∥∥∥∥2sATA(xk − wk)

∥∥∥∥2
]

− 2 · E

[
⟨2AT

j

n∑
i=1

Qi

(
⟨AT

ji, x
k
i − wk

i ⟩
)
,
2

s
ATA(xk − wk)⟩

]

= E

∥∥∥∥∥2AT
j

n∑
i=1

Qi

(
⟨AT

ji, x
k
i − wk

i ⟩
)∥∥∥∥∥

2
− ∥∥∥∥2sATA(xk − wk)

∥∥∥∥2

≤ E

∥∥∥∥∥2AT
j

n∑
i=1

Qi

(
⟨AT

ji, x
k
i − wk

i ⟩
)∥∥∥∥∥

2


Now, using norm properties and Definition 1.1 we get:

E

∥∥∥∥∥2AT
j

n∑
i=1

Qi

(
⟨AT

ji, x
k
i − wk

i ⟩
)∥∥∥∥∥

2


= 4E

∥∥AT
j

∥∥2 ∣∣∣∣∣
n∑

i=1

Qi

(
⟨AT

ji, x
k
i − wk

i ⟩
)∣∣∣∣∣

2


= 4E

∥∥AT
j

∥∥2 ∣∣∣∣∣∣
n∑

i=1

(
Qi

(
⟨AT

ji, x
k
i −wk

i ⟩
))2

+
∑
i̸=t

Qi

(
⟨AT

ji, x
k
i −wk

i ⟩
)
Qt

(
⟨AT

jt, x
k
t −wk

t ⟩
)∣∣∣∣∣∣


≤ 4E

∥∥AT
j

∥∥2 ∣∣∣∣∣∣
n∑

i=1

ω(⟨AT
ji, x

k
i − wk

i ⟩)2 +
n∑

i=1

ω(⟨AT
ji, x

k
i − wk

i ⟩)2 +
∑
i ̸=t

(
⟨AT

ji, x
k
i − wk

i ⟩
) (
⟨AT

jt, x
k
t − wk

t ⟩
)∣∣∣∣∣∣


= 4E

[∥∥AT
j

∥∥2 ∣∣∣∣∣
n∑

i=1

ω(⟨AT
ji, x

k
i − wk

i ⟩)2 +
(
⟨AT

j , x
k − wk⟩

)2∣∣∣∣∣
]

= E

[∥∥∇fj(xk)−∇fj(wk)
∥∥2 + 4ω

∥∥AT
j

∥∥2 n∑
i=1

∣∣⟨AT
ji, x

k
i − wk

i ⟩
∣∣2]

≤ E
[∥∥∇fj(xk)−∇fj(wk)

∥∥2 + 4ω
∥∥AT

j

∥∥4 ∥∥xk − wk
∥∥2]

= E

∥∥∇fj(xk)−∇fj(wk)
∥∥2 + 4ω

∥∥AT
j

∥∥4 ∥∥∥∥∥
(
2

s
ATA

)−1

(∇f(xk)−∇f(wk))

∥∥∥∥∥
2


≤ E
[∥∥∇fj(xk)−∇fj(wk)

∥∥2 + ω
∥∥AT

j

∥∥4 s2 ∥∥∥(ATA
)−1
∥∥∥2 ∥∥∇f(xk)−∇f(wk)

∥∥2]
≤ E

[∥∥∇fj(xk)−∇fj(wk)
∥∥2 + ω

∥∥AT
j

∥∥4 s2

µ2

∥∥∇f(xk)−∇f(wk)
∥∥2]

≤
(
f(wk)− f(xk)− ⟨∇f(xk);wk − xk⟩

)2L+ 2Lω
s2 ·

s∑
j=1

L2
j

s

µ2



= 2L
(
f(wk)− f(xk)− ⟨∇f(xk);wk − xk⟩

)1 + ω

s ·
s∑

j=1

L2
j

µ2


Where the first equality is obtained by using absolute homogeneity of vector norm and having that∑n

i=1 Qi

(
⟨AT

ji, x
k
i − wk

i ⟩
)

is a scalar value, the first inequality is obtained by using compressor
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property 1.1, the second and the third inequalities are obtained by using the definition of the norm as
the supremum, the fourth inequality is obtained by using that the spectral norm of matrix is bounded
by the biggest eigenvalue, which is bounded by 1

µ , final inequality is obtained by using the Lipschitz
property 1.

D.1 PERMK COMPRESSOR
Lemma 14. The efficient Lipschitz constant for PermK compressor in vertical case is less than:

L̃Perm = 2L

s
s∑

j=1

L2
j

µ2
.

Proof:

E
∥∥gk −∇f(xk)

∥∥2 = E

∥∥∥∥∥∥2nn
n∑

i=1

AT
i

n∑
j=1

⟨AT
ji, x

k
ji − wk

ji⟩Iij −
2

s
ATA

(
xk − wk

)∥∥∥∥∥∥
2

= 4E

∥∥∥∥∥∥
n∑

i=1

AT
i

n∑
j=1

⟨AT
ji, x

k
ji − wk

ji⟩Iij −
1

s
ATA

(
xk − wk

)∥∥∥∥∥∥
2

= 4E

∥∥∥∥∥∥
n∑

i=1

AT
i

n∑
j=1

⟨AT
ji, x

k
ji − wk

ji⟩Iij −
1

ns
ATA

(
xk − wk

)∥∥∥∥∥∥
2

≤ 8

n∑
i=1

E

∥∥∥∥∥∥AT
i

n∑
j=1

⟨AT
ji, x

k
ji − wk

ji⟩Iij −
1

ns
ATA

(
xk − wk

)∥∥∥∥∥∥
2

= 8

n∑
i=1

E


∥∥∥∥∥∥AT

i

n∑
j=1

⟨AT
ji, x

k
ji − wk

ji⟩Iij

∥∥∥∥∥∥
2

−
∥∥∥∥ 1

ns
ATA

(
xk − wk

)∥∥∥∥2


≤ 8

n∑
i=1

E


 n∑

j=1

⟨AT
ji, x

k
ji − wk

ji⟩Iij

2 ∥∥AT
i

∥∥2


= 8

n∑
i=1

E

 n∑
j=1

(⟨AT
ji,x

k
ji−wk

ji⟩Iij)2+
∑
j ̸=t

(⟨AT
ji, x

k
ji−wk

ji⟩Iij)(⟨AT
jt, x

k
ti−wk

ti⟩Iit)

 · ∥∥AT
i

∥∥2
Using that EI2ij = 1

n and as any sample can be chosen only by one worker, we get that EIitIij =
0, j ̸= t. Therefore, using the analogy with 13 we get:

= 8

n∑
i=1

E

 1

n

n∑
j=1

⟨AT
ji, x

k
ji − wk

ji⟩2
∥∥AT

i

∥∥2

≤ 4L
(
f(wk)− f(xk)− ⟨∇f(xk);wk − xk⟩

) s s∑
j=1

L2
j

µ2
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