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A Proofs and additional results1

A.1 Proofs and Notes for Section 22

Proposition 1. For P,Q ∈ P(P(X )), the following equality holds:3

T(P,Q) = Eµ∼P,ν∼Q[D2(µ, ν)]− 1

2
Eµ,µ′∼P [D2(µ, µ′)]− 1

2
Eν,ν′∼Q[D2(ν, ν′)], (A.1)

where to avoid notational clutter we use D2(·, ·) as a shorthand for (D(·, ·))2.4

Proof. This is a straightforward application of the “kernel trick”: using the Hilbert property of the5

distance we can rewrite,6

Eµ∼P,ν∼Q[∥η(µ)− η(ν)∥2H]− 1

2
Eµ,µ′∼P [∥η(µ)− η(µ′)∥2H]− 1

2
Eν,ν′∼Q[∥η(ν)− η(ν′)∥2H]

=Eµ∼P [∥η(µ)∥2H] + Eν∼Q[∥η(ν)∥2H]− 2⟨Eµ∼P [η(µ)],Eν∼Q[η(ν)]⟩H
−Eµ∼P [∥η(µ)∥2H]− Eν∼Q[∥η(ν)∥2H]

+⟨Eµ∼P [η(µ)],Eµ∼P [η(µ)]⟩H + ⟨Eν∼Q[η(ν)],Eν∼Q[η(ν)]⟩H
=∥Eµ∼P [η(µ)]− Eν∼Q[η(ν)]∥2H = T(P,Q).

Which gives the sought equivalence.7

A.2 Proofs and Notes for Section 3.18

Proposition 2. If X is a smooth compact n-dimensional manifold and
∑

ℓ λ
(n−1)/2
ℓ α(λℓ) < ∞,9

then ISW2 is well-defined.10

Proof. We use Hörmander’s bound on the supremum norm of the eigenfunctions:11

∥ϕℓ∥∞ ≤ cλ(n−1)/4
ℓ ∥ϕℓ∥2,

for some constant c that depends on the manifold. By orthonormality of the eigenfunctions we have12

∀ℓ, ∥ϕℓ∥2 = 1. Next, note thatW2(ϕℓ♯µ, ϕℓ♯ν) ≤ 2∥ϕℓ∥∞ as the maximum distance that the mass13

would be transported in any transportation plan involving pushforwards via ϕℓ is upper bounded by14

2∥ϕℓ∥∞. As a result, every term in the series defining ISW2 can be upper-bounded by the terms of15

the following series:16 ∑
ℓ

4∥ϕℓ∥2∞α(λℓ) ≤
∑
ℓ

4c2λ
(n−1)/2
ℓ α(λℓ) ∝

∑
ℓ

λ
(n−1)/2
ℓ α(λℓ),

which proves the claim by the direct comparison test for convergence of series.17
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Remark 1. When Weyl law applies, we have that λℓ = Θ(ℓ2/n), which allows us to replace the above18

condition by
∑

ℓ ℓ
(n−1)/nα(λℓ) <∞. For the diffusion kernel/distance choice of α(λ) = e−tλ the19

series always converges independently of the manifold dimension. For biharmonic choice of α(λ) =20

1/λ2, the sufficient condition is the convergence of
∑

ℓ ℓ
(n−1)/n/λ2ℓ ∼

∑
ℓ ℓ

(n−1)/n/(ℓ2/n)2 =21 ∑
ℓ ℓ

(n−5)/n, where we applied Weyl’s asymptotic again. As a result, the biharmonic choice of α is22

guaranteed to provide a well-defined ISW2 for 1 and 2-dimensional manifolds. Notice, however,23

that the Hörmander’s bound used in the proof of the above proposition can be rather lax in some of24

the settings that are practically relevant, such as the product spaces of lines and circles (where all of25

the eigenfunctions are bounded by a constant as can be seen from Table 1), and, thus, convergence26

for the biharmonic choice holds more widely.27

Proposition 3. If D is a Hilbertian probability distance such that ISD is well-defined, then28

(i) ISD is Hilbertian, and29

(ii) ISD satisfies the following metric properties: non-negativity, symmetry, the triangle inequality,30

and ISD(µ, µ) = 0.31

Proof. By Hilbertian property of D, there exists a Hilbert space H0 and a map η0 : P(R) → H032

such that D(ρ1, ρ2) = ∥η0(ρ1)− η0(ρ2)∥H0 for all ρ1, ρ2 ∈ P(R). Plugging this into the definition33

of ISD we have ISD(µ, ν) = ∥η(µ) − η(ν)∥H, where H = ⊕ℓH0 and the ℓ-th component of34

η(µ) is
√
α(λℓ)η0(ϕℓ♯µ) ∈ H0. The second part of Proposition 3 directly follows from the Hilbert35

property.36

Proposition 4. When µ = δx(·), ν = δy(·) for two points x, y ∈ X , we have ISW2(µ, ν) = d(x, y),37

where d(·, ·) is the spectral distance corresponding to the choice of α(·).38

Proof. We have ϕℓ♯δx = δϕℓ(x) and similarly for y. NowW2
2 (ϕℓ♯µ, ϕℓ♯ν) =W2

2 (δϕℓ(x), δϕℓ(y)) =39

(ϕℓ(x)− ϕℓ(y))2. This last equality follows from the fact that the 2-Wasserstein on real line between40

delta measures is equal to the distance between the two points. Then scaling and adding up gives41

exactly the kernel distance d(x, y) between the two points.42

Proposition 5. Let D(ρ1, ρ2) = |Ex∼ρ1
[x]− Ey∼ρ2

[y]| for ρ1, ρ2 ∈ P(R), then the corresponding43

intrinsic sliced distance is equivalent to the MMD with the spectral kernel k(·, ·).44

Proof. We can rewrite the definition as follows:45

ISD2(µ, ν) =
∑
ℓ

α(λℓ)(Ex∼ϕℓ♯µ[x]− Ey∼ϕℓ♯ν [y])
2 =

∑
ℓ

α(λℓ)(Ex∼µ[ϕℓ(x)]− Ey∼ν [ϕℓ(y)])
2

=
∑
ℓ

α(λℓ)(Ex,x′∼µ[ϕℓ(x)ϕℓ(x
′)] + Ey,y′∼ν [ϕℓ(y)ϕℓ(y

′)]− 2Ex∼µ,y∼ν [ϕℓ(x)ϕℓ(y)])

=Ex,x′∼µ[
∑
ℓ

α(λℓ)ϕℓ(x)ϕℓ(x
′)] + Ey,y′∼ν [

∑
ℓ

α(λℓ)ϕℓ(y)ϕℓ(y
′)]

− 2Ex∼µ,y∼ν [
∑
ℓ

α(λℓ)ϕℓ(x)ϕℓ(y)]

=Ex,x′∼µ[k(x, x
′)] + Ey,y′∼ν [k(y, y

′)]− 2Ex∼µ,y∼ν [k(x, y)],

where we used the spectral kernel k(x, y) =
∑

ℓ α(λℓ)ϕℓ(x)ϕℓ(y). The last expression coincides46

with the MMD based on kernel k(·, ·); see Lemma 6 in [12].47

Proposition 6. MMD(µ, ν) ≤ ISW2(µ, ν) when the same α(·) is used in both constructions.48

Proof. This follows directly from the fact that for ρ1, ρ2 ∈ P(R) the inequality |Ex∼ρ1
[x] −49

Ey∼ρ2 [y]| ≤ W1(ρ1, ρ2) ≤ W2(ρ1, ρ2) holds. Here the first inequality follows from the cen-50

troid bound [22], and the second inequality is the well-known ordering property of Wasserstein51

distances [25].52

Theorem 1. If α(λ) > 0 for all λ > 0 , then ISW2 is a metric on P(X ).53
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Proof. In the light of the Proposition 3 it remains only to prove that ISW2(µ, ν) = 0 implies54

µ = ν. According to Proposition 6, ISW2(µ, ν) = 0 yields MMD(µ, ν) = 0. The assumption that55

α(λ) > 0 for all λ > 0 implies that the spectral kernel k(·, ·) corresponding to α(·) is universal [17].56

Universality implies the characteristic property [12], which in turn means that MMD(µ, ν) = 0 is57

equivalent to µ = ν, proving the claim.58

Proposition 7. There exists a constant c depending only on X such that for all µ, ν ∈ P(X ) the59

inequality ISW2(µ, ν) ≤ cWX
2 (µ, ν)

√∑
ℓ λ

(n+3)/2
ℓ α(λℓ) holds; here, n is the dimension of X .60

Proof. We remind WX
2 is the 2-Wasserstein distance defined directly P(X ) using the geodesic61

distance as the ground metric. The Neumann eigenfunctions on compact manifolds satisfy the62

inequality ∥∇ϕℓ∥∞ ≤ c1λℓ∥ϕℓ∥∞, see [13]. Applying the bound used in the proof of convergence,63

∥ϕℓ∥∞ ≤ c2λ(n−1)/4
ℓ , we get that ϕℓ is Lipschitz with respect to the geodesic distance on X with the64

Lipschitz constant bounded by cλℓλ
(n−1)/4
ℓ = cλ

(n+3)/4
ℓ .65

Consider the optimal coupling between µ and ν whose cost equals to WX
2 (µ, ν). Note that this66

coupling straightforwardly provides a coupling between the pushforwards ϕℓ♯µ and ϕℓ♯ν. Using the67

Lipschitz property of eigenfunctions, we see that the cost of the pushforward coupling is smaller68

than cλ(n+3)/4
ℓ WX

2 (µ, ν). Since any such coupling provides an upper bound onW2(ϕℓ♯µ, ϕℓ♯ν), we69

haveW2(ϕℓ♯µ, ϕℓ♯ν) ≤ cλ(n+3)/4
ℓ WX

2 (µ, ν). Plugging this into the formula for ISW2 we get the70

claimed bound.71

Proposition 8. Let {µi}Ni=1 and {νi}Ni=1 be two collections of probability measures on P(X ), such72

that ∀i,WX
2 (µi, νi) ≤ ϵ, then T({µi}Ni=1, {νi}Ni=1) ≤ C2ϵ2. Here C = c

√∑
ℓ λ

(n+3)/2
ℓ α(λℓ) from73

previous proposition and is assumed to be finite.74

Proof. We have75

T({µi}Ni=1, {νi}Ni=1) =

∥∥∥∥∥ 1

N

N∑
i=1

η(µi)−
1

N

N∑
i=1

η(νi)

∥∥∥∥∥
2

H

=

∥∥∥∥∥ 1

N

N∑
i=1

(η(µi)− η(νi))

∥∥∥∥∥
2

H

≤ 1

N

N∑
i=1

∥η(µi)− η(νi)∥2H =
1

N

N∑
i=1

ISW2
2 (µi, νi) ≤

1

N

N∑
i=1

(CWX
2 (µi, νi))

2

≤ 1

N
N(Cϵ)2 = C2ϵ2.

76

A.3 Computational Details for Section 3.277

The case of finite intervals is the building block for the general case, so let us first consider the78

case of X = [0, T ]. We represent a histogram over this interval by a discrete measure of the form79

µ =
∑
waδxa

with the histogram bin centers xa ∈ [0, T ] and weights wa satisfying
∑
wa = 1,80

where a = 1, 2, ..., A. Note that it is not required for the histograms in the collections to be supported81

at the same bin locations. For a given histogram, let {x(a), w(a)}Aa=1 be the locations sorted from82

smallest to largest and their corresponding weights; since the bin locations are unique there will not83

be any ties. The quantile function is computed via F−1
µ (s) := min{x(a) :

∑
b≤a w(b) > s}. The84

approximate map η0D′ now can be computed using the sk-th quantile value F −1
µ (sk) for each value of85

sk, k = 1, ..., D′.86

For a general domain X , the histogram representation is the same as above:
∑
waδxa

with the87

histogram bin centers xa ∈ X and weights wa satisfying
∑
wa = 1, where a = 1, 2, ..., A. The88

pushforward ϕℓ♯µ gives a histogram on the real line defined by
∑
waδϕℓ(xa). Note that while xa89

are distinct, their images under ϕℓ do not have to be distinct, so one re-aggregates the weights to90

obtain
∑

a∈S w
′
aδϕℓ(xa), where S is a subset of 1, 2, ..., A and w′

a are the new weights. It is now91

straightforward to compute the quantile function as before and build the approximate map (ηD)ℓ.92

Doing so for the different values of ℓ and concatenating the resulting vectors gives ηD.93
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X Eigenvalues Eigenfunctions

[0, T ] (πℓT )2
√

2
T cos πℓx

T

S1(T ) = [0, T ] mod T ( 2πℓT )2
√

2
T [cos / sin]

2πℓx
T

[0, T1]× [0, T2] (πℓ1T1
)2+(πℓ2T2

)2
√

4
T1T2

cos πℓ1x
T1

cos πℓ2x
T2

S1(T1)× [0, T2] ( 2πℓ1T1
)2 + (πℓ2T2

)2
√

4
T1T2

[cos / sin] 2πℓ1xT1
cos πℓ2x

T2

S1(T1)× S1(T2) ( 2πℓ1T1
)2 + ( 2πℓ2T2

)2
√

4
T1T2

[cos / sin] 2πℓ1xT1
[cos / sin]πℓ2xT2

S2 Spherical harmonics [5]
Graphs/Data Clouds/Meshes Eigen-decomposition of the Laplacian matrix

Table 1: Eigenvalues and eigenfunctions of the Laplace-Beltrami operator with Neumann boundary
conditions for simple manifolds. We exclude zero eigenvalue and the corresponding constant
eigenvector; thus, all indices ℓ, ℓ1, ℓ2 run over positive integers. The notation [cos / sin] means
picking either the cosine or sine function—all choices must be used, giving multiple eigenfunctions.

In practice, these computations can be carried out on a variety of domains—analytic manifolds,94

manifolds discretized as point clouds or meshes, and graphs. In most cases the spectral decomposition95

of the Laplace-Beltrami operator or graph Laplacian has to be computed numerically [7, 20]. For96

applications that involve simple manifolds, the eigenvalues and eigenfunctions can be computed97

analytically. For completeness we list them in Table 1. Note that we benefit from the fact that98

the eigen-decomposition for product spaces can be derived from the eigen-decompositions of the99

components.100

The choice of the function α(·) determining the contributions of each spectral band is problem101

specific. When working on manifolds of low dimension, the choice of α(·) that corresponds to the102

biharmonic distance is convenient. While the diffusion distance provides a general choice that works103

on manifolds of any dimension, the biharmonic distance does not have any parameters to tune and104

was shown to provide an excellent alternative to the geodesic distance in low-dimensional settings105

[14]. When in doubt, inspecting the behavior of the distance on the underlying domain will allow106

assessing whether the distance is appropriate for the given problem.The importance of relying on a107

well-behaved spectral distance was highlighted in Proposition 4.108

A.4 Proofs and Notes for Section 4.1109

We remind that we will be using the following test statistic for the results that are discussed below:110

T̂ ≡
∑
i,j

ISW2
2 (µi, νj)

N1N2
−
∑

i,j:i ̸=j

ISW2
2 (µi, µj)

2N1(N1 − 1)
−
∑

i,j:i̸=j

ISW2
2 (νi, νj)

2N2(N2 − 1)
. (A.2)

Proposition 9. Assume conditions (i)-(iii) hold. Define N = N1 + N2, and assume that as111

N1, N2 →∞, we have N1/N → ρ1, N2/N → ρ2 = 1− ρ1, for some fixed 0 < ρ1 < 1. Define a112

new measure R as a scaled mixture of the centered pushforward measures113

R =

(
1

ρ1
+

1

ρ2

)−1 [
1

ρ1
(η#P − Cη#P ) +

1

ρ2
(η#Q− Cη#Q)

]
= ρ2 (η#P − Cη#P )+ρ1 (η#Q− Cη#Q) .

Suppose γm,m = 1, 2, . . . are the eigenvalues of114

1

ρ1ρ2

∫
H
⟨x, x′⟩Hψm(x′)dR(x′) = γmψm(x).

Then under H0 : Cη#P = Cη#Q we have115

N T̂ ;
∞∑

m=1

γm(A2
m − 1), (A.3)
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where Am are i.i.d. N (0, 1) random variables. Under H1 : Cη#P ̸= Cη#Q we have
√
N(T̂−T) ;116

N(0, σ2
1), where117

σ2
1 = 4

[
1

ρ1
Vµ∼PEµ′∼P ⟨η(µ), η(µ′)⟩H +

1

ρ2
Vν∼QEν′∼Q⟨η(ν), η(ν′)⟩H+

1

ρ1
Vµ∼PEν∼Q⟨η(µ), η(ν)⟩H +

1

ρ2
Vν∼QEµ∼P ⟨η(µ), η(ν)⟩H

]
. (A.4)

Proof. Using the Hilbertianity of ISD (Proposition 3), we have118

ISD2(µi, µj) =∥η(µi)− η(µj)∥2H
=∥η(µi)∥2H + ∥η(µj)∥2H − 2⟨η(µi), η(µj)⟩H

,

Consequently119 ∑
i,j:i̸=j

ISD2(µi, µj) = 2(N1 − 1)

N1∑
i=1

∥η(µi)∥2H − 2
∑

i,j:i̸=j

⟨η(µi), η(µj)⟩H.

Similarly,120 ∑
i,j:i ̸=j

ISD2(νi, νj) = 2(N2 − 1)

N2∑
i=1

∥η(νi)∥2H − 2
∑

i,j:i̸=j

⟨η(νi), η(νj)⟩H,

∑
i,j

ISD2(µi, νj) = N2

N1∑
i=1

∥η(µi)∥2H +N1

N2∑
j=1

∥η(νj)∥2H − 2
∑

i,j:i ̸=j

⟨η(µi), η(νj)⟩H.

Putting these back into Eq. (A.2) after simplifying and cancelling out the norm-square terms we have121

T̂ =
1

N1(N1 − 1)

∑
i,j:i ̸=j

⟨η(µi), η(µj)⟩H +
1

N2(N2 − 1)

∑
i,j:i ̸=j

⟨η(νi), η(νj)⟩H

− 2

N1N2

∑
i,j

⟨η(µi), η(νj)⟩H. (A.5)

At this point, we replace the maps η by their centered versions η̃(µ) = η(µ) − Cη#P , η̃(ν) =122

η(ν) − Cη#Q; remember that the center of mass of η#P is denoted by Cη#P . Accumulating the123

sample-level partial sums above the centering terms cancel out under H0 : Cη#P = Cη#Q, so that124

each η can be replaced by η̃ in (A.5) above.125

Denote xi ≡ η̃(µi), yi ≡ η̃(νi) as the Hilbert-embedded samples of X ∼ η̃#P, Y ∼ η̃#Q,126

respectively. We remind now that R is a mixture of the centered pushforward measures: R =127

ρ2(η̃#P ) + ρ1(η̃#Q). Let L2(H, R) be the space of real-valued functions on H that are square128

integrable with respect to R. Now we can define the following operator S : L2(H, R)→ H,129

(Sf)(x) :=

∫
H
⟨x, x′⟩Hf(x′)dR(x′).

Following condition (ii), ⟨·, ·⟩H is square-integrable under R. The above operator is thus Hilbert-130

Schmidt, hence compact [19, Theorem VI.23]. Consequently, it permits an eigenfunction decomposi-131

tion with respect to measure R, ⟨x, x′⟩H =
∑∞

m=1 γmψm(x)ψm(x′), for x, x′ ∈ H. Note that here132

ψm : H → R and133 ∫
H
⟨x, x′⟩ψm(x′)dR(x′) = γmψm(x),

∫
H
ψm(x)ψn(x)dR(x) = δmn.

Due to the centering of η we also have when γm ̸= 0,134

γmEX [ψm(x)] =

∫
H
EX [⟨x, x′⟩H]ψn(x

′)dR(x′) = 0 ⇒ EX [ψm(x)] = 0.
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Similarly, EY [ψm(y)] = 0. The V-statistic from the overall sample can now be written as an infinite135

sum [24, Section 5.5]:136

∥Ĉη#P − Ĉη#Q∥2H =

∞∑
m=1

γm

(
1

N1

N1∑
i=1

ψm(xi)−
1

N2

N2∑
i=1

ψm(yi)

)2

:=

∞∑
m=1

γma
2
m.

Our goal is to show that (a) am ; N (0, (Nρ1ρ2)
−1), for ∀m, and (b) am and an are independent137

when m ̸= n.138

First note that139

E(am) = E

(
1

N1

N1∑
i=1

ψm(xi)−
1

N2

N2∑
i=1

ψm(yi)

)
= 0.

In addition we have,140

Cov(am, an) = E(aman)− E(am).E(an)
= E(aman)

= E

(
1

N1

N1∑
i=1

ψm(xi)−
1

N2

N2∑
i=1

ψm(yi)

)(
1

N1

N1∑
i=1

ψn(xi)−
1

N2

N2∑
i=1

ψn(yi)

)

= EX

(
1

N2
1

N1∑
i=1

ψm(xi)ψn(xi)

)
+ EY

(
1

N2
2

N2∑
i=1

ψm(yi)ψn(yi)

)

=
1

ρ1N
EX

(
1

N1

N1∑
i=1

ψm(xi)ψn(xi)

)
+

1

ρ2N
EY

(
1

N2

N2∑
i=1

ψm(yi)ψn(yi)

)

=
1

N

[
1

ρ1

∫
H
ψm(x)ψn(x)d(η̃#P )(x) +

1

ρ2

∫
H
ψm(y)ψn(y)d(η̃#Q)(y)

]
=

1

Nρ1ρ2

∫
H
ψm(z)ψn(z)dR(z)

=
1

Nρ1ρ2
δmn.

An application of CLT follows that (a) holds. This together with vanishing covariance proves (b).141

Consequently, we can apply the CLT for degenerate V-statistics [24, Section 5.5.2] to obtain the142

limiting distribution, with Am ∼ N (0, 1),143

N∥Ĉη#P − Ĉη#Q∥2H ;
∞∑

m=1

γm
ρ1ρ2

A2
m.

Let us now look at the difference between this V-statistic and our U-statistic, i.e. T̂ in (A.5). We see144

that145

∥Ĉη#P − Ĉη#Q∥2H − T̂ =
1

N2
1

∑
i,j

⟨xi, xj⟩H +
1

N2
2

∑
i,j

⟨yi, yj⟩H −
2

N1N2

∑
i,j

⟨xi, yj⟩H

− 1

N1(N1 − 1)

∑
i,j;i ̸=j

⟨xi, xj⟩H +
1

N2(N2 − 1)

∑
i,j;i ̸=j

⟨yi, yj⟩H +
2

N1N2

∑
i,j

⟨xi, yj⟩H

= −
[

1

N1(N1 − 1)
− 1

N2
1

] ∑
i,j;i̸=j

⟨xi, xj⟩H −
[

1

N2(N2 − 1)
− 1

N2
2

] ∑
i,j;i̸=j

⟨yi, yj⟩H

+

(
1

N2
1

N1∑
i=1

∥xi∥2H +
1

N2
2

N2∑
i=1

∥yi∥2H

)
= −Kx −Ky +B.
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We claim that Kx = Op(N
−2
1 ),Ky = Op(N

−2
2 ), and NB P→

∑∞
m=1 γm(ρ1ρ2)

−1. As a result,146

N
[
∥Ĉη#P − Ĉη#Q∥2H − T̂

]
= −NOp(N

−2
1 )−NOp(N

−2
2 ) +

∞∑
m=1

γm
ρ1ρ2

+ op(1)

=

∞∑
m=1

γm
ρ1ρ2

+ op(1),

so that N T̂ ;
∑∞

m=1 γm(ρ1ρ2)
−1(A2

m − 1), and we conclude the proof by reassigning γm ←147

γm(ρ1ρ2)
−1 to obtain (A.3).148

Proof of Claim. For the K-terms we have149

Kx =

[
1

N1(N1 − 1)
− 1

N2
1

] ∑
i,j;i ̸=j

⟨xi, xj⟩H

=
1

N2
1 (N1 − 1)

∑
i,j;i ̸=j

⟨xi, xj⟩H

=

∞∑
m=1

γm
1

N1

1

N1(N1 − 1)

∑
i,j;i ̸=j

ψm(xi)ψm(xj)

=

∞∑
m=1

γmK
x
m,

where Kx
m is defined as the inner sum. Since EXψm(x) = 0, we have EX(Kx

m) =150
1
N1

[EXψm(x)]2 = 0, and151

V arX(Kx
m) = EX [(Kx

m)2]

=
1

N2
1

EX

 1

N2
1 (N1 − 1)2

∑
i ̸=j

∑
l ̸=k

ψm(xi)ψm(xj)ψm(xl)ψm(xk)

 (A.6)

=
1

N2
1

EX

 1

N2
1 (N1 − 1)2

∑
i ̸=j

ψ2
m(xi)ψ

2
m(xj)

 (A.7)

=
1

N2
1

.
1

N1(N1 − 1)

(
EX [ψ2

m(x)]
)2
.

The cross terms—terms involving l ̸= i or k ̸= j—vanish due to the sample being iid and eigenfunc-152

tions having zero expectations. The expectation in the last line is finite by assumption (ii), so that153

V arX(Kx
m) = O(N−4

1 ), giving Kx
m = Op(N

−2
1 ). Note that the assumption (ii) moreover implies154

the convergence of the big-oh coefficients, leading to Kx =
∑∞

m=1 γmK
x
m = Op(N

−2
1 ). Similarly155

we get Ky = Op(N
−2
2 ).156

For the term B, we have157

B =
1

N2
1

N1∑
i=1

∥xi∥2H++
1

N2
2

N2∑
i=1

∥yi∥2H =

∞∑
m=1

γm

[
1

N2
1

N1∑
i=1

ψ2
m(xi) +

1

N2
2

N2∑
i=1

ψ2
m(yi)

]
:=

∞∑
m=1

γmCm.

Taking expectation,158

EX,Y (Cm) =
1

ρ1N

∫
H
ψ2
m(x)d(η̃#P )(x) +

1

ρ2N

∫
H
ψ2
m(y)d(η̃#Q)(y)

=
1

Nρ1ρ2

∫
H
ψ2
m(z)dR(z)

=
1

Nρ1ρ2
.
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Thus EX,Y (NB) =
∑

m γm(ρ1ρ2)
−1. Finally,159

NB =

∞∑
m=1

γm

[
1

ρ1N1

N1∑
i=1

ψ2
m(xi) +

1

ρ2N2

N2∑
i=1

ψ2
m(yi)

]
P→

∞∑
m=1

γm

[
1

ρ1
EXψ

2
m(x) +

1

ρ2
EY ψ

2
m(y)

]
= EX,Y (NB)

by the weak law of large numbers. This proves the claim for B.160

Alternative Distribution. For the the limiting distribution under H1, notice that the first two terms161

in (A.2) are the one-sample U-statistic calculated on the samples {µi}N1
i=1 and {νi}N2

i=1, respectively.162

Using the CLT for non-degenerate U-statistics [24, Section 5.5.1, Theorem A], we have163 √
N1

[∑
i,j:i ̸=j⟨η(µi), η(µj)⟩H

N1(N1 − 1)
− Eµ,µ′∼P ⟨η(µ), η(µ′)⟩H

]
; N (0, 4Vµ∼P [Eµ′∼P ⟨η(µ), η(µ′)⟩H]) ,

√
N2

[∑
i,j:i̸=j⟨η(νi), η(νj)⟩H

N2(N2 − 1)
− Eν,ν′∼Q⟨η(ν), η(ν′)⟩H

]
; N (0, 4Vν∼Q [Eν′∼Q⟨η(ν), η(ν′)⟩H]) .

For the third summand, using an equivalent CLT for two-sample U-statistic [8, Theorem 2.1],164

√
N

[∑
i,j⟨η(µi), η(νj)⟩H

N1N2
− Eµ∼P,ν∼Q⟨η(µ), η(ν)⟩H

]
;

N

(
0,

1

ρ1
Vµ∈P [Eν∼Q⟨η(µ), η(ν)⟩H] +

1

ρ2
Vν∈Q [Eµ∼P ⟨η(µ), η(ν)⟩H]

)
.

We obtain (A.4) by combining the above three results.165

The following result now ensures that approximations of T̂ using the top few eigenfunctions and a166

finite number of CDF embeddings can be constructed with small approximation errors, provided the167

manifold eigenvalues are declining suitably fast and the finite dimensional ηD(·) is suitably smooth.168

Proposition 10. Suppose that (i), (ii) and (iii) hold. Then we have
√
N(T̂ − T̂LN

) = op(1) and169 √
N(T̂LN

− T̃LN ,DN
) = op(1) for the following choices of LN , DN :170

LN ≥ min
L′

{
L′ :

∞∑
ℓ=L′+1

αℓλ
(n+3)/2
ℓ ≤ 1

N1+δ

}
, DN ≥ kc2N1+δ

LN∑
l=1

αℓλ
(n−1)/2
ℓ ,

where δ, k > 0 are constants depending only on X .171

As we mention in the discussion after condition (i), for the heat kernel with tuning parameter t:172

α(λ) = exp(−tλ), the assumption (i) that
∑∞

ℓ=1 αlλ
(n+3)/2
ℓ < ∞ holds. The bound on DN is a173

consequence of classical bounds on Riemann sum approximation errors in terms of ∥η′∥∞. Absolute174

continuity of µ ∼ P, ν ∼ Q ensures the existence of (F−1
ϕℓ♯µ

)′(s), (F−1
ϕℓ♯ν

)′(s) (where prime denotes175

the derivative) for Lebesgue-almost every s ∈ [0, 1] [10, Lemma 2.3].176

Proof. Notice that given LN , summands in the expression T̂ − T̂LN
are the tail sums177 ∑∞

ℓ=LN+1 αlW2
2 (ϕℓ♯·, ϕℓ♯·) starting at the LN + 1th term. Using a similar approach as the proof178

of Proposition 7, this is bounded above by a scalar multiple of the geodesic distance, specifically179

cWX
2 (·, ·)

√∑∞
ℓ=LN+1 αℓλ

(n+3)/2
ℓ . By assumption

∑∞
ℓ=1 αℓλ

(n+3)/2
ℓ <∞, so that given ϵ > 0 we180

can always choose a starting point to make the tail sum < ϵ. The choice of LN follows by taking181

ϵ = N−(1+δ).182

To obtain the choice of DN , we first use a similar approach to the proof of Proposition 9 to simplify183

T̃L,D′ for any L,D′:184

T̃L,D′ =

L∑
ℓ=1

 1

N1(N1 − 1)

∑
i,j:i ̸=j

ηD′(ϕℓ♯µi)
T ηD′(ϕℓ♯µj) +

1

N2(N2 − 1)

∑
i,j:i ̸=j

ηD′(ϕℓ♯νi)
T ηD′(ϕℓ♯νj)

− 2

N1N2

∑
i,j

ηD′(ϕℓ♯µi)
T ηD′(ϕℓ♯νj)

 . (A.8)
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Recall that the inverse CDF transformation induced by η0(ϕℓ♯µ) ≡ F−1
ϕℓ♯µ

maps [0, 1] to a bounded185

interval that is the range of ϕℓ, and ∥ϕℓ∥∞ ≤ cλ(n−1)/4
ℓ using Hörmander’s bound on the supremum186

norm of the eigenfunctions. Using classical results on Riemann sum approximation errors [3, 6] we187

thus have for any ℓ:188

∣∣αℓ⟨η0(ϕℓ♯µ), η0(ϕℓ♯ν)⟩H − ηD′(ϕℓ♯µ)
T ηD′(ϕℓ♯ν)

∣∣ ≤ k

D′αℓ

∥∥∥(F−1
ϕℓ♯µ

F−1
ϕℓ♯ν

)′
∥∥∥
∞
≤ 2kc2

D′ αℓλ
(n−1)/2
ℓ .

Given L = LN , we simply choose D′ = DN large enough to make the right hand side above smaller189

than N−(1+δ). While it is possible to make the upper bound tighter using recent results (such as [6]),190

the above coarser bound suffices for our purpose.191

We now state a version of Theorem 2 in the main paper, with specifications for γm, σ2
1 , LN , DN now192

available through the above two results.193

Theorem 2. Assume conditions (i)-(iii) hold. Define N = N1 +N2, and suppose that as N1, N2 →194

∞, we have N1/N → ρ1, N2/N → ρ2 = 1− ρ1, for some fixed 0 < ρ1 < 1.With L ≥ LN , D
′ ≥195

DN chosen per Proposition 10, under H0 : Cη#P = Cη#Q we have196

N T̃L,D′ ;
∞∑

m=1

γm(A2
m − 1),

where Am, γm are defined as in Proposition 9. Further, under H1 : Cη#P ̸= Cη#Q we have197
√
N
(
T̃L,D′ − T

)
; N(0, σ2

1).198

Proof. This a combination of Propositions 9 and 10, and Slutsky’s theorem.199

We conclude with a proof of Theorem 3, which gives power guarantee of the test based on T̃L,D′ for200

contiguous alternatives.201

Theorem 3. Assume conditions (i)-(iii) hold, and let L,D′ be chosen as in Theorem 2. Then for202

the sequence of contiguous alternatives H1N such that N∥δN∥2H →∞, the test based on T̃L,D′ is203

consistent for any α ∈ (0, 1), that is as N →∞ the asymptotic power approaches 1.204

Proof. It is enough the prove consistency using T̂, as the difference between T̂ and T̃L,D′ is negligible205

by choice of L,D′. To do so we utilize proof techniques similar to [12, Theorem 13]. Define206

cN := N1/2∥δN∥H, and expand the simplified centered version of the test statistic in (A.5) but under207

H1 so that the centering terms do not cancel out:208

T̂c =
1

N1(N1 − 1)

∑
i,j:i ̸=j

⟨η(µi)− Cη#P , η(µj)− Cη#P ⟩H

+
1

N2(N2 − 1)

∑
i,j:i̸=j

⟨η(νi)− Cη#Q, η(νj)− Cη#Q⟩H (A.9)

− 2

N1N2

∑
i,j

⟨η(µi)− Cη#P , η(νj)− Cη#Q⟩H

 .
The centered pushforwards have the same Hilbert centroids, thus as N →∞ by Proposition 9,209

N T̂c ;
∞∑

m=1

γm(A2
m − 1) := S.
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Subtracting T̂c from T̂ and its expansion in Eq. (A.2) on the left and right hand respectively, then210

simplifying we have211

N(T̂− T̂c) = N

[
− 1

N1

N1∑
i=1

⟨δN , η(µi)− Cη#P ⟩H +
1

N2

N2∑
i=1

⟨δN , η(νi)− Cη#Q⟩H +
⟨δN , δN ⟩H

2

]

= N

[
∥δN∥H
N1

N1∑
i=1

〈
δN
∥δN∥H

, η(µi)− Cη#P

〉
H

−∥δN∥H
N2

N2∑
i=1

〈
δN
∥δN∥H

, η(νi)− Cη#Q

〉
H
+
∥δN∥2H

2

]
. (A.10)

Given N the inner products ⟨δN/∥δN∥H, η(µi)− Cη#P ⟩H are i.i.d. random variables with mean 0,212

so by CLT then using ∥δN∥H = cNN
−1/2 we get213

1√
N1

N1∑
i=1

〈
δN
∥δN∥H

, η(µi)− Cη#P

〉
H

; U ⇒ N∥δN∥H
N1

N2∑
i=1

〈
δN
∥δN∥H

, η(νi)− Cη#Q

〉
H

;
cN√
ρ1
U,

where U is the zero mean Gaussian random variable that is the limiting distribution of the above inner214

product sum. Similarly we have215

N∥δN∥H
N2

N2∑
i=1

〈
δN
∥δN∥H

, η(νi)− Cη#Q

〉
H

;
cN√
ρ2
V,

where V is also Gaussian, zero mean, and independent of U . Putting everything together in the right216

hand side of (A.10), and using ∥δN∥H = cNN
−1/2, given the threshold tα for a level-α test217

PHN

(
N T̂ > tα

)
→ P

[
S + cN

(
U
√
ρ1
− V
√
ρ2

)
+
c2N
2
> tα

]
.

By assumption c2N →∞, so the asymptotic power approaches 1 as N →∞.218

A.5 Proofs and Notes for Section 4.2219

To guarantee size control when using the the harmonic mean p-value we establish a version of220

Theorem 1 from [15]. Assume that a test statistic Z ∈ RD has null distribution with zero mean and221

every pair of coordinates of Z follows bivariate Gaussian distribution. Compute the coordinate-wise222

two-sided p-values pk = 2(1− Φ(|Zk|)) where Φ is the standard Gaussian CDF.223

Theorem 4. Let pk, k = 1, ..., D be the null p-values as above and pH computed via harmonic mean224

approach, then225

lim
α→0

Prob{pH ≤ α}
α

= 1.

Proof. The proof of Theorem 1 from [15] hinges on Lemma 3 in their supplemental material. We226

show that Lemma 3 holds for the harmonic mean combination method. Note that the multiplication227

by π present in Lemma 3 cancels out when inverse cotangent with a multiplier of 1/π is applied later228

on; so it is not relevant to the flow of the proof.229

To this end, consider the functions p(x) = 2(1− Φ(|x|)) and h(x) = 1/p(x). We need to prove the230

following three statements:231

(1) for any |x| > Φ−1(3/4),232

cos[p(x)π]

p(x)
≤ h(x) ≤ 1

p(x)

(2) For any constant 0 < |a| < 1, we have233

lim
x→+∞

h(x)

x2h(ax)
> ca > 0,
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where ca is some constant only dependent on a.234

(3) Suppose that X0 has standard normal distribution, then we have235

P{h(X0) ≥ t} =
1

t
+O(1/t3).

Statement (1) is trivial, as h(x) = 1/p(x) by definition and the cosine function is upper bounded by236

one. Statement (2) holds by the same argument as in the supplement of [15]. Statement (3) follows237

from the fact that when X0 is standard normal, then p(x) is a null p-value, and so238

P{h(X0) ≥ t} = P{p(X0) ≤ 1/t} = 1

t
.

Note that there is no O(1/t3) term at all, but we kept the form of the statement the same as in [15].239

Now, the proof of Theorem 1 from [15] with weights ωk = 1/D, k = 1, 2, ..., D goes through to give240

P

{
1

D

∑ 1

pk
≥ t
}

=
1

t
+ o(1/t).

Note that pH = H
(
D/( 1

p1
+ 1

p2
+ · · ·+ 1

pD
)
)

, where the function H has a known form described241

in [26] and satisfies H(x)/x→ 1 as x→ 0. Thus, as α→ 0, we have242

P
{
pH ≤ α

}
≍ P

{
1

D

∑ 1

pk
≥ 1/α

}
≍ 1

1/α
+ o(

1

1/α
) ≍ α.

243

B Details of numerical experiments244

B.1 Synthetic data245

We compare the performance of our tests on data from a number of domains with several existing246

methods, and settings of the embedding parameters L,D′. For evaluation, we use empirical power at247

different degrees of departure from the null hypothesis, calculated by averaging the proportion of248

rejections at level α = 0.05 over 1000 independent datasets with samples divided into two groups249

of sizes n1 = 60, n2 = 40. To ensure the tests are well-calibrated, we also calculate nominal250

sizes assuming the two sample groups are drawn from the same random meta-distribution. We251

calculate eigenvalues and eigenfunctions using analytical expressions provided in the Appendix, and252

fix α(λ) = e−λ (i.e. heat kernel with t = 1) for all experiments.253

Finite intervals To obtain our base measures µi, νi, we generate bin probabilities as (shifted254

and normalized) values of the function f(tj) = µ(tj) + α(tj) at m = 30 fixed design points255

tj = j/(m+ 1), j = {1, 2, . . . ,m}, and256

µ(tj) = 1.2 + 2.3 cos(2πtj) + 4.2 sin(2πtj),

α(tj) = ϵ0 +
√
2ϵ1 cos(2πtj) +

√
3ϵ2 sin(2πtj),

where ϵ0,ϵ1, ϵ2 ∼ N(0, 1) clipped between [−3, 3]. Group 1 and 2 samples are obtained as µi(·) ≡257

f(·) and νi(·) ≡ f(·) + δ respectively, where δ ∈ [0, 4] is a constant. To make the sample functions258

non-negative, we shift all functions by M = 3(1 +
√
2 +
√
3). Finally, as the m-length vector of259

bin counts for a sample, we generate a random vector from the Multinomial distribution with 1000260

trials, m outcomes and the outcome probabilities proportional to the shifted functional observations261

corresponding to that sample.262

We use embedding dimensions L = 3, D′ = 10 to compare our method against 11 functional ANOVA263

tests—for brevity we report results for 3 of them which use different methodological approaches (see264

Appendix for complete results). All methods maintain nominal size for δ = 0 (Figure 1 a). While the265

combination test (ISD comb) based on our proposal outperformed all the other tests across all values266

of δ, the bootstrap test that uses the overall T statistic (ISD T boot) performs better than Fmaxb but267

worse than others. Table 2 shows the outputs for the other 8 competing methods from the R package268

fdANOVA for the finite intervals synthetic data setting1.269
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Figure 1: Performance on synthetic finite interval and manifold data. Finite interval: (a) comparison
with existing methods—a test based on basis function representation (FP) [11], a sum-type ℓ2 norm-
based test (L2b) [27], and a max-type test [28] that uses the maximum of coordinate-wise F statistic
(Fmaxb); (b) unsliced vs. different settings of (L,D′). Manifold data: (c) circular data, comparing
with Fréchet ANOVA [9], and the DISCO nonparametric test [21]; (d) harmonic combination tests on
cylindrical data for L = 4. Dotted lines indicates nominal size of all tests (α = 0.05).

δ CH CS L2N L2b FN FB Fb GPF

0 0.031 0.03 0.033 0.024 0.031 0.028 0.033 0.026
0.1 0.025 0.024 0.03 0.044 0.027 0.03 0.041 0.021
0.2 0.026 0.029 0.037 0.06 0.033 0.034 0.058 0.025
0.3 0.036 0.041 0.044 0.067 0.041 0.04 0.067 0.033
0.4 0.034 0.035 0.036 0.057 0.034 0.035 0.056 0.032
0.5 0.051 0.052 0.058 0.091 0.056 0.057 0.088 0.044
0.6 0.056 0.066 0.066 0.089 0.061 0.066 0.088 0.051
0.7 0.07 0.083 0.083 0.121 0.084 0.081 0.119 0.064
0.8 0.085 0.097 0.095 0.151 0.093 0.094 0.144 0.081
0.9 0.118 0.142 0.14 0.2 0.144 0.137 0.194 0.118
1 0.158 0.182 0.176 0.232 0.183 0.173 0.228 0.154

1.1 0.215 0.247 0.246 0.303 0.251 0.242 0.301 0.212
1.2 0.27 0.31 0.303 0.375 0.311 0.3 0.368 0.27
1.3 0.328 0.363 0.357 0.438 0.37 0.353 0.43 0.324
1.4 0.395 0.432 0.432 0.504 0.436 0.423 0.499 0.394
1.5 0.488 0.52 0.514 0.592 0.521 0.511 0.586 0.483
1.6 0.534 0.595 0.576 0.652 0.593 0.566 0.647 0.544
1.7 0.628 0.677 0.669 0.723 0.678 0.661 0.719 0.631
1.8 0.704 0.737 0.727 0.789 0.748 0.725 0.785 0.707
1.9 0.785 0.823 0.812 0.869 0.827 0.806 0.867 0.793
2 0.83 0.849 0.844 0.88 0.85 0.841 0.875 0.832

2.1 0.865 0.888 0.881 0.916 0.887 0.878 0.915 0.872
2.2 0.903 0.922 0.916 0.946 0.928 0.912 0.946 0.907
2.3 0.938 0.95 0.944 0.964 0.951 0.944 0.963 0.944
2.4 0.958 0.973 0.967 0.977 0.972 0.966 0.976 0.964
2.5 0.974 0.98 0.976 0.985 0.981 0.975 0.985 0.974
2.6 0.977 0.981 0.979 0.987 0.981 0.978 0.986 0.977
2.7 0.989 0.996 0.992 0.997 0.996 0.992 0.997 0.991
2.8 0.997 0.998 0.997 0.998 0.998 0.997 0.998 0.996
2.9 0.996 0.997 0.996 0.999 0.997 0.996 0.999 0.997
3 0.998 1 0.999 1 1 0.999 1 0.999

Table 2: Outputs for other methods in the functional curves synthetic data setting.

We also compare the p-value combination test based on an unsliced 24-dimensional inverse CDF270

embedding with sliced ISW2-based tests (Figure 1 b). We use multiple pairs of (L,D′) values, all of271

them giving overall embeddings of dimension D = LD′ = 24. The performance of an ISW2-based272

1See https://www.rdocumentation.org/packages/fdANOVA/versions/0.1.2/topics/fanova.
tests for full names of all methods.

12

https://www.rdocumentation.org/packages/fdANOVA/versions/0.1.2/topics/fanova.tests
https://www.rdocumentation.org/packages/fdANOVA/versions/0.1.2/topics/fanova.tests


test that uses slicing over only the first eigenfunction is almost as good as the unsliced version. With273

more eigenfunctions, the powers first improve considerably, then become similar to the unsliced274

version again.275

Manifold domains We consider data from distributions on circles and cylinders. For circular276

data, we take von Mises distributions with randomly chosen parameters as our samples. For an277

angle x (measured in radians), the von Mises probability density function is given by f(x|µ, κ) =278

exp[κ cos(x−µ)](2πI0(κ))−1, where I0(κ) is the modified Bessel function of order 0. We fix κ = 2,279

and use µ ≡ µi ∼ N(0, 0.12), µ ≡ νi ∼ N(δ, 0.12) for samples from group 1 and 2 respectively—280

with δ ∈ [0, 15] × π/180 (i.e. 0 to 15 degrees converted to radians). As each observation vector,281

we take 100 random draws from each sample-specific distribution. For our embeddings, we use282

L = 10, D′ = 20, and so our final embedding dimension is 10× 20× 2 = 400. Since the competing283

methods cannot handle circular geometry directly, to implement them we cut the circle into an interval.284

Figure 1 (c) shows that all methods maintain nominal size, but both our tests maintain considerably285

higher power than existing methods for all δ.286

We generate cylindrical data in the form of samples of a bivariate random vector (Θ, X), using the287

cylindrical density function proposed by [16]:288

f(θ, x) =
eκ cos(θ−µ)

2πI0(κ)

1√
2πσc

e
− (x−µc)

2

2σ2
c ,

clipping values of the X-coordinate between the bounded interval [0, 2π]. This distribution has289

the parameters µ ∈ [−π, π], µ0 ∈ R, κ ≥ 0, ρ1 ∈ [0, 1), ρ2 ∈ [0, 1), σ > 0, where µ, κ denote290

parameters for the (circular) marginal along the Θ-coordinate. and given Θ = θ, X is sampled from291

N(µc, σ
2
c ), with292

µc = µ+
√
κσ {ρ1(cos θ − cosµ) + ρ2(sin θ − sinµ)} ,

σc = σ2(1− ρ2), ρ = (ρ21 + ρ22)
1/2.

In our experiments, we fix ρ1 = ρ2 = 0.5, σ = 1, κ = 2 across both populations. As random samples293

of distributions, we draw µ, µ0 ∼ Unif(0, 1) and µ, µ0 ∼ Unif(δ, δ + 1) for samples of group 1 and294

2 respectively, with n1 = 60, n2 = 40. We repeat the above for δ ∈ [0, 30] degrees converted to295

radians, and obtain bivariate histograms corresponding to each sample distribution from 500 random296

draws from that distribution. To evaluate the effects of choosing L,D′ we calculate our embeddings297

for L ∈ {2, 3, 4, 5}, D′ ∈ {6, 8, 12, 24, 48}. The choice of L has small effect on performance, so we298

report results for L = 4 in Figure 1 (d). Higher values of D′ result in some increase in power.299

Discussion Our ISW2-based method is able to exploit the non-euclidean nature of the problems300

and and their generality beyond mean comparison more effectively than competing methods, which301

are based on mean comparison on functional data/densities (frechet ANOVA, all functional ANOVA302

methods), and/or L2 distance-based comparisons (all functional ANOVA methods, DISCO). Re-303

garding the optimal choice of embedding dimensions, while proving theorem ?? we show that304

(Proposition 10 therein) choosing both L and D above certain thresholds ensures close approximation305

to the population test statistic. For the combination test, adding more dimensions to the embedding306

can have a two-fold effect: a) probing more dimensions can help with finding differences, but b) every307

dimension adds another test and so potentially leads to loss of power. Thus, for the combination test,308

there must be an optimal data dependent choice of the embedding dimension, which can potentially309

be found via split testing procedures. We leave this to future work.310

B.2 NHANES data on physical activity monitoring311

As our first real data application, we analyze the Physical Activity Monitor (PAM) data from the312

2005-2006 National Health and Nutrition Examination Survey (NHANES)2. This contains physical313

activity pattern readings for a large number of people collected over 1 week period on a per-minute314

granularity. After basic pre-processing steps to ensure no missing entries, as well as data reliability315

and well-calibrated activity monitors, we use data from 6839 individuals. The data for each individual316

2https://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/PAXRAW_D.htm
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Figure 2: Activity histograms for three individuals from NHANES dataset. There are 100 bins in the
intensity and 96 in the time dimension; we show hour of day on the time axis. The time dimension is
periodic where 00:00 is identified with 24:00, giving rise to a cylindrical histogram domain.
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Figure 3: Three eigenfunctions for the NHANES histogram domain normalized by the maximum
absolute value. Note that the eigenfunctions are periodic in the time direction (i.e. match when
glued over the side cut) but not in the intensity direction, reflecting the cylindrical geometry of the
underlying domain.

corresponds to device intensity value from the PAM for 24× 60 = 1440 minutes throughout the day,317

for 7 days.318

For each individual we can capture their activity patterns into a cylindrical histogram with time and319

intensity dimensions. For each observation, its time during the day is discretized into 15-minute320

intervals giving 96 bins for the time dimension; its intensity value (capped at 1,000) is discretized321

into a 100 equidistant bins. Since the time dimension is periodic, we obtain a histogram over the322

cylinder S1(T1)× [0, T2), with T1 = 96, T2 = 100. Normalized counts can thus be considered as323

person-specific probability distributions; several examples are shown in Figure 2. Note that flattening324

the domain by cutting the cylinder will arbitrarily split activity patterns (see especially Figure 2,325

Female 37) and will lead to inefficiencies due to horizontal variability.326

We apply the proposed methodology to check if the activity patterns vary across different groups of327

individuals obtained as follows. We first split the overall dataset based on the individual’s age using328

the following inclusive ranges: 6–15, 16–25, ...,76–85; this covers all the ages in the dataset. From329

each split we sample 100 males and 100 females to avoid gender imbalance driving the results. Thus,330

we end up with 8 age groups with 200 individuals per group. Our goal is to compare these 8 groups’331

activity patterns by conducting pair-wise tests.332

To perform our analysis we compute the eigenvalues and eigenfunctions as per the 4th row of Table 1333

using ℓ1 = 1, 2, 3 and ℓ2 = 1, 2, 3, giving a total of L = 2× 3× 3 = 18 eigenfunctions; three of the334

resulting eigenfunctions are shown in Figure 3. We consider a D′ = 5 dimensional embedding for335

the inverse CDF transformation, hence the final embedding dimension after the slicing construction336

is D = LD′ = 18× 5 = 90.337

We summarize the results in Table 3, below the diagonal. The p-values are obtained via the harmonic338

mean combination approach. We run the Benjamini-Hochberg [4] procedure on the resulting p-values339
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Age Groups 6–15 16–25 26–35 36–45 46–55 56–65 66–75 76–85

6–15 0.979 0.31 0.383 0.297 0.905 0.921 0.326
16–25 3.7e-11 0.998 0.963 0.443 0.872 0.442 0.529
26–35 4.6e-20 1.0e-05 0.987 0.818 0.93 0.731 0.992
36–45 3.2e-26 3.5e-11 0.01 0.945 0.984 0.974 0.327
46–55 6.6e-27 8.4e-16 0.002 0.377 0.832 0.618 0.844
56–65 2.4e-32 7.5e-20 3.1e-04 0.042 0.977 0.509 0.98
66–75 5.4e-45 1.6e-16 7.7e-06 1.6e-04 0.001 0.011 0.557
76–85 3.4e-52 1.4e-23 1.4e-15 2.7e-12 9.7e-16 1.4e-09 2.1e-06

Table 3: Comparing the activity intensity of different age groups based on the NHANES dataset.
Below diagonal: p-values corresponding to the actual data comparisons. Above diagonal: null
p-values obtained by combining and randomly splitting the two involved groups. The entries in
boldface correspond to the rejected hypotheses with the BH procedure at the FDR level of 0.1.

(a) ϕ1(·) (b) ϕ2(·) (c) ϕ3(·)

Figure 4: First three eigenvectors of the Laplacian are shown for the beat adjacency graph, mapped
back to the geographic locations. All of the eigenvectors are normalized by the maximum absolute
value. The spatial smoothness of the eigenvectors—somewhat masked here due to the discrete
colormap—is crucial to efficiently capturing horizontal variability of the data (i.e. distribution shifts
over the graph). The boundaries of beats are shown based on the shape file from Chicago Data portal.

at the false discovery rate of 0.1, and the rejected hypotheses are indicated by the p-values in bold.340

Our method detects statistically significant differences between all pairs of groups, except 46–55341

versus 36–45 and 56-65 groups. As a control experiment, we provide our method with null cases342

and display the p-values in Table 3, above the diagonal. The null cases are obtained by combining343

the individuals from the two comparison groups and splitting it arbitrarily (i.e. mixing the two age344

groups). As expected, the p-values of the control comparisons do not concentrate near zero.345

Curiously, our method can be used “off-label” to conduct functional data analyses over different346

dimensions of the NHANES dataset. For example, one can concentrate on a single day of activity347

intensity data which gives a curve over the 24-hour circle. Since activity intensity is a non-negative348

number, these curves can be normalized so as to obtain probability distributions. Now we can use our349

methodology to detect pair-wise differences across groups. While this has the benefit of accounting350

for underlying geometry of data, it loses the absolute magnitude information due to the normalization.351

Clearly the appropriateness of such an analysis would depend on the goal of the exercise and the352

particular research question attached to that goal; our proposal provides a framework that is flexible353

enough to handle data of different modalities.354

B.3 Chicago Crime355

We demonstrate the use of our methodology on histograms over graphs. In this experiment, we use356

the Chicago Crimes 2018 dataset3 which captures incidents of crime in the City of Chicago. We base357

our analysis on the type of crime, the beat (geographic area subdivision used by police, see Figure 4)358

3data.cityofchicago.org
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Crime Type Tuesday Thursday Saturday Tue vs Thu Tue vs Sat

N count N count N count p-value p-value

Theft 52 178.7 52 182.9 52 180.2 0.452 4.7e-06
Deceptive Practice 51 55.8 52 54.9 52 44.4 0.255 4.2e-04
Battery 52 125.8 52 123.0 52 154.9 0.374 0.001
Robbery 50 25.2 50 25.1 52 28.1 0.130 0.002
Narcotics 51 36.0 51 34.6 50 36.9 0.890 0.008
Criminal Damage 52 70.0 52 73.7 52 83.0 0.901 0.03
Other Offense 52 49.5 52 48.4 52 44.1 0.670 0.037
Burglary 52 34.0 52 33.1 52 29.1 0.157 0.183
Motor Vehicle Theft 52 27.9 52 26.2 51 28.1 0.923 0.365
Assault 52 57.2 52 59.3 52 52.4 0.996 0.617

Table 4: Results on Chicago Crime 2018 dataset. The entries in bold correspond to the rejected
hypotheses with the BH procedure at the FDR level of 0.1. The N column captures the number of
days passing the filtering criteria, and the count column shows the average per-day crime count.

where the incident took place, and the date of the incident. To capture the spatial aspect of the data359

we build a graph with one vertex per beat; two vertices are connected by an edge if the corresponding360

beats share a geographic boundary. For each crime type and day, we capture the total count of that361

crime type for each beat; after normalizing this gives a daily probability distribution over the graph.362

Our goal is to compare the collection of distributions of, say, theft occurring on Tuesday to those of363

Thursday and Saturday. The Tuesday versus Thursday comparison is intended as a null case, as we364

do not expect to see any differences between them [23].365

We build the un-normalized Laplacian of the beat adjacency graph, and compute its lowest frequency366

L = 20 eigenvalues and eigenvectors. The first three eigenvectors are plotted in Figure 4. The number367

of inverse CDF values used in the embedding is D′ = 5, which gives rise to D = 100 dimensional368

embedding. The results of comparisons are shown in the last two columns of Table 4; the p-values369

are obtained via the harmonic mean combination approach. We run the Benjamini-Hochberg [4]370

procedure on the 20 resulting p-values at the false discovery rate of 0.1, and the rejected hypotheses371

are indicated by the p-values in bold. As expected, no differences were detected between Tuesday372

and Thursday patterns. On the other hand, we see that there are statistically significant differences373

between Tuesday and Saturday patterns in the following categories of crime: theft, deceptive practice,374

battery, robbery, narcotics, and criminal damage.375

B.4 Brain Connectomics376

In this example, we consider two publicly available brain connectomics datasets [1, 2] distributed377

as a part of the R package graphclass4. Both are based on resting state functional magnetic378

resonance imaging (fMRI): COBRE has data on 54 schizophrenics and 70 controls, and UMich379

with 39 schizophrenics and 40 controls. The datasets capture the pairwise correlations between 264380

regions of interest (ROI) of Power parcellation [18] and can be considered as a 264 node graph (263381

nodes for COBRE as ROI 75 is missing) with positive and negative edge weights.382

We define three probability measures supported on the nodes of the graph. For each ROI we take383

the sum of absolute values of all its correlations with the remaining ROIs. Now we have a positive384

number assigned to each node capturing its overall connectivity to the rest of the graph and we385

normalize to obtain a measure; this construction will be referred to as “all correlations”. Note that386

each scanned subject gives rise to a separate “all correlations” probability measure on the same387

underlying node set. The “positive correlations” and “negative correlations” constructions are based388

on keeping respectively only positive or only negative correlations and aggregating as above.389

We also need a fixed base graph for the computation of the Laplacian eigen-decomposition; this graph390

should capture the spatial connectivity of the ROIs which is relevant due to the smooth nature of391

the blood oxygenation level dependent (BOLD) signal that is used for computing the correlations.392

4http://github.com/jesusdaniel/graphclass
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Dataset All correlations Positive correlations Negative correlations

COBRE 0.0084 0.00019 0.0019
UMich 0.609 0.116 0.022

Table 5: Comparison results between the schizophrenic and control groups for brain connectomics
datasets.

To this end, we obtain the coordinates for the centers of the 264 ROIs5 and build the base graph by393

connecting each ROI to its nearest 8 ROIs.We compute the lowest frequency L = 20 eigenvalues and394

eigenvectors of the corresponding un-normalized Laplacian. The number of inverse CDF values used395

in the embedding is D′ = 5, which gives rise to D = 100 dimensional embedding.396

Table 5 shows the result of comparing the schizophrenic group to the control group for both of the397

datasets; the p-values are obtained via the harmonic mean combination approach. We can see that our398

approach detects statistically significant differences between the two groups in COBRE dataset in all399

of the three types of measures on graphs. In contrast, for UMich dataset, the difference is detected400

only in the negative correlations and loses significance when corrected for multiple testing. This is401

potentially caused by the higher inhomogeneity of the UMich dataset that was pooled across five402

different experiments spanning seven years [2]. An interesting aspect of our analysis is that due to403

normalization (to obtain probability measures) the total sum of connectivity is factored out by the404

proposed method. As a result, the detected differences are not related to the well-known change in405

the overall connectivities between the two groups, but rather to distributional changes in marginal406

connectivity strengths.407
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