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A More Implementation Details

The proposed Diffusion-SS3D utilizes a teacher-student framework for 3D object detection in the
setting of semi-supervised learning (SSL) and leverages the PointNet++ [3] as the encoder and
the IoU-aware VoteNet [4] as the diffusion decoder. This section provides more details about the
components in our implementation, including the encoder, decoder, diffusion initialization, SSL loss
functions, and pseudo-label generation.

Encoder. In the encoder, we process an input point cloud using PointNet++ [3] to extract 1024
high-level representative seed points, denoted as m = {mi ∈ R3}1024i=1 , and their corresponding
C-dimensional features, denoted as f = {fi ∈ RC}1024i=1 . In VoteNet, all seed points m contribute
to voting and generate their corresponding vote points, denoted as v = {vi ∈ R3}1024i=1 , and their
vote features fv = {fv

i ∈ RC}1024i=1 , where each vote point represents a potential object center.
Subsequently, we perform Farthest Point Sampling (FPS) on the seed points to obtain Nb sampled
seed points to maximally cover the 3D scene. Without loss of generality, the sampled points are
denoted by {mi}Nb

i=1. The corresponding vote points {vi}Nb
i=1 of these seed points are used as the Nb

random box centers, along with their features fv , used in the next step.

Preparing noisy boxes. To start the diffusion training process with corrupted ground truths, a
ground-truth box center bc is first matched to the nearest seed point among {mi}Nb

i=1. Then its
corresponding vote point, vi, is treated as the proposal box center. Next, the noisy object size and
noisy class label distributions are generated by adding Gaussian noise to the ground truth, and are
used for this proposal box as the corrupted ground truth.

Decoder. In the decoding phase, for each vote point v used as the object center, we extract its
RoI-features fobj by employing a 4-layer MLP with max pooling to aggregate all the features fv

within its noisy bounding box. Then, the RoI-features fobj are concatenated with the noisy label
distributions l̃ to form the features fobj = [fobj ; l̃] ∈ RC+Ncls (see Figure 3 of the manuscript),
which serve as the input to the decoder for bounding box regression and classification.

Loss functions for object detection. To train Diffusion-SS3D under the SSL setting, we supervise
the student model using ground-truths yl for labeled data pl and pseudo-labels ỹu obtained from
the teacher model for unlabeled data pu, respectively. The overall loss function L for the student
model is formulated as L = Ll(p

l,yl) + λLu(p
u, ỹu), where Ll and Lu represent the detection

loss functions for bounding box regression and classification, applied to the labeled and unlabeled
data, respectively. In our experiments, we follow [4] and set λ to 2 for balancing the importance of
labeled and unlabeled data. Both Ll and Lu employ the IoU-aware VoteNet loss [4], which contains
two components, including the original VoteNet losses [2], denoted as Lvote, and the 3D IoU loss [4],
denoted as LIoU . The main objective Lvote includes various losses such as vote coordinate regression,
objectness score binary classification, box center regression, bin classification, residual regression for
heading angle, scale regression, and category classification.

Pseudo-label generation. During the pseudo-label generation process in the teacher model with
diffusion sampling, we use the filtering scheme [4] based on objectness, classification confidence,
and intersection-over-union (IoU) scores. Following [4], we set the threshold to 0.9 for the objectness
and classification confidence scores, and the threshold to 0.25 for the IoU score.
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Table 1: Per-class AP@0.25 (top group) and AP@0.5 (bottom group) on the ScanNet val set with 5%
labeled data.

cabin bed chair sofa table door wind bkshf pic cntr desk curt refrig showr toilet sink bath ofurn
VoteNet [2] 10.4 65.3 73.3 67.9 19.7 11.0 5.6 11.6 2.4 17.2 39.0 15.3 8.5 10.4 68.8 16.8 54.9 7.5
SESS [5] 13.1 75.8 69.8 70.7 35.4 10.4 10.5 7.5 2.4 10.2 39.6 20.9 13.9 20.4 74.7 22.1 62.2 7.4

3DIoUMatch [4] 20.8 77.4 78.1 75.6 43.5 14.6 18.9 16.9 1.5 29.4 44.4 26.0 27.5 36.3 80.4 18.3 82.5 13.0
Ours 21.8 83.7 81.9 79.2 47.1 26.5 21.6 32.8 1.2 52.7 47.0 31.5 28.0 37.2 90.0 20.0 59.7 19.1

VoteNet [2] 0.9 52.1 36.1 39.0 4.2 1.0 0.1 4.1 0.0 0.4 10.9 1.6 2.8 0.1 30.3 2.0 38.5 0.6
SESS [5] 3.6 63.6 40.5 51.8 14.8 1.9 0.6 5.3 0.2 0.2 11.9 7.6 4.1 0.6 52.7 7.4 45.4 1.6

3DIoUMatch [4] 6.4 64.0 52.9 57.7 22.5 2.4 3.6 3.3 0.3 7.7 21.1 12.4 12.7 4.9 70.4 10.3 59.0 3.9
Ours 4.5 65.1 59.3 67.3 32.8 5.7 4.5 22.7 0.3 28.7 30.5 12.5 20.5 6.3 72.9 8.1 47.6 6.8

Table 2: Per-class AP@0.25 (top group) and AP@0.5 (bottom group) on the SUN RGB-D val set
with 1% labeled data.

bathtub bed bookshelf chair desk dresser nightstand sofa table toilet
VoteNet [2] 49.0 15.9 19.0 34.6 20.8 4.8 1.2 4.6 1.8 30.6
SESS [5] 56.4 18.1 28.8 42.6 26.4 5.7 4.3 11.1 1.6 37.0

3DIoUMatch [4] 60.3 22.2 30.7 45.3 25.7 3.6 2.5 15.6 1.2 38.0
Ours 67.5 30.6 40.5 52.8 56.4 3.4 4.8 16.0 2.9 47.3

VoteNet [2] 25.1 1.3 3.2 10.7 4.5 0.1 0.1 0.6 0.3 3.1
SESS [5] 27.0 2.1 8.2 13.2 5.4 0.4 0.9 1.5 0.1 4.7

3DIoUMatch [4] 27.8 6.1 11.9 19.0 8.2 0.7 1.2 3.9 0.3 13.5
Ours 37.2 10.3 22.9 28.8 25.0 1.2 1.7 5.3 0.7 16.9

Table 3: Results on the ScanNet val set with 5%, 10%, and 20% labeled data using our method with
OPA as the data augmentation technique.

Model 5% 10% 20%
mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5

OPA [1] 41.9 ± 1.5 25.0 ± 0.4 50.5 ± 0.2 32.7 ± 1.0 54.7 ± 0.3 36.8 ± 0.8
OPA + ours 44.1 ± 0.6 27.4 ± 0.6 52.3 ± 0.6 36.5 ± 0.7 55.6 ± 0.5 38.8 ± 0.6
Gain (mAP) 2.2↑ 2.4↑ 1.8↑ 3.8↑ 0.9↑ 2.0↑

B More Experimental Results

B.1 Per-class AP Evaluation

In Table 1 and Table 2, we present the average precision per class for both the ScanNet validation set
with 5% labeled data and the SUN RGB-D validation set with 1% labeled data, respectively. Overall,
Diffusion-SS3D exhibits consistent performance improvement compared to existing state-of-the-art
methods, underlining the benefit of our diffusion model, which can effectively denoise from noisy
sizes and noisy label distributions, and thus yield more reliable pseudo-labels.

B.2 Data Augmentation

In this section, we apply our diffusion model to a data augmentation method, OPA [1], which enhances
3D object detection in SSL via learning a point augmentor in the teacher-student framework. Since
OPA focuses on data augmentation for the input data, we seamlessly integrate it into our Diffusion-
SS3D framework and conduct experiments to demonstrate the complementary benefits. To begin, we
train an augmentor using labeled data, following OPA’s official implementation. We then employ this
augmentor to generate augmented data, which serves as the input to our framework. Note that we
maintain all other diffusion components identical to what is described in the manuscript. As shown
in Table 3, incorporating OPA [1] as an augmentation technique in our diffusion model processing
yields state-of-the-art results. For example, when utilizing 5% labeled data in ScanNet, our method
achieves a mAP@0.25 of 44.6% and a mAP@0.5 of 28.1%, which are +2.7% and +3.1% better than
the OPA [1] approach, respectively. Overall, we show that our diffusion model is complementary
to additional data augmentation and performs favorably against OPA [1]. This demonstrates the
effectiveness of our method when combined with other data augmentation techniques.
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Table 4: Ablation study on the effect of DDIM steps in the SSL inference process.

ID DDIM steps in inference ScanNet 5%
mAP @ 0.25 mAP @ 0.5

(1) 0 42.8 ± 0.5 26.8 ± 0.6
(2) 1 43.1 ± 0.4 27.0 ± 0.7
(3) 2 43.5 ± 0.2 27.9 ± 0.3

Table 5: Ablation study on the effect of diffusion process in the different stages.

ID Diffusion training DDIM in inference ScanNet 5%
mAP @ 0.25 mAP @ 0.5

(1) 40.5 ± 1.2 22.8 ± 0.8
(2) ✓ 42.8 ± 0.5 26.8 ± 0.6
(3) ✓ ✓ 43.5 ± 0.2 27.9 ± 0.3

Table 6: Performance of our diffusion model with different numbers of proposals and DDIM steps on
the ScanNet and SUN RGB-D datasets, where the runtime in FPS and accuracy in mAP are reported.

Dataset Model Num. proposal DDIM FPS mAP@0.25 mAP@0.5

ScanNet (5%)

3DIoUMatch 128 - 50.75 39.2 23.1

Ours
128 1 36.13 42.9 26.0

2 30.07 43.8 28.0

256 1 28.91 44.6 27.2
2 21.29 44.9 28.3

SUN RGB-D (1%)

3DIoUMatch 128 - 65.54 21.3 8.0

Ours
128 1 46.64 29.6 12.9

2 36.52 31.3 14.6

256 1 38.10 30.8 13.6
2 28.14 31.8 14.7

B.3 Diffusion Process in Training and Inference

Our diffusion mechanism operates during both the training and inference stages of the SSL process.
During SSL training, the diffusion reverse process occurs in the teacher model, denoising noisy data to
produce high-quality pseudo-labels through diffusion sampling. Subsequently, the diffusion forward
process takes place in the student model, learning to predict objects from the corrupted (pseudo)
ground-truth. In the SSL inference stage, similar to other diffusion models, our Diffusion-SS3D is
utilized to denoise randomly generated inputs. Specifically, our diffusion model is initially trained
under the SSL setting. During inference, the model denoises inputs of various object sizes and label
distributions through DDIM sampling, generating precise final predictions. Despite the diffusion
model’s primary purpose being denoising during inference, users have the flexibility to use our learned
decoder and output model predictions directly, bypassing the denoising step. The results presented
in Table 4 on ScanNet demonstrate our model’s competitive performance even without denoising
(indicated by a DDIM step of 0) due to our comprehensive diffusion model training. Additionally,
employing more DDIM steps further enhances performance.

Moreover, to emphasize our diffusion model’s effectiveness across different phases, we provide
results for both training and inference phases on ScanNet. We compare scenarios with the diffusion
process applied in both phases, training alone, and a baseline method (3DIoUMatch [4]) in Table 5.
Remarkably, our diffusion model significantly improves results compared to the 3DIoUMatch [4],
even when the denoising step during inference is omitted. When the denoising process is incorporated
during inference, the results are further improved, underscoring the robustness of our approach.

B.4 Number of Proposal Boxes

One limitation of the diffusion model lies in its computational costs. To address this, striking a
balance between efficiency (FPS) and accuracy (mAP) is crucial. In Table 6, we report the effects of
using different amounts of proposals with different numbers of DDIM steps in our diffusion model,
where the proposal amount is set to 128 or 256 while using one or two DDIM steps. Compared with
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the 3DIoUMatch [4] baseline, our method with DDIM sacrifices some efficiency but significantly
improves mAP performance. For instance, with 128 proposals and one DDIM step on the SUN RGB-
D dataset, our runtime speed decreases by 28.8% (from 65.54 FPS to 46.64 FPS), while mAP@0.5
sees a 61.3% relative improvement (from 8% to 12.9%) compared to our baseline method without
diffusion, i.e., 3DIoUMatch [4]. To balance the trade-off between efficiency (FPS) and accuracy
(mAP) and ensure fair comparisons with baseline methods using 128 proposals, our method utilizes
128 proposals in all experiments presented in the main paper. These results demonstrate our ability
to adjust diffusion sampling steps, achieving a balance between accuracy and efficiency, effectively
addressing the runtime limitation.

B.5 Qualitative Visualization

In Figure 1, we demonstrate the effectiveness of our diffusion model by visualizing the quality of
pseudo-labels on the unlabeled training set generated by the teacher model during SSL training.
This visualization supports our claim that our diffusion model provides more reliable pseudo-labels,
significantly enhancing the SSL training pipeline. Furthermore, in Figure 2 and Figure 3, we
illustrate the effectiveness of our diffusion model in the denoising process. We first plot noisy random
bounding boxes for a given point cloud scene. Then, the DDIM step is performed to obtain the
denoised bounding boxes, where most noisy bounding boxes are refined toward ground truths, and
those closest to the ground truth are highlighted in red. Our diffusion decoder yields the detection
results with more accurate object bounding boxes and category predictions. These illustrations
demonstrate the effectiveness of our diffusion model in denoising from noisy bounding boxes, leading
to notable improvements in 3D object detection in a semi-supervised way.

Figure 1: Example results of generated pseudo-labels on the unlabeled training set from
ScanNet. The green bounding boxes represent proposals with an IoU score exceeding 0.25 with
respect to the ground truth, while the red bounding boxes indicate false positives with an IoU score
lower than 0.25. Compared to 3DIoUMatch, our method with the diffusion process is able to discover
more true objects and generate less false positives as pseudo-labels.

4



Figure 2: Visualization of the DDIM sampling step during inference. In each example (column),
we show (a) the input point cloud, (b) the initial bounding boxes obtained by random sampling, (c) the
denoised bounding boxes yielded by DDIM where those closest to the ground truth are highlighted in
red, (d) the detection results given by our diffusion decoder, and (e) the ground-truth bounding boxes.
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Figure 3: Visualization of the DDIM sampling step during inference. In each example (column),
we show (a) the input point cloud, (b) the initial bounding boxes obtained by random sampling, (c) the
denoised bounding boxes yielded by DDIM where those closest to the ground truth are highlighted in
red, (d) the detection results given by our diffusion decoder, and (e) the ground-truth bounding boxes.
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