A Preliminaries

A.1 Notation
* Given a composite function g(x,y) we will denote Vg(x,y) or V(x,y9(x,y) as the
gradient; Vyxg(x,y) and Vyg(x,y) as the partial gradients with respect to x and y.

* For a vector u, ||u|| denotes the ¢5-norm ||ul|. For a matrix A, ||A|| r denotes the Frobenius
norm.

* Unless otherwise stated, for a given vector x, x; denotes the i'th element in vector x; and
x; denotes that the vector belongs to client 7. Furthermore, x! denotes a vector that belongs
to client ¢ at time ¢.

A.2 Equivalence of Assumption A.6 to Assumptions in Related Work

In particular, diversity assumption (Assumption 5) in [8] is as follows:
I 2
=3 || Vwhiw) = Vu )| < B,
i=1

where f; is local function, B is a constant and Vy, f(w) = = Z?Zl Vw fi(w). Now we will show

the equivalence to our stated assumption A.6. Let us define,

zi(w') i= argmin { (x = x!, V£ (1)) + (x = x4, Ve £i(Qe (1)) + (=t Ay o] = w)

x€eR

*27171 Ix — x|2 + /\R(x,cﬁ)}

ci(wh) := aﬁﬂgn {<c —ct, chfi(écti (Z‘Z(Wt)))> +Tilz Hc — csz + AR(z;(wh), c)}

Then we can define,

qzbi(xi(wt)a Ci(wt)v Wt) = Fi(xrrla C§+1> Wt)

as a result, we can further define g;(w?) := v;(z;(w?), ¢;(w?), w). Therefore, our assumption A.6
is equivalent to stating the following assumption: At any ¢ € [T'] and any client ¢ € [n], the variance
of the local gradient (at client ¢) w.r.t. the global gradient is bounded, i.e., there exists x; < 0o, such
that for every w? € R?, we have:

1 ¢ 2
VwtGi L) (wt H < K;
H wg(w) nsztgj(w) > K,

j=1
And we also define x := 2 3" | k; and then,
1 n 2
ﬁZvatgi(Wt) —thg(wt)H <k,
i=1

here Vytg(wt) = % Z?:I Vwtgj(w'). Hence, our assumption is equivalent to assumptions that
are found in aforementioned works.

A.3 Alternating Proximal Steps

We define the following functions: f : RY — R, Q : R4 — R? and we also define h(x,c) =
F(Qe(x)),h : RF™ — R where x € R?and ¢ € R™. Note that here (.(x) denotes Q(x, c).
Throughout our paper we will use Q. (x) to denote Q(x, ¢), in other words both ¢ and x are inputs

to the function Q. (x). We propose an alternating proximal gradient algorithm. Our updates are as
follows:

x't = PIOXy AR(:,ct) (Xt - UlVf(Xt) - U1thf(@ct (Xt))) (1

14



't = PrOanxR(xm,-)(Ct - ﬁzvcff(@ct (Xt+1)))

For simplicity we assume the functions in the objective function are differentiable, however, our
analysis could also be done using subdifferentials.

Our method is inspired by [3] where the authors introduce an alternating proximal minimization
algorithm to solve a broad class of non-convex problems as an alternative to coordinate descent
methods. In this work we construct another optimization problem that can be used as a surrogate
in learning quantized networks where both model parameters and quantization levels are subject
to optimization. In particular, [3] considers a general objective function of the form F(x,y) =
f(x)+9(y) + AH(x,y), whereas, our objective function is tailored for learning quantized networks:

F(x,¢) = f(x) + f(Qc(x)) + AR(x, c). Furthermore, they consider updates where the proximal
mappings are with respect to functions f, g, whereas in our case the proximal mappings are with
respect to the distance function R(x, c) to capture the soft projection.

A.4 A Soft Quantization Function

In this section we give an example of the soft quantization function that can be used in previous
sections. In particular, we can define the following soft quantization function: Q¢(x) : R4+™ — R4
and Qc(x); := Y1 5(¢j — ¢j-1)a(P(z; — @%8i=1)) + ¢; where o denotes the sigmoid function
and P is a parameter controlling how closely Q.(x) approximates Q.(x). Note that as P — oo,
Qc(x) = Qc(x). This function can be seen as a simplification of the function that was used in [32].

Assumption. For all j € [m)], c¢; is in a compact set. In other words, there exists a finite ¢p,ax such
that |c;| < cmax for all j € [m].

In addition, we assume that the centers are sorted, i.e., ¢; < --- < ¢,,. Now, we state several useful
facts.

Fact 1. @c (x) is continuously and infinitely differentiable everywhere.

Fact 2. o(x) is a Lipschitz continuous function.

Fact 3. Sum of Lipschitz continuous functions is also Lipschitz continuous.

Fact 4. Product of bounded and Lipschitz continuous functions is also Lipschitz continuous.

Fact 5. Let g : R™ — R™. Then, the coordinate-wise Lipschitz continuity implies overall Lipschitz
continuity. In other words, let g; be the i’th output then if g; is Lipschitz continuous for all i, then g is
also Lipschitz continuous.

In our convergence analysis, we require that @c(x) is Lipschitz continuous as well as smooth with
respect to both x and c.

Claim 1. Q. (x) is lg, -Lipschitz continuous and L, -smooth with respect to x.

Proof. First we prove Lipschitz continuity. Note,
0Qu(x); _ [0 10 #
oz - {PZ?L_Q(C]' —c¢j_1)o(Pla; — 955021 (1 — o(P(x; — “F8=1Y), if i = j
2
9Qc(x);
dx;

< f(cm —c) < B ¢1naz. The norm of the gradient of @C (x); with respect

As aresult, || 5

to z is bounded which implies there exists lg)l such that [|Qe(x); — Qe(x')i| < l(i)1 lx — x’||; using
Fact 5 and the fact that i was arbitrary, there exists /g, such that [|Qe(x) — Qe(x)|| < lo, Ix — X'||.
In other words, Q) (x) is Lipschitz continuous.

For smoothness note that, Vxéc(x) = V@c(x)lzd,,. Now we focus on an arbitrary term of
VXQC (x);,;- From (2) we know that this term is 0 if ¢ # j, and a weighted sum of product of
sigmoid functions if ¢ = j. Then, using the Facts 1-4 the function Vxéc(x) 4,4 1s Lipschitz con-
tinuous. Since %, j were arbitrarily chosen, Vx@c (x);,; is Lipschitz continuous for all 4, j. Then,
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by Fact 5, V4 Qc(x) is Lipschitz continuous, which implies that Q(x) is L, -smooth for some
coefficient Lg, < oo. O

Claim 2. Q.(x) is lg,-Lipschitz continuous and Lg,-smooth with respect to c.

Proof. For Lipschitz continuity we have,

9Qc(x); cj + i1 ¢j + ¢j1

e, o(P(x; — T)) — o(P(x; — T))
+(¢j — Cj+1)§0'(P(xi — C]—'_#))(l — o (P(zi — CJ-I-#)))
(e~ ) g o (Pla — T (= (Pl — L))
As aresult, || %C(;c)i < 24 Cimax 5. Similar to Claim 1 using the facts that i is arbitrary and the

Fact 5, we find there exists [, such that [|Qe(x) — Qa(x)|| < lg, [lc — d]|. In other words, Qc(x)
is Lipschitz continuous. And for the smoothness, following the same idea from the proof of Claim 2

we find Qc(x) is Lq,-smooth with respect to c. O

The example we gave in this section is simple yet provides technical necessities we require in the
analysis. Other examples can also be used as long as they provide the smoothness properties that we
utilize in the next sections.

A.5 Lipschitz Relations

In this section we will use the assumptions A.1-5 and show useful relations for partial gradients
derived from the assumptions. We have the following gradient for the composite function:

V(x,(:)h(x7 C) = v(x,c)f(@o (X)) = v(x,c) QC(X)VQC(X)JC(@C(X)) (3)

where dim(Vh(x,c)) = (d +m) x 1, dim(Vg_, f(Qe(x))) = d x 1, dim(VQe(x)) = (d+

m) x d. Note that the soft quantization functions of our interest are elementwise which implies
6%“7(’,‘)1’ = 01if ¢ # j. In particular, for the gradient of the quantization function we have,
J

[9Qe (%) 1
S 1 ) 0 L.
0 6@(;1(:)2 0...
V(x,c)Qc(X) = 9Qc(x)1  9Qe(x)2 @
e, I c..
aéc(x)l aéc(x)z
L Ocm dcm -

Moreover for the composite function we have,
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i 9f  0Qe(x)1 7

35.05, o +0 i +...
of 0Qc(x)2

0 + aéc(x)z RED T
Vhix,c) = Of _9QcCon | _0f 9Qc(92 )

9Qc(x)1 O 8Qc(x)2  9c1 T
f  9Qec(x) 0f  9Qe(x)2

| 30.00: %em T80.(05 fem T

In (5) and (4) we use x;, ¢; to denote (x); and (c); (i’th, j’th element respectively) for notational
simplicity. Now, we prove two claims that will be useful in the main analysis.

Claim 3.
Vs f (Qe(x)) = Vy £(Qe(¥))]| = IVA(x,€)1.a — VA(y, ©)1.a]| < (GLg, + Gq, Llg,)lIx — ¥

Proof.
IVA(x;€)1:a = VA(y, €)1.all = ||fo(@c(>i)) ~ Vyf(Qc))l R B
= ”v@c(x)f(Qc(X)) ch( ) Q (v) f(QC(Y))vaC(Y)”
= ”V@c(x)f(@C(X))vaC(X) - v@c(x)f(éc(x))vaC(Y)
V400 FQex)VyQely) = Vg i) F(@e(y) V5 Qe(y)]
2 19600 F Qe DI xGe(x) — Vy QeI
+IVy Qe FIIV 5, 30 [(Qe(¥) = V. g (Qe(¥)]
< GLg,|Ix = yll + G, LIIQe (%) = Qe(y)]
< GLQl ||X - Y|| + GQlLlQl HX - y”
= (GLg, + G, Llg,)|x — vl
To obtain (a) we have used the fact || Ax||2 < ||A| F|x]|2. O
Claim 4.

IVef(Qe(x)) = Vaf(Qa(x))Il = [VA(X, €)ay1im — VA, d)at1mll
< (GLQz + GQleQz)HC - d”

Proof. We can follow similar steps,
IV, ©)as1:m = V(X sl = | Ve (Qe(x) = Vaf (Qa(x))|
= V5 00 F(Qe(3)) VeQe(x)~V g, 13,/ (Qa(y)) VaQa(y)]
= IV, 0/ (Qe(3)) VeQuel(%) — V. 0 F(Qe(x)) VaQa(x)
+ V500 Qe () VaQa(y) =V, 0 [ (Ra(y)) VaQa(y) |
< V4. 00/ Qe CNNVeQe(x) = VaQa(y) | »
+ 1VaQa)l IV 5, 0 /(@)Y 5, ) Qa3

< GLg,|lc — d|| + Gg, L||Qc(x) — Qa(x)||
< GLQ2||C - d” + GQleQz ||C - d”
= (GLQz + GQleQ2)||C - d”

where Vc@c(x) = V@c(x)(d+1:d+m7:). O
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A.6 Assumption A.7 is a Corollary of other Assumptions

In this section we discuss how Assumption A.7 can be inferred from A.1-A.5. Here we drop client
indices ¢ for notational simplicity. Let us define f,,(w) as the neural network loss function with
model w. First we will argue that f%? (w, x) is smooth, given that f,,(w) and f(x) are two smooth
neural network loss functions with Cross Entropy as the loss function, and that f,,(w) and f(x)
have bounded gradients. These two standard assumptions imply the smoothness of f%P (w, x)
individually with respect to both input parameters.

Proposition 1. X0 (w, x) is Lp,-smooth with respect to x and L p,-smooth with respect to w for
some positive constants Lp,, Lp,.

Proof. Note that f(x) = Zl 1Y; log(b(x E )) where ¢ denotes the index of data sample, y; is
the one hot encoding label vector, IV is the total number of data samples, log denotes elementwise
logarithm and é(xilg) denotes elementwise inverse; softmax function s(x) : R — R, where K

denotes the number of classes (similarly s*(w) : R? — R is the function whose output is a vector
of softmax probabilities and input is global model), is defined in Section 2, here we explicitly state that
data samples &; is a parameterization of s. Assuming f(x) is smooth for any possible pair of (y;, ;)
implies log(%) is C-smooth for some constant C, here we used s(x); to denote j’th output of

s(x) and we omitted &; since log(—+ e ) ) is smooth independent of ¢;. Note that s(x); : R — R. We
have,

KD al 5" (w3 &) 1 al w T w
! Z (w3 ) log(—7m7) = 17 D (5" (wi&)) log(s™ (w3 1))
+ii<sw<w-s-»ﬁog<—l )
N~ 71 s(x;&;)

where the operations are elementwise as before In this expression only the last term depends on x
and for each i, since s*(w; §,) < 1 with Z w;&;); = 1, the expression is a weighted average
of smooth functions log( -~ <G ) as aresult, f K D (w,x) is Lp, -smooth with respect to x for some
constant Lp, .

Now we investigate smoothness with respect to w. First, note that we can assume for all j and
w, s(w); is lower bounded by a positive constant A/ > 0 and upper bounded by a positive
constant P < 1 since, by definition, output vector of the softmax function contains values between
0 and 1 (we ignore the limiting case when a logit is infinitely large, this is also implied by the
smoothness assumptions on f,(w) and f(x)). Then, note that assuming a gradient bound on

Fu(w) = % S0, ¥ 10g(5pmey) implies that for all j ||V log(5w (w)] ) = 1% || < Gy for
some constant G, (again the division operation is elementwise); since 0 < s*(w ) < 1 we have
[[Vs® ( )il < G.. Moreover, similar to the first part, by assuming f,, (w) is smooth we obtain that
log(sormy (w) ) is smooth for all j. This implies having a bounded Hessian:

_ H Vs“’(w)jsz(w)]T B V2s¥(w); H

F 5w (w)3 s® F
(a) Vs“’(w)jVs“’(w)}" H
s (W), F

= [[vesee] |
G2

- sw(vu:/)j a V28w(w)jHF‘

1
for some constant C' we have C > HV2 log( )H

sW(w);

G2
2 w . o w
‘V st (W) Foosv(w);

v

GQ
2 w . _ Mw
‘V s (wW); s

v
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where (a) is due to reverse triangular inequality and 0 < s¥(w); < 1. As a result we obtain
2 2
C+ CJ;T}“ > HV2sw(w)j for all j,i.e., s*(w), is Lg-smooth with some constant Lg < C' + G—A};
Thus, both s*(w); and log(s"(w);) are smooth functions. Note both s*(w); and log(s" (w);) are
bounded functions. Consequently, the first summation term in the definition of 5P (w,x) consists
of the sum of product of bounded and smooth functions and the second term consists of sum of
smooth functions multiplied with positive constants (as log(m) does not depend on w). Using

Fact 3 and Fact 4 we conclude there exists a constant L p, such that % (w, x) is L p,-smooth w.r.t
w. O

Proposition 2. fXP(w, Qc(x)) is Lpq,-smooth with respect to X, Lpq,-smooth with respect to c,

and L pq,-smooth with respect to w for some constants Lpg,, Lpq,, LpQ,-

Proof. The proof is exactly the same as in Proposition 1, instead of using smoothness of f(x), using
smoothness of f(Q.(x)) with respect to x, ¢ from Claims 3 and 4 gives the result. O

B Proof of Theorem 1

This proof consists of two parts. First we show the sufficient decrease property by sequentially using
Lipschitz properties for each update step in Algorithm 1. For each variable x and ¢ we find the
decrease inequalities and then combine them to obtain an overall sufficient decrease. Then we bound
the norm of the gradient using optimality conditions of the proximal updates in Algorithm 1. Using
sufficient decrease and bound on the gradient we arrive at the result. We leave some of the derivations
and proof of the claims to Appendix B.3.

Alternating updates. Remember that for the Algorithm 1 we have the following alternating updates:
xttl = Prox, \p_, (x' —mVF(x") = 71 Vi f(Qet (x1)))
cttl — PrOX, AR, (' =172V f(Qer (x7T1)))

These translate to following optimization problems for x and c respectively (see end of the section
for derivation):

x'™! = arg min {<X —x', Ve f (x')) + <x — %!, Vit f(Qer (xt))> + % ||X - xtHz + AR(x, ct)}
1

xER4
(6)
~ 1
¢! = argmin {<c — ' Ve f(Qet (xt+1))> tg- lc— ct||§ + /\R(xt+1,c)} 7
ceR™ 2

B.1 Sufficient Decrease

This section is divided into two, first we will show sufficient decrease property with respect to x, then
we will show sufficient decrease property with respect to c.

B.1.1 Sufficient Decrease Due to x
Claim 5. f(x) + f(Qc(x)) is (L + GLg, + Gq, LLq, )-smooth with respect to X.

Using Claim 5 we have,

1 L+ GLQl + GQlLLQ1

Fa(x"*1ef) +( x = x|

2 2
= <) + f(Qe (X)) + AR ) ®)
+ (L _ L+ GLg, + G, LLq, )th-&-l _ Xt||2
27]1 2

< F() + F(Qer(x) + AR ¢!) + (Vf(xH), x! T — x*)
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1
g X =X ©)

n <vxtf(@ct (x1)), xt+ — xt> n
Claim 6. Let
A(x”l) = )\R(le,ct) + <Vf(xt),xt+1 - Xt> + <thf(éct (xt)),xtJrl — xt>
1
R e R AT
x|
A(x") == AR(x!, c").
Then A(x!Tt) < A(x).
Now we use Claim 6 and get,
1 ~
F )+ G =V F () g - x|, + AR (x*,¢) + f(Qer(x)
(Vi f(@er (), X = x) < f (x) + (Qr (x1)) + AR (!, )
— Py (x'c!).
Using (9) we have,
1 B L+ GLQl + GQlLLQl

Fy(x ch) + ( xt —xf? < Fy (x, ).

2 2
Now, we choose 171 = 3 T5C LQ11+ GorTio]) and obtain the decrease property for x:
L+GL Go, Ll
Py (XtJrl’Ct) 4 + Q12+ Q149 ||Xt+1 _ Xt||2 <F, (Xt’ct) . (10)

B.1.2 Sufficient Decrease Due to c
From Claim 4 we have f(Qc(x)) is (GLg, + Gq,LLq,)-smooth with respect to c. Using Claim 4,

i _ GLQz + GQzLLQz
2772 2

= f(xtJrl) + f(@cprl (Xt+1)) + )\R(Xt+17ct+1) +

Fa(xt 1, et ) + et — et

i GLQz + GQzLLQz
2772 2

< PO F(Qer () + ARG, 1) (Ve f(Qer (1)), 4 — )

e —c|f?

1
g let =< (11)

Now we state the counterpart of Claim 6 for c.
Claim 7. Let

B(E ) = ARG ) 4 (Ve f(Qur(x ), ) 4 ! —of|
B(c") := AR(x"", ).
Then B(c'*1) < B(c!).
Now using Claim 7,
SO g e = ) 4 ARG )+ F(Qer () + (€ = &, Ve f(Qer (xF)) )
< () + F(Qer (xY) + AR (xH c!) = Fy (x', )

. _ 1
Settlng 2 = 2(GLQ2 +GQ2 Lle)

F/\ (Xt—i-l7 Ct+1)

and using the bound in (11), we obtain the sufficient decrease for c:

GLQz + GQz Lle
+ 2

[Tt —c!|]? < By (x't, ) (12)
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B.1.3 Overall Decrease
Summing the bounds in (10) and (12), we have the overall decrease property:

L+GL Go, Ll GL Go, Ll
F)\(Xt-’_l,cH—l) + + Q12+ Q1 H0Q, ||Xt+1 _ Xt||2 + Q2 +2 Q210Q2 ”ct-',-l _ Ct||2
< By (¢, (13)

Let us define Ly, = min{L + GLq, + Gq,Llg,,GLg, + Gg,Llg,}, and z* = (x*, c'). Then
from (13):

Ly Ly
F (2171 + 22 (a1 = g2) = Fy (x+, eH) o 2 (L2 4 et — )

< Py (x',¢') = Fa(2')

Telescoping the above bound fort = 0,...,7T — 1, and dividing by T":

1= 2y _ 2(F (2°) = Py (27))
T ;(Hzt+1 —A|)) < P (14)

B.2 Bound on the Gradient

We now find the first order stationarity guarantee. Taking the derivative of (6) with respect to x at
x = x'T! and setting it to O gives us the first order optimality condition:

V(x') + Vi f(Qer (x)) + Ui (x" —x") + AV, R (x' ") =0 (15)
1

Combining the above equality and Claim 5:

[V B4, ), = [FF ) + Voo f(Qer (1)) + AV R(x )
1% (st = x41) 4 VF(xH1) = T F(x1) + Vs f(Qer (xH1))

2
@

— VoS Qe (x|,
1
< (H +L+GLg, + Gq,Llg,) |[x" — x|,
(®)
= 3(L + GLQl + GQ1LlQ1) HXt+1 — XtH2
<3(L+GLo, + Ga, Llg,) 2e+1 — 2|,

where (a) is from (15) and (b) is because we chose 171 = 5 0

1 . . .
[TCLo +Caq Tlo])" First order optimality

condition in (7) for ¢!+ gives:
- 1
Vet f(Qertr (X)) + — (' — ) + AVen R(x T ) =0
2

Combining the above equality and Claim 4:
cht+1F/\(Xt+l’ Ct+1)||2 = chtﬂ F(Qer1 (X)) + AV g1 R(x!, ct‘H)H

‘1

% (Ct - Ct+1) + VC‘“JC(@cHl (Xt+1)) - Vctf(@C‘ (XtJrl))
1

< (777 + GLg, + G, Llg,) |[c"! =<,
2

2

2

@ 3(GLg, + Go,Llo,) [t — ',
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< 3(GLQ2 + GQleQz) HZIL’-H — ZtH2

where (a) is because we set 172 = . Then:

[Vt Fa(x 1 )T, Ve By (x 1, )T ||2 = || VB (x|
+[[VeFx (1, )5
<3%(G(Lq, + Lg,) + L(1 4+ Gg,lg, + G,10,))* [z —2'|?

Letting Lax = max{L + GLqg, + Go,Llg,,GLg, + Gq,Llg,} we have:

Vo2 Fx(xH1, €)', Ve Fa (x L, ) TIT |2 < 912, |21 — 2t

Summing over all time points and dividing by 71"

1 T-1 9 1 T-1
; H[vx“rlF)\(XtJrla Ct)Ta vct+1F)\(Xt+17ct+1)T]TH2 < T ; 9L12nax(Hzt+1 - ZtHQ)

< 18L12nax (F)\ (ZO) — F)\(ZT))
o LminT ’
where in the last inequality we use (14). This concludes the proof of Theorem 1.

B.3 Omitted Details

First we derive the optimization problems that the alternating updates correspond to. Remember we
had the following alternating updates:

xiT = prox, \g_, (x' = mVf(x') — M Ve f(Qet (x)))
cttl — ProX,, xR, (ct — 19Vt f(@ct (xt+1)))

For x'*1, from the definition of proximal mapping we have:

1 - 2
Xt = argmm{ % = X" e f (1) 1 Ve f(Qer ()| + AR(x, ct>}
x€Rd 27]1 2

. t t t A t 1 t||2

= al;(geflgiln{ <x —x" Ve f (x )> + <x7x , Vit f(Qet (x ))> + T fox H2
DIV f o) + Vi F(Qs ()P + AR(x, ) }

i ¢ x! x—x!  F(Qet (X L x — xt|?

_al;cgeflgiln{ <X_X 7vxff( )>+< » Vx f(QC ( ))>+ 2 H HQ

+ AR(x,ct)} (16)

Note, in the third equality we remove the terms that do not depend on x. Similarly, for ¢! we have:

1 - 2
cttl = arg min {277 HC —ct + nchtf(Qct (Xt+1))H2 + )\R(Xt+1,c)}
2

ceR™

— ] _ct O L, (xt+! Aoz (ot (2
= argmin{ (¢ = ¢, Vet f(Qi (7)) + 5 - [le = €[5+ F Vet f(Qer ()]

+ AR(x!, c)}

= arg min {<c — ¢!, Ve f(Qer (xt+1))> + % Hc - ctHz + AR(x", c)} 17
2

ceR™

Minimization problems in (16) and (17) are the main problems to characterize the update rules and
we use them in multiple places throughout the section.
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B.3.1 Proof of the Claims

Claim (Restating Claim 5). f(x) 4+ f(Qc(x)) is (L + GLq, + Gg, LLq, )-smooth with respect to
X.

Proof. From our assumptions, we have f is L-smooth. And from Claim 3 we have f(Q¢(x)) is
(GLg, + Gg,LLg,)-smooth. Using the fact that if two functions g; and g, are Ly and Ly smooth
respectively, then g1 + g2 is (L1 + Lo)-smooth concludes the proof. O

Claim (Restating Claim 6). Let
AT = AR ef) 4+ (VF(x), % = x1) 4 (Ve f(Qer (x1)), X = )

1
+ 5 th+1 7XtH2
m

A(x") :== AR(x", c").
Then A(x'T1) < A(x?).
Proof. Let A(x) denote the expression inside the arg min in (16) and we know that (16) is minimized
when x = x!*1. So we have A(x!*1) < A(x!). This proves the claim. O

Claim (Restating Claim 7). Let

7||Ct+1 _ Ct||2

B(e™) = AR(x, 1) + (Ve f(Qer (x1)), 04 — ! + 5
m

B(c') := AR(x"T! ch).
Then B(c'*1) < B(c!).

Proof. Let B(c) denote the expression inside the arg min in (17) and we know that (17) is minimized
when ¢ = c**1. So we have B(c'™!) < B(c!). This proves the claim. O

C Proof of Theorem 2

In this part, different than Section 3, we have an additional update due to local iterations. The key is
to integrate the local iterations into our alternating update scheme. To do this, we utilize Assumptions
A.6 and A.7. This proof consists of two parts. First, we show the sufficient decrease property by
sequentially using and combining Lipschitz properties for each update step in Algorithm 2. Then, we
bound the norm of the gradient using optimality conditions of the proximal updates in Algorithm 2.
Then, by combining the sufficient decrease results and bounds on partial gradients we will derive our
result. We defer proofs of the claims and some derivation details to the end of this section. In this
analysis we take w' = L 3" | w!, so that w' is defined for every time point.

Alternating updates. Let us first restate the alternating updates for x; and c;:
XL = prox,, (%= (1= A m V() = (1= A Vi i Qe (1)
= AVt SEP (L wi) = 11y Vi 1P (Qer (1), wh) )
e = prox, e, (€6 = (1= 2 Ve fi(Qer (xF1)) = 1Ay Ve 1P ( Qe (x1+), wh)
The alternating updates are equivalent to solving the following two optimization problems.

x§+1 - argmin{(l —Ap) <x —x!, Vf; (xf)> +(1=X) <X —x! Vx;fi(@cg (xf))>

x€R4

(3= XL A Vg P wi) ) 4 (3= A Vi 1 Qe (1) wE) )

1 2
+ g [Pl + ARG )} ()
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ettt = argmin{ (e~ cf, (1= 3) Vet fi(Qer (x07)) )+ (= €, A Vet SEP Qe (x7), wh))

ceR™

1 t(|2 t+1
—c; AR(xETH } 19
+ 27]2 HC C’LH2 + (Xl C) ( )
Note that the update on w' from Algorithm 2 can be written as:

1 n
with = w' —nsg’,  where g' = - E Var F(xit et wh).

K2

In the convergence analysis we require smoothness of the local functions F; w.r.t. the global param-
eter w. Recall the definition of F(x;,¢;, w) = (1 — Ap) (fz(xz) + £5(Qe, (xi))) + AR(x;,¢;) +
Ap (fiKD (%4, W) + FEP(Qe, (%), W)) from (2). It follows that from Assumption A.7 that F; is
(Ap(Lp, + Lpg,))-smooth with respect to w: Now let us move on with the proof.

C.1 Sufficient Decrease

We will divide this part into three and obtain sufficient decrease properties for each variable: x;, c;, w

C.1.1 Sufficient Decrease Due to x;

We begin with a useful claim.

Claim 8. (1) (fi(x)+ fi(Qe(3))) + A (FFP (3¢, W) + P (Qe(x), w)) is (Ap(Lp, +Lpg,) +
(1=X)(L+GYLg, + Gg)l Llg,))-smooth with respect to x.

Proof. From our assumptions, we have f; is L-smooth, f&P(x,w) is Lp,-smooth and
FEP(Qc(x), w) is Lpg,-smooth with respect to x. And applying the Claim 3 to each client

separately gives that f;(Qc(x)) is (G ) Lg, + Gg)l Llg, )-smooth. Using the fact that if two func-
tions g; and go (defined over the same space) are L; and Ly-smooth respectively, then g1 + g2
is (L1 + Ly)-smooth, and the fact that ag; is aL;-smooth for a given constant « concludes the
proof. O

From Claim 8 we have:

Fchwt) 4 (o Mp(Lp, + Lpg,) + (1= M) (L + GO Lo, +GY) Lig,)
W 2m 2
= (1= ) () 4+ £l@er () ) 4 A (PG w!) 4 [P Qe (), W)

R Mp(Lp, + Lpg,) + (1= A)(L + GDLg, +GY) Lig,)

2m 2

+AR(xIT )
<(1-X) (fi<xi> + 1i(@Qer () + Ay (FEP (W) + P Qe (xh), W)
(1= M) VA X =) + (1= M) { Ve il Qe (1)), X0 = xt)

Ay (Vi PP (et W), X =) 0, (Vi FP (Qey (o), W), 07 = xt)

1
FAR(X T ef) + o—lx T - x(|1?
2m

= (1= 2) (fix) + fi( Qe (x0)) + Ay (FEP (kW) + FEP(Qet (1), w))
(1= 0) (V05 = xt) 4 (1= 0y) (Vg £ @er () 7 — )

) — x|

) — x|
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+)\p< ffKD(X w') — ffKD(X wh), X’Hrl xf>
'*%<Vﬁﬂ P(Qet (x}), w') = Vo € (@q@ﬂnﬁyxﬁl—x$
+ A < fKD<X Wt) t+1 _ x§> + A <Vx;%fZKD((@C§ (X;;%WE)’X;;H _ xf>

+ g [ = x4+ ARG )

< (1= ) (£ + £i( Qe (D)) + by (£ ok ') + FP (Qer (), 1))
(1= ) (VA x =) (1= 2 { Vg Qe (), xH = )
0y ( Vit FIP et W), X =) 0y (Vi FP ((Qe o) wi) i — )
22V PP @t (), W) — Vot P Qe (), W Mgl — P

A 1
IV FIP o w) = Vg FIP el w4 2 4 ARG ),
(20)

In the last inequality we used:
(Vo PP (kW) = Ty FIP (L, w)) 01— )

= (VA (Vo FEP (ol ) = Vs P (o wh)), \/Ap<x§“—x§>>

< 2V P (W) — Vg FEP ek w2 22t P
and similarly,

(A (Vg P Qe (x1). W) = Vi £ Qe o), wh)). x 7 = )
A ~ ~
< ?pl‘vxfvaD(Qci (Xz)th) - vxfvaD(Qci (XD,WDHQ
22 P
Claim 9. Let
A = (1= ) (V) x ! =) 4+ (1= ) (Ve il @er (), 6! =)
(M (Ve FIP (o, W) =) + (g (Vg £ (Qe (o), W) (! = )

1
ARG ) + o[ =i
m

Proof. Let A(x) denote the expression inside the arg min in (18) and we know that (18) is minimized
when x = x!™'. So we have A(x/™!) < A(x!). This proves the claim. O

Using the inequality from Claim 9 in (20) gives

B ety (L Dt Lpa) (L= )L+ GOLg, + Gy Llg,)

5 . It —

(@)

< (1= 2) (£ + £l @er () ) + Ay (FFP (et W) + P (Qer (), w1)) + AGE)

A ~
WW FEP O W) = Vi fEP (e, Wi [+ IV £57 (Qe (1), w)
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= Vi FP Qe (xD), w7 o+ Ay i —
< (1= 2) (£ + Fi@e (x0)) + Ay (P W) + P Qe (), W) ) + AR(K, )
4 22D (W) = VP (W + 295 Qe (), W)

= VP (Qer (x), WhIP + AplIx ! = x|
212 (£ + Qe (x8)) + Ay (FEP (b w!) 4+ FP (@t (), w))
M (LD + Lhg)
2
(LD + Lhg)
2

To obtain (a), we substituted the value of A(xf“) from Claim 9 into (20). In (b), we used A(xﬁ“) <
)‘R(Xt Ct‘)’ ||vxff¢KD(xf7 Wt) - vx§ fiKD(XIz?? Wf) ”2 < vaLI{D (X§7 Wt) - vfiKD(Xg» Wf) ”2

+ AR(xt, cf) +

17 1

lw = wi|* + Ap i — x|

= F(xt, et wh) +

(Rt ]

Iwi = w4 Ayl — xi]1%. 2n

and the fact that ||V [P (Qet (x1)), ') — Vot [P (Qer (x1)), wh|? < |V FEP (xf, w') —
VEP(xt,wh)||?2. And in (c) we used the assumption that fP(x,w) is Lp-smooth and
FEP(Qe(x), W) is Lpg-smooth.

1

. ) in (21) gives:
2(Ap (24 Lpy +Lpo; )+(1=2p) (L+G D Lo, +G) Lig, )

Substituting 1; =

Mp(2+ Lp, + Lpg,) + (1= M) (L + GDLg, + GY) Lig,)
2

Fi(xp+17ct' Wt) + (

4 3 )”X]zH—l _XEHQ

ML + Lig)

< Fy(xt,cl,wh) + 5

i lwi —w']%.

(22)
C.1.2 Sufficient Decrease Due to c;

In parallel with Claim 8, we have following smoothness result for c:

Claim 10. (1) fi(Qc (%)) + Ap fEP(Qe(x), w)) is (ApLpg, +(1-X,) (GO Lo, +G5) Lig,))-

smooth with respect to c.

From Claim 10 we have:

1 MLpg, + (1= 3)(GOLg, + Gy Llg,)
20 2

= (1= %) () + fi( Qe (1)
FARGE ) 4y (P W)+ P ( Qe (xE), W)

1 ALpg, + (1= 2\)(GW Lo, +GY) Lig,)
+g, - 5
2

< (1= ) (£ + £i(Qey (1)) + ARG )

~ 1
2 (PO W + AP Qe e, W ) e el
2

FixtH e wh) +

(3 ?

Mei ™ —efl®

Mei ™t —efl®

+ (1 - )‘P) <vcffl(©cf (X§+1))7C§+1 - C§> + )‘P <vcffzKD(@c§ (X§+1)’Wt)’ C§+1 - C§>
= (1= ) (A + Fi@er (1)) + ARG efH)

~ 1
0 (PP W) 4 FEP(Qer (61, W) ) + gl — el
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(1= 2) (Ver i@y (). b =€) + Ay (Vo FIP Qg (™) wi) €™ — )
A (Fet FIP Qe (1), W) = Vet F1P(Qer (1), wh), el — cf)
< (1= ) (FiGH) + £i(@er (1)) + ARG el )

1
+ 2 (FEPG W) 4 fEP (Qer (), W) ) + 5 — e — e

212
(1= 0) (Ver il Qe (). b7 =€) + Ay (Vi fIP Qg (et ™) wi) e — )
20T P Gy (x0), W) — Vg P G (), WP+ 22 et — el 23)

in the last inequality we used:

(Ap(Vet FEP Qe (1), W) = Vet FEP Qe (), wi)), el = f)
< 22V P (g (), ) — T P Qg (), w2
2 et — cf?
Claim 11. Let
B(ef™) = ARG ef) + (1= Ay) (Ver il @er (), €7 — )
KD 1 1 1 1
2 (Ve P Qe (e, wi e = eh) + 5 et el
B(cl) = AR(x(™, ).

Then B(c!t!) < B(c!).

Proof. Let B(c) denote the expression inside the arg min in (19) and we know that (19) is minimized
when ¢ = ¢! ™. So we have B(c!™) < B(c!). This proves the claim. O

Substituting the bound from Claim 11 in (23),

1 MLog, + (1= MGV Lo, + Gl Llg,)
2m2 2

< (1= ) (A + £i(Qer () ) + A (PG W) 4 1P (Qer (1), W)

+ —"Hv FEP(Qer (xIT), W) = Ve FEP (Qer (x1TH), wh) |2

Fi(xH et wh) o+ (

3 ?

Mei ™ —efl®

+Blet™) + et
< (1= ) (S £ @t () ) 4+ A (FEP R wh) 4 P Qe (xEH), 1))
2T P (G (). W) — VP (G () W R )

2o it — et

< (1= ) (S + £ Qe () )+ Ay (FEP R W) 4 P Qe (0, W)
Molb)

Ee3

A
w' — w2+ R ef) + 2 el el
\p L2 A
= F(xi™chw) + =P w = w4 el e
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1
200 (14+Lp@y ) +(1=2p) (GD Lo, +GG) Lig,))

M1+ Lpg,) + (1= A)(GD Lo, +GY) Lig,)
2

Substituting 12 =

gives us:

Fi(xﬁ'1 citt w') +

(3 ki) ?

lei™ = <i®

MLbo

< Fy(x! et wh) + 5

? (s

Iw' —wil* @24

C.1.3 Sufficient Decrease Due to w

Now, we use (A,(Lp, + Lpg,))-smoothness of F;(x, c, w) with respect to w:
Fy(x!t et with) < F(xit el wh) + <thFi(xf+1, cttwh)

+ /\P(LDz + LDQ3)
2

Wt+1 _ Wt>

)

w1 — w2

After some algebraic manipulations (see Appendix C.3) we have:
2

i 0 A%

Fi(x!*L ettt with) 4 (% — (Lo, +LDQ3)TI§)HthFi(Xt»+1 it wh)

< Fi(xlﬁl citl, w')

bt

2
+ (773 + 2>‘;D(LD2 + LDQ:;)”%)‘ gt - ngFi(XEH, C§+17 Wf)
2
+ (13 + 22y (LD, + L0 Jnd) (L, + Lpg,))?||w! — w|
(25)
C.1.4 Overall Decrease
Let L:(f), Lgi) for any ¢ € [n] and L,, are defined as follows:
LY = (1= X)L+ G Lg, + GY) Lig,) + \p(2+ Lp, + Lpg,) (26)
LY = (1 - A)(GDLg, + GS) Lig,) + \p(1 + Lpg,) 27)
L, = LD2 + LDQ3. (28)
Summing (22), (24), (25) we get the overall decrease property:
t+1 i1t 3 2 i1 1 n|l? L Le e 12
Fi(x et wi ) e (B = o L) ||V Fi (kL e w!) ||+ 22 = x|
L 2
+ el = et < (s + 20 L) 87 — Ve Bt el wi)
L2
+ (Lbg + = +msdpLe, + 225 Lans) Apllwi — w|? + Fi(xj, e, w')
(29)
Let Lgl)in for any i € [n] and Ly, are defined as follows:
Lx(ril)in = min{LSZ)7 LS), (ns — 2)‘pr77§)} (30)
Linin = min{L%) i € [n]}. 31)
Then,
L 2
Fi( el w4 2 (vatmxzﬂ,czﬂ,wwu e = el e - )
2
< (3 + 20 L) |8 = Ve Fi(xH, 1 wi) |
LQ
+ (Lo + =7 +mshpla, + 20 Lum)Apllwi — w'|[* + Fi(xj cf,wh) - (32)

We have obtained the sufficient decrease property for the alternating steps; now, we need to arrive
at the first order stationarity of the gradient of general loss function. To do this we move on with
bounding the gradients with respect to each type of variables.
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C.2 Bound on the Gradient

Now, we will use the first order optimality conditions due to proximal updates and bound the partial
gradients with respect to variables x and c. After obtaining bounds for partial gradients we will
bound the overall gradient and use our results from Section C.1 to arrive at the final bound.

C.2.1 Bound on the Gradient w.r.t. x;

Taking the derivative inside the minimization problem (18) with respect to x at x = xf“

it to 0 gives the following optimality condition:

and setting

(1= Ap) (Ve i) + Vot £i( Qe (1)) 4+ Ay (Ve £ 3, 1) + Vit P (Qey (), W)

1
+77(x§+1 X{) + AV, enR(x; " e)) =0 (33)
1

Then we have,

[V P elowt) | = [[(1 = 20) (T i) + Vg i@t (6041
0y (Vo SO W) 4+ i P Qe (), )
+AV, e R(x; T cf)

D= 2) (T k) = Vi fixl) + Ve fil @t (x1))
i £ Qe (x))) — (=)

Mo (Vi FEP (e wt) = o FP (xE, wh)
Ve 1P Qe (67, W) = Vo P Qe o), wh)) |

® ,1 ;
(5 + (1= M)+ GV, + G“iLlQJ)nxt“ x|

IN

+ AV f vKD(xt-Jrl w') = Vi S (i, wi) |
+ AplI Vet fIP (Qeg (<), wh) — ng i (ch(XD,Wt)II
< (7711 + (1= AL+ GO Lo, + GY Llg,) ) IxH = x|
M VAP wh) = VP (g, wi)l
+ A1V P (Qer (671, W) = VP (Qer (x), W)
< (- =ML+ G Lo, + GY Llg)) ) I x|
+Mp(Lp + L) (Ix ™ = x|l + [[wi —w'])
= (771—1+AP(LD+LDQ)+(1—AP)(L+G<Z‘>LQ1+G“1L1Ql)) It — x|

+ (Lo + Lpg)[[wi — w'|

where (a) is from (33) by substituting the value of AV i+ R(x; A c!), (b) is due to Claim 3 and A.1,
and (c) is due to A.7. This implies:

2
[V B ehow!)|[” < 200(Lp + Log))?lw! — W'

7
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1 ; i
+ 2(5 +Mp(Lp + Lpg) + (1 = AL +GDLg, + G&Lle)) it — )2

1

o Q) we have:
200 (24 LDy +Lpoy )+(1=2p)(L+G D Lo, +G¢;) Lig, )

Substituting 17; =

2
[Vaes R el wh) | < 200 (L + Lpg))?wt — w2

+2(Ap(4+2Lp, +2Lpg, + Lp + Lpq)
+3(1=A\)(L+GDLg, +GY) Lle)) %t — x|
= 18(%?(4 +2Lp, +2Lpg, + Lp + Lpg)
(

F= )L+ GO Lo, + G Lg,)) Ixt —xt?
+2(M\p(Lp + Lpg))*[wi —w'[*  (34)

C.2.2 Bound on the Gradient w.r.t. c;

Similarly, taking the derivative inside the minimization problem (19) with respect to c at c = CE-H

and setting it to O gives the following optimality condition:

(1 - ) ’fz(Qc’( t+1)) +>‘ v fKD(Qc ( t+1)aw§)
1
+ ;(CE-H — Cf) + )\VcHlR(XE-H, Cf--H) =0 (35
9 i
Then we have

t+1 Lt
ch§+1Fi(Xi c.ihwh)

?

= (= 2V (@ (1)

+ A Vo [P Qe (), wh) + AV e R(x[H, §+1)H
(1= 2) (Verrs fi @ (67) = Vet fiQer (x11))
0 (TSP @ (571), 1) = T P (G (xE7), i)

1
+ —(ct — it H
7}2( )

< (1= )| Vet fi(@arr (1) = Ve fi(@er (x7))|
VC:‘Hfi (QC:‘H (X?Ll)awt) - chf (Qc ( t+1)7wg)
¥ et — et
M2

< (1= 0) [ Ve il @ () = Ve il @y (7))
(Qerrr (1), W) = VAP (Qet (x1), wh

Lov i
+%”Cz‘*ci |

+Ap

1
< (5 Molog + (1= 2)(G VLo, + GG Ha,) ™! — el

+ ApLpgllw' —wi]
where in (a) we substituted the value of AV _i+1 R(x. ™, ci ™)

due to Claim 4 and Assumption A.7. As a result we have,

oo(L il 1—2)(GOL a9 1 oty
=2(,* pLpg + (1= X)( @ + Gy, Lq,) ||c ci

from (35) and the last inequality is

T R
chj+1Fi(Xi+ 7Cz’+ ;W)
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+2(\Lpo)*[[w' — wil?

1

. @ we have:
2(Ap(14+LpQ, ) +(1=2p)(GW Lo, +Gy) Lig,))

substituting 1y =

2 A
HVcHle‘(XvaCfH’Wt)H < 18(%(2 +2Lpq, + Lpq)

(1= M)(CP L, + G Llg,)) et — P

+ 20 Lpg)* W — wij® (36)
C.2.3 Overall Bound
Let G2 = [[[V,ge Fu(xt ™, w)T, Vg Fi(et ™ e w)T W Bt et w7 |
Then,
Hthz_H o Fi(x et whT v e Fi(x HL e W T B (kY f+1’wt)T]TH2
2

» &g

= [T Fixt el w)

t+1 _t+1 t
o [P Pt

t+1 t+1 t
+HVWtFi(Xi , G W )

A
< 18(3”(4 +2Lp, +2Lpo, + Lp + Lpo)
F= ML+ GO Lo, + G L)) Ixt — x|

A ; i
+18( (2 +2Lpg. + Loo) + (1= A)(GVLg, + GgleQz)) et — ¢t
2

(2

200 (L + 2Lp@) 2w} = w2 + | Ve B, 0¥ w)

where the last inequality is due to (34), (36) and using that 2(A\,Lpg)? + 2(A\,(Lp + Lpg))? <
Q(AP(LD + 2LDQ))2 . Let

1 /A . )
L = max { 5 (;(2 +2Lpo, + Lpo) + (1= \)(GP Lo, + G&L@)) ,

A , .
(;(4 +2Lp, +2Lpo, + Lp + Lpg) + (1 = A)(L+GD Lo, + ngLle)) }
37)

Then,

H[v e By el w) TV e B (x T e w) T, Vs Fy (e, f“,wt)T]TH
2
a2 = 12 e = et2 4 | Vae ot et wh) )
+2(\(Lp +2Lp@))*wi — w'|?

(1) \2
() )
% 36 (Lmax)

< 18(LY)

2
(015 + 22, Lum)||g" — Twe Fu(xtH et wh)|

L
+ (Lho + =2 4+ nsAp L, + 2X2L3 n3) A, [ wi — w'||?

+ Fy(x}, c} wt) Fy(xit, Hl,wt“'l)}+2()\p(LD—|—2LDQ))2||Wf-—Wt||2, (38)

19 Y1) 7

where in (a) we use the bound from (32), and L,,;, is defined in (31).

Now we state a useful lemma that bounds the average deviation between the local versions of the
global model at all clients, and the global model itself. See Appendix C.3 for a proof.
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Lemma 1. Let n3 be chosen such that nz < \/6 N (11 — ) where Lg‘;;) = mln{LmaX :
T P w max

Ty

€ [n]} and Lyax = % 22;1 (Lffl)ax)2 (where Lf,gx is defined in (37)), then we have,

1T

|
—

3\»—

T-1 n

1 1
I~ < 3 < 67 S
i=1 t=0 =1

-
Il
=)

As a corollary:

Corollary 1. Recall, g' = L 3" | Vi Fy(x B et wt). Then, we have:
1 n
< -
<t b

T Z Z max Hgt - szFi(X,€+17C§+1, t
Lmax 2 1 () \2
+ 3(/\pr) ( + (L(mm))2)6T 7737’}, Z(Lmax) Ki,
max i—1

where LS%X is defined in (37), and Linaxs Lfnn-;i,?) are defined in Lemma 1.

. nop@ )2
Let ¥ := %Z;;l(LE;Lx)% and O, == 1+ % , using Lemma 1 and Corollary 1,
summing the bound in (38) over time and clients, d1v1dm§:; by T" and n:

I‘ﬂln

(13 + 20p Lo113) X <3f<é + 3(Apr)2CL6T277§H)

L2
+ (Lho + 7’3 + m3ApLs, + 202 L3 n5)Ap x 672 n3R

7 Z ZLS;LXZ o el wt) - Fi(X?l,CE“,wt“))]

+ 2()\p(LD +2Lpg))? x 67 n3F
36
= = [3T2n§z(2ApL2DQ F A LE + 3 N2L2 (2 + 6CL) + n2ASLE (4 + 12C7))

min

_ 136 1 (LAY
+ 3nsk + 6/\pr77§/£} + T n ; = F
+12X\2(Lp + 2Lp)* T’ N3k (39)
where AY = F(x9,¢0, w?) — Fy(xT, cT, wT).

(A 79 71 )

Choice of 73. Note that in Lemma 1 we chose 13 such that 3 < m. Now, we further
\/ 2L
introduce upper bounds on 73.

* We can choose 13 small enough so that L,;, = 13 — 2/\prn§; see the definition of L,;,
in (31).

* We can choose 73 small enough so that 775 — 2\ Lwn3 > & This is equivalent to choosing

1
UE yw

These two choices imply L,i, > 7’2—3

In the end, we have 2 critical constraints on 13, {ns : n3 < ,/ 672)\?,1L%,JCL ;N3 < 4)\:Lw } . Then, let

. 1 : _
{ns :m3 < 4/\pr7\/@}' Moreover, choosing 7 < v/T we can take 13 =
clearly satisfies the above constraints.

1 . .
DL VOVT this choice
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From (39) we have,

1 T—1 1 n
DD (€
t=0 =1

2()72[

3rER(2A, L + ApLD + msASLZ (2 4+ 6CL) + n3ASL3 (4 + 12CL))

721 < (L9.)2A0

+12X5(Lp + 2Lpg)* 7’3k
=72 [37 R0 Lo + Ap L + 173)\2L2 (24 6CL) + AL (44 12C1))

721 JAEYN
+ 3% + 6 Lwng,/-e} L 7219~ (B * A

(ER it r

+12)\2(Lp + 2Lpg)* 7’3k

In (a) we used Ly,in > 2. Now, we plug in 73 = then:

1
40y Loy CLNT

L% +212 1 2 1 4412 1
< 72[3 25D bQ 32+6CL) o1 3(4+12CL) SCL)TQE—S
4 \/CLL \/T 16CL T 6402 T2

T—

Tgigkt

bR }+288AL JC liw
N SRR = S
L3 _(Lp+2Lpg)* 1
4 CrL? T
54% % + M55 1988\ /Or A Lt 1 (L) 24
a VT
27 24CL 2
22072 WT% > CL%LT R -
+ T + Tg + 216K
C.3 Omitted Details in Proof of Theorem 2
Obtaining (25),
Fy(x!t et with) < F(xi el wh) + + (Vwt Fi (x; P et wt), witt —Wt>
Ap(Lp, + Lpg.
+ p( D 5 DQ3)||Wt+1_Wt||2
A (L L
( t+1 Hl,wt)—<thFi(Xf+1,c§+1,wt),n3gt>+ p( Dz;‘ DQ3)H773gt||2
( t+1 t+1 Wt)

. <waF( L W) gt = U B (xH et wh) o+ Ve Fy(x e wh)
Ap(Lp, +Lpg,) -

2
= F(x1, et wt) —773HthFi(xf+1,cf+1,wt) 2

3 (Tt Fi(x 1 e wh), gt — Vo Fi(x 1, 41, wh))
I Ap(Lp, + Lpgs)
2

< F(xt ettt wh) — TlsvatFi(XEH et wh)

(2

+ mllg" — Ve Fi(x; ™ ¢ wh) 4+ Vo Fy(x L e w12

» &g y &g

ﬂgHgt—waF( )H»l t+1 )"_VW’F( #+1 t+1th)”2

2

+ %HVW:Fi(Xﬁ"'l,cf"'l,wt)

13

2
Ty 2

v F( 1?-‘1-1 t+1,Wt)

? ’L

+ )‘P(LDz + LDQS)ngHgf - thFi(Xﬁ—i_l Ct'+1a Wt)

Eg)
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2
+ AL, + Logu )| Vwe Fi(x L el w')

2
= RO el wh) = (B = A (Lo, + Log,)nd)|| Ve ™ el wh)

+ AL, + Lo, ) |8 = Ve Fulxt ™ el wh) 4 Vi Fi(xH, e wi)

13
+(2

2
t+1 41t
— Vwt Fi(x;7, ¢, wh)

K2

2
< R wh) — (2 = AL, + L)) [Va Bk el wh)
2
+ (13 + 20 (L, +LDQ3)77§)Hgt ~ Vwt Fi(x" e wp)
2
+ (13 + 2Ap(Lp, + LDQa)U?%)HngFi(XfH’ cithwl) = Vw F(x( et wh)
2
< R e wh) = (2 = AL, + L)) [Va B, e wh)
2
+ (1 + 20 (L, + Lo )nd) 8" — Ve Pl el wi)
2
+ (13 + 20y (L, + Lo@aJnd) (Lo, + L0a.))’|
Rearranging the terms gives (25),
Proof Lemma 1. Let t. be the latest synchronization time before ft. Define ~ =
LS (L)l w! — w2, Then:
n t n
1 3 +1 +1 j
S SR MRS R ST
i=1 j=tec k=1
¢ , , 2
(W YV B el w)|
Jj=tc !
() 2 ) 2
STZ@Z Lgnzlx H Zv Fk J+1 J+1’ j) V F( g+1 3+17W‘3)‘ (x1)
i=te U im1
t n
:TZ%Z () [H ( WJFk( A CiJrl,Wi)*vaFk( j+1 CiJrl,Wj)
j=tc i=1
+ Vs Fr(x) el wj)> — Vi BT e wi) 4+ Vo, Fy(xd T e wd)
_ 2
el ] ]
te+T 77 ) ) 2
<TZ 3~ 3 {Hi ( W]Fk( j+1 ciJrlawff)*vw?Fk( J+1’ci+1ij)> H
, 2
+Hiva’Fk J+1 ]Jrlij)_vw?F( J'Jrlv {+1aWJ)H
, A ‘ 12
+vasz-<xz“7cz“, W) =V Fid e wl|]
te+T7 ) 1 n
SOV s[Qlu)n Z Z L [wh =Wl + 3 (L) s
= i=1

1 .
O P2 S0 — i)

i=1
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tet+T1 n

ApLy)n 1 i 1 ; ;
<oy [ Ly e S e - W

i=te gt (Lmax")? =1

Nk

1
= () R+ (L) 7]

Il
N

%

te+T7 n
1 7
S (upL S s+ L3+ Oyt )
j=te

=1 ( max

tet+T ZQ 1 n
=T Z 3773 (O\Z’L“’)Q (L(rxnlli?;)g Vit n Z(Ll(mzlx)Q“i + ()‘pr)Q'Vj> (x2)

i=t. max i=1

in (a) we use the facts that || Zfil a||? <K Zfil lla:||?, t < T + t. and that we are summing over
non-negative terms. As a result, we have:

tet+T -2 n
L 1 )
2 2 max - (1) \2,..
TS T Z 3n3 (()‘pr) (1 + (L(mm)) )VJ + n Z(anlax) ﬁl)
J=te i=1
tet+T tet+T te+T ZQ 1 n
< de) 4z (1) )2,
=3 e 33 i (Ot (1 T o+ LS
t=t. j=t. max i=1
tet+T n
9.2 2 2 Lyax (@) Y2, i
=37 N3 (APLU)) (1 + L(Inm) ) Z 7] + 3T z;(Lmax)
J=te 1
T2
Let us choose n3 such that 372n3(\,Ly)? (1 + (Lf;;‘;;ﬁy) < 1 e mp <
L — , sum over all syncronization times, and divide both sides by
672(ApLuy)? <1+ Dinac )
(Lmin) o
T
lT? t < ! i + 317 li(L(i) )2k
T =9 3?’l ‘ max 7
t=0 7=0 i=1
T-1 n
1 51
ﬁf S E Z max
t=0 i=1
O
Proof of Corollary 1. From (x1) < (x2) in the proof of Lemma 1, we have:
te +T n 9
PP Vi Bt el w)
te+T Z2 1 n
2 _ “max st (1) 2 )
< Z 3 ((/\pr) (1 n TRIE ) - Z L9 ) )
t=t. max i=1
Summing over all ¢, and dividing by 7"
1y )
fZEZ L2 8 = Ve FiO el )
<30 La)?(1+ o gzx ) Z% +3-= Z
@ Lmax 2 o1 () \2 ) )2
< 3()‘ L ) ( + (())) X 67 N3 — Z(Ln?lax K1+3 Z Lmax Ki,
z:l
where (a) is from Lemma 1. O
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C.4 Proof Outline with Client Sampling

Incorporating partial client participation and analyzing the resulting algorithm is fairly simple.
Essentially only changes are in Lemma 1| and Corollary 1, as everything before that is for local
updates only. Now we give a summary of what changes:

Let K; denote the set of clients that participates at time ¢, where |K;| = K, i.e., K clients participate
in the training process at any time. In this case, we define the average parameter w' and the gradient
g! as the average over the respective parameters of only the active clients at time ¢; we also define ~;
similarly.

* Change in the proof of Lemma 1: In the proof of Lemma 1, the second term
on the RHS of the second inequality, with the above modification will be equal to

% Zke,ct ijFk(xfCH, cffl, wi) — ijFi(xgﬂ, cgﬂ, w)
all clients from 1 to n and this term was bounded by «; using Assumption A.6. Now, we can use
the Jensen’s inequality (iteratively) and Assumption A.6 and bound this by 2k; + % > ek, K-
This change will propagate over until the end.

* Change in the proof of Corollary 1: Since this is a corollary to Lemma 1, this will also see a
similar change.

* Remaining convergence proof: Now, continuing the exact same convergence proof and using the
modified bounds of Lemma 1 and Corollary 1 will give the bound of our algorithm with partial
client participation.

2
‘ . Earlier, the average was over

This is the modification in the entire proof.

D Problem Setup and Convergence Result of QuPeLL

For QuPeL, we define the following augmented loss function at client 4:

- A _
Fi(xi,ci, w) = fi(xi) + fi(Qe, (xi)) + AR(xi, ¢i) + Ep(HXi = w* + [|Qc, (x5) — W||?).
(40)

Here, w € R? denotes the global model, x; € R< denotes the personalized model at client ¢, and
c; € R™ denotes the model quantization centers at client ¢, where m; is the number of centers at
client 7, with log m; representing the number of bits per parameter, which could be different for each
client — larger the m;, higher the precision. Note that different than QuPeD, this time all the model
parameters x; are of the same dimension with w.

From (40) we get the following global loss function:
1 n
i F R) i == Fl iy Ciy ) 41
argm1n< ({xi}, {ci},w) n; (xi,c w)) (41)
where minimization is taken over x1, . ..,%, € R% ¢; € R™ fori € [n], and w € R%.

We present our proposed algorithm QuPeL for minimizing (41) in Algorithm 3.

D.1 Convergence Analysis

First we state our convergence result for QuPeL,

Theorem 3. Consider running Algorithm 3 for T iterations with T < /T,
_ 1 _

1
m - 2(3>‘p+)‘PLQ1 +L+GLQ1 +GQ1LlQ1)’ 12 - 2(>‘p+)‘PLQ2 +GLQ2 +GQ2 LLQQ)’
and 13 = 1/gx,V/T. For any t € [T], define G =
[vx:+1 Fi(x*t et whT, Vern Fy (xH et W) T Ve Fy (x5 et wh) )T, Then, un-

der assumptions A.1-A.6, we have:

1 T—1 1 n
DD (€
t=0 1=1

g e NN

\/T T T% max
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Algorithm 3 QuPeL: Quantized Personalization

Input: Regularization parameters A, Ap; synchronization gap T; for each client z' € [n], initialize full
precision personalized model x?, quantization centers c?, and local model w?; a penalty function
enforcing quantization R(x, ¢); a soft quantizer Qc( ); and learning rates 71, 72, 3.

I: fort =0to7T — 1do

2:  On Clients i = 1 to n (in parallel) do:
3. if 7 does not divide ¢ then

4 Compute g! = Ve« f; (%) + Viee fi( Qer (1)) + Ap (= W) + A Vit Qe (x) (Qer () —
w;)
5: X§+1 = Prox, \p_ : (xt —mel)

6: Compute h! := V, fl(Qct( 1“’1)) + AV t+1Qc (x t+1)(Qc (x t+1) w})

7: citt = PrOX,,5\m_ f+1( £ — moht)
8: WZH_1 =w! — 773/\ (wh— Xt+1) + (wh — Q1 (Xf'H))
9: else L
10: Send w to Server
11: Receive wf from Server and set w/ ™! = w
12:  end if
13:  On Server do:
14:  if 7 divides ¢ then
15: Receive {w!}™ | and compute w' := 1 ZZ 1 w!
16: Broadcast w? to all Clients
17:  end if
18: end for

19: 7' = Q. r (xT) forall i € [n]

Output: Quantized personalized models X7 for i € [n]

22 LQ1 LA GQI

18 e +
L+ Glg, + G, Llg, }, and A Lmaxm(l + Gy +Gh,) + L + Lfnax)\ Ap wnh Ap =
L (P, ¢, wd) — F(xI', ¢l wl)).

U] 197

where Liax = max{ ! & + 2 LQ2 + GLQ2 + GQzLLQw 3>\ +

The rest of this section is devoted to proving Theorem 3.

The analysis is similar to the one in Appendix C, however, this time we can assume same gradient
bounds for each client since all the clients have the same model structure. As a result the analysis
requires slightly less algebraic manipulations. Naturally, we don’t need A.7 in this analysis. We defer
proofs of the claims and some derivation details to the end of section. We take w! = % S W so

that w? is defined for every time point.

Alternating updates. Let us first restate the alternating updates for x; and c;:
Xt = ProX,, s, (X — MV fi(x}) = m Vi fi( Qe (x4)) = mAp(x} — w))
+ Vi Qe (x1) (Qer () — wh))
e = prox,an o, (€6~ 1V fil @t (x1)) — 1Ay Vg1 Qe (xEH) (Qer (<71 — wh))
The alternating updates are equivalent to solving the following two optimization problems.

x;?-&-l - argg}iin{@c —x!, Vf; (x§)> + <x - xﬁ,Vxﬁfi(@c:(xﬁ)» + < —xt A (xt - Wt)>

pS
(00 60 Vg Qe (<) Qe () = W) ) 5= e = x5 + AR, c§>}
(42)
=g (e TG4 (e BG4 D)

ceR™
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+ﬁ e — ) +AR(X§+I,C>} 43)

Note that the update on w! from Algorithm 3 can be written as:

? ) l

1 n
with = w! —nsgt, where g'= - ZVWQFi(forl,cHl wi).
=1

In the convergence analysis we will require smoothness of the local functions F; w.r.t. the global
parameter w. Recall the definition of F};(x;, ¢;, w) = fi(x;)+ fi(Qc, (x:)) + AR(x;, ;) + % (|Ix; —
w|? + || Qc; (xi) — w||?) from (40). It follows that F; is 2),-smooth with respect to w:

HVWFi(x, c,w) — Vu Fi(x,c,w')|| = ||\, (2w — x — @C(X)) — 02w —x — éc(X))H

<2\ |lw — W, Vw,w € R< (44)

Now let us move on with the proof.

D.2 Sufficient Decrease

We will divide this part into three and obtain sufficient decrease properties for each variable: x;, c;, w.

D.2.1 Sufficient Decrease Due to x;

We begin with a useful claim.

Claim 12. f,(x) + £:(Qe(x)) + 22 (Ix — Wil + |Qe(x) = w[[2) is (A, + AL, + L+ GLg, +
Gq, Llg,)-smooth with respect to x.

From Claim 12 we have:

1 Mt Nl + L+ GLo, +Go, L,
2171 2

= ) Qe ) + ARG ) + 22t — w2

1 Mt NLe + L+ GLo, + G, Llg,
27’]1 2

Fy(x!Th el wh) + (

i I3l

)it — x|

A, ~
+ P 1Qer () = w* + ( i — x|

< 1K) + Fi@et )+ 2t = w7 4+ 22 Qe — w4+ ARG )
(V) x0T = )+ (Vi fi Qg (60, x0T = ) + (A (of = wh), I+ —x)
(O Vs Qe (1) (@t () — wh), xIH! = x!) - (A (wh — w!), xt+! = x)
(Vg Qe e vt ), =) 3)
Claim 13. Let
A = ARG o) + (Vi) x ! = xt) + (Vi fi Qe (), x ! = xt)
(M0 Vg Qg () Qe (3c6) = wh), x(F =t ) (A (xt = wh), x{* =)
o P

27’]1 ¢
A(xE) :== AR(x, cb).

1Y

Then A(X?—l) < A(xh).
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Using the inequality from Claim 13 in (45) gives

Fy(x+L, b, wh) + (L M+ MpLlg, + L+ GLg, + G, Llg, [+ —

1 9 g 2771 9 X§||2

A ~
< fix) + Fi( Qe (x}) + ol = WP + 2 o Qe () = wi* + A ™)

AVt Qe (x1) (w fwt»x:“fxs>+<xp<w:-fwt>,xz+lfxz>

A Ao =
z(Xﬁ)Jrfz(Qc( D)+ Sl = WP 4 Qe (%)) = W + AR(x, )

M1+ G
P R e

1+ G?
—F(X“Cf,WtH(il)ll = w4 Al — x| (46)
To obtain (a), we substituted the value of A(xf“) from Claim 13 into (45). In (b), we used
A(xh) < /\R(X”cz) and (A, (w} — w'), x;" —x{) = (/A (w] —w'), /A, (x; T = xD)) <
A llwh — wh|2 + 3 xf ! - %, and

2 A
(M Qe ) (! = w'). z*l—x$>sé’ Qe o) vt ) [+ 7 et
~ A
< 22 Ges ) vt — I+ 22
A G2 A
< SR k- w2

where the second inequality follows from || Ax||2 < ||Al|7||x||2, which holds for any matrix A and
vector x (dimension compatible); and the third inequality uses Assumption A.5.

Substituting n; =

1 : : .
2(3/\p+>‘pLQ1 +L+GLQ1 JrGQl LlQ1) m (46) gives:

Fi(xi§+1 ct Wt) + (3>‘P + APLQl + L+ GLQl + GQlLlQl )th-+1

5 xt||? < Fi(xt, el wh)

1+ G2
 EER) o e
47)
D.2.2 Sufficient Decrease Due to c;

In parallel with Claim 12, we have following smoothness result for c:

Claim 14. ,(Qe(x)) + 22 (1Qe(x) ~ w|]?) is (AyLaa + GLqs + Gau Liq,)-smooth with respect
to c.

From Claim 14 we have:

R At S

1 AL GL Go, Ll
Fy(xtHY, et Wt)Jr(% _ Mpla, + gz + G, Q2)HCE+1 — |

= [T+ fi( Qs (xFH)) + ARG €M) + ”IIQC( i = w?

7

A 1 M Lo, + GLg, + G, Ll
+ 7P”X§+1 . wt||2 + (27"72 Qo 22 Q2 Q2)||C§+1 B Ct_||2

< fil™) 4 filQer (xT) + ARG o) + ”IIQC( i W

(2

+ (0 Vet Qer () (Qer (<) = wh), el ¥ —cf) (48)

A 1
I = w4 (Ve i@ ()€ — el + el el
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+ (A Ve Qs (x ) (wh = w), el =) (49)
Claim 15. Let

1
B(el™!) 1= MR e) 4 (Ve £l Qe (). — ef) 4 oo et — el
2

(0 V e Gt () (@t (61 = wh), el = cf)
B(el) = AR(x{*!, cl).

Then B(c!*t) < B(c}).

Substituting the bound from Claim 15 in (49),

L _ AL, + GLg, + Gq,LLq, )HCH—I _ C1§H2
2772 ) i i

< O+ @y () + ARG ) + 22t w2

P e wh) +

7 ? ’L

G () — W (0, Vg Qe ), e ef)

A A\ G2
= R el wh) + Pl —eff]? + =5 w - W

Substituting 1y = gives us:

1
2(Ap+Ap L@y +GLQy+GQy LLG,)
F_(Xt+1 cttl Wt) + Ap + ApLq, + GLQz + GQzLLQz ||Ct4+1

1
i G 9 75||2<F(t'+ tht)

» ©a

T

t||2'

(50)

Iwi — w

D.2.3 Sufficient Decrease Due to w
Now, we use 2),-smoothness of F;(x, ¢, w) with respect to w:

Fi(xH, e wit) < B ot wh) £ (Ve By, o wh), witt = wi)
+ M| — w2
Then we have,
Fi(xﬁ+l7cg+17wt+1) S Fi(X§+17C§+17Wt) + <thF’L< 7?+1 Cf:+17wt)7wt+1 - Wt>
+ )\p||Wt+1 _ t||2
= F( t‘+1acz+17 + <thF t‘+1 H_l Wt)7n3gt> +A ||’r]3gt||2
_F( t+1 t+1 t)_773 <VW*F( t'+1 t+1awt)7gt_vw’F( )H»l t+1th)
+V tF( t+1 et wh))
+/\p2773||g - WtF( ¢+1vc§+1a )+thF( t+17c§+1awt)”2
thi(XEJrl,CEJrl,Wt)H
— 3 (Vwe Fi(xiH e wh), g = Ve Fi(x ef T wh))
+ A l8" = Ve Fi(xi T e wh) + Ve Fi(x T ef 7 wh) |12

= Fy(xt* ctt?

7Wt) — 13

bt} kg3
2
< Fi(x et wh) —ng“thFi(X§+1,C§+1,Wt)‘
2 2
HV cFy(xt f+17wt)‘ —1—7]23 b Vi Fi(xi f"'l,wt)‘
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2
t+1 t+1 t t+1 t+1 t
Vot Fi(x1 et wh|” + vatﬂ(xi+ et wh)

+ 2)\1,7732) (

= Fy(x!* et wt) — (773 2012 vatF (x!I+L, H

)
s &4 2

— Ve F(x T e wh) + Ve Fi(x e w)

» » (2

3
+(2

— Vo Fy(xT, t+1,wf)H

+ 2Apn§)) g’

< Fy(xtT et wh) — (7723 22,72) vatF (xI1 it wh) 2
£ s+ ) [~ Ve Bt et )|
+(n3 + 4)\1,17%)”VW;F1»(X§+1,C§+1,wf) — VwtFi(x ‘?+1,cf+17wt)H2
< B et wt) = (- ) [V i e w)||
£ s+ ) [~ Ve Pt et )|
—|—(773+4)\p77§)4)\12) w! — wt ?

Rearranging the terms, we have:
2
Fi(x e wh ) 4 (2 — 20,m8) ||V B el w)

(2 ? kg2

Vot Fi(xH e i)

3

2
< (113 + 4Xpm3) + (13 + 4A75) 407
+F( t+1 t+1,Wt> (51)

D.2.4 Overall Decrease

Define
Ly =3 N, + Lo, + L+GLg, +Gg,Llg, 52)
Le=Xy+ Lo, +GLg, +Gq,Llg,. (53)
Summing (47), (50), (51) we get the overall decrease property:

K3 Ei )

- 2 L.
i e wit) o (B 2|V Bt el wh) | 2 it — )2

L 2
+ Sl = cl? < (s + 40md) 8 = Ve B e wh)
+ (14 G, + G, +4nsh, + 16X203) A wi — w'|[* + Fi(x}, ¢}, w') (54)
Let
Lmin = min{Laxa LCa (7]3 - 4)‘pn§)} (55)
Then,

Lo 2
Fy(x(™ e wht) 4 2 (vatFxxz*l,cz“,wt) e = e el - )

ki) 7 (Rt B

+ (L+ G, + G, +4msh, + 16XA203) A, | wi — w'||? (56)

< (3 + 4/\pn§)Hgt — Ve F(x et wi)

’ + Fy(xt, ek, wh)

D.3 Bound on the Gradient
Now, we will use the first order optimality conditions due to proximal updates and bound the partial

gradients with respect to variables x and c. After obtaining bounds for partial gradients we will
bound the overall gradient and use our results from Section D.2 to arrive at the final bound.
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D.3.1 Bound on the Gradient w.r.t. x;

Taking the derivative inside the minimization problem (42) with respect to X at X = X, i

it to 0 gives the following optimality condition:

and setting

Vi) + Vi £ilQer (x1)) + A (h = W) + X Vit Qe (1) (Qet (x1) — w)

1
Jrn—(><§+1 ;) + AV, R(x;c)) =0 (57)
1

Then we have,

[y B ') | = [0 0) o+ T (@t (1)) A (1 = w)

+)‘ \% H'ch ( t+1)(Qci(X§+1) )+)‘v H'lR( t+17 f)

(K1) = V() + Vs fi(@er (X)) = Vot (@t (x1)
+ Ap V1 Qe (371 (Qer (x 1) — w')
— Ap Vit Qe (x1) (Qe (xF) — W)

+ (= 2 = x) Ay (wh = w)

1
< (17 + X+ XGaulo, + L+ GLg, + G, Llg,)|xi ™ — x|
1

+Ap(1+Go,)[[wi = w']

where (a) is from (57) and the last inequality is due to Lipschitz continuous gradients and triangle
inequality. This implies:

» &g

2
N———

1

2=+ X + MGaula, + L+ Gla, +Go, Llg,)?|Ixit — x|
1

+ 200 (14 G, )?[lwi — w'[|?

we have:

. . _ 1
Substltutlng m = 2(3/\p+>‘PLQ1+L+GLQ1+GQ1LlQl)

2
<2(7TA, + 20, Lo, + MG, lg,
+3(L+ GLq, +Go,Llg,))|Ixi " — x{|?

+2X5(1+ Go,)?[lwi — w'||”
7 2vla, | MGaile

t+1 t t
HvxﬁﬂFi(XiJr y G W )

= 18(=\ L l

8(3 p + 3 3 + +GQ1
+GQ1LZQ1) thJrl EHQ
+2X2(1+ Gg, )?|lw — w'|]? (58)

D.3.2 Bound on the Gradient w.r.t. c;

Similarly. takmg the derivative inside the minimization problem (43) with respect to c at ct+1 and
setting it to 0 gives the following optimality condition:

Ve fiQer (™)) + ni(cf+1 ¢h) 4+ Ap Vet Qor (71 (Qer (x1H1) — W)
2
+ AV f+1R( tfl t+1) =0 (39)

Then we have

t+1 t+1 t
HVCE‘HFi(Xi—F ’Ci+ , W )H

[ Vetsr £ Qe (<)) 4 AP 1 Qi (6 ) Qg (1) — w
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€4

F AV R(x ot
= [P @t (1) = Ve fu@er (1) + (el =)
Vs Qs () (@i (xE) = w)
= A Vet Qet () (@t (x1) = wh)|
< (- + A Gaula, + GLa, + GayLig,) et — |
2, G, Wt —w|

the first equality is due to (59) and the last inequality is due to Lipschitz continuous gradient and
triangle inequality. As a result we have,

2 1
[ Ve Pt et wh)|” < 2 + Gaule + GLay +GauLig, Pl — el
2
+2X2GY, lwi — w'|]? (60)

substituting 1y =

1 .
30yt pLa,tGLla, +Ga, Llha,) Ve have:

2)p,  2X\,L
[P FrGert ettt || < 1820 + 22592 4 Grg, + Go,LLq,) el — P
+ QAIQ)GZ 2wa —w|?
D.3.3 Overall Bound
Then, let us write || GE||? :
2
G = “[Vx§+1Fi(X§+l,cf,Wt)T,Vc¢+1Fi(Xf+1,c§+l,Wt) , Vet Fy (x4 t.+1,wt)T]TH
2 2
= ”vxﬁrlFi(Xg ,CL,Wt —|— HVC§+1F7;(X§+1,C£+1,Wt) —|— vatFi(X?rl, §+1,Wt)
7 20,L AGo,l
< 18(gA, + T TR 4 Lt Glg, + Go, Lo, )’ i — x|
2 2\, L 2
+I8(ZE + T2 4 Glg, + Gy LLa,* el — el + || Vae Pt ot w) |

+2X((1+ Go, ) + G, [wi — w'||?

where the last inequality is due to (58) and (60). Let

12X, 22\, L
Liax = max{ &3 Py pTQQ +GLg, +Gg,LLg,,

7Ap n 2>\p3LQ1 n )\pGgJQl

3

+L+Glg, +Go, Llg, } . (61)

Then,

2
170 PG el W) T W s Fy L e w)T, Vo (e 1w ]|

< 1812 (X = X2 bt — el + | Var P e wh)

max [t
+205((1+ Gq,)* + G, )llwi — w'?

)

(@ 2 2
< 36 L“”X [(773 + 4Apn§)’ g’ — Vw Fi(x; ™ ci ™ wi)
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+ (1+ Gy, + G, +4n3h, + 16X205) Ay llwh — w'||?
+ Fy(xt, cf, wh) = F(xi et t“)} +20((1+ Go,)* + G, [wi —w'|%. (62)

In (a) we use the bound from (56), and L,.;, is defined in (55).

Now we state a useful lemma that enables us to relate local version of the global model, w;, to global
model itself, w.

Lemma 2. Let n3 be chosen such that n3 < , /m, then we have,

1 T-1 n
LS LSt il < or
t=0 =1

S|

As a corollary:
Corollary 2. Recall, gt = L 3" | Vi Fy(x] B et wt). Then, we have:

n 2
—Z ZHg — Vw Fi(x{™, et wf)H < 144X T3k + 3k

See end of the section for the proofs. Using Lemma 2 and Corollary 2, summing the bound in (62)
over time and clients, dividing by 7" and n:

T-1 n
L?
— Z Z |GE? < 36 Lm"‘x |:<’I’]3 + 4)\1,773)(144)\27'2773& + 3k)
t=0 =1
+ (14 Gy, + Gy, + Anshy + 16A203) A,677 03k

S (F (xY cO wd) — F;(xI' cT sz))}

=1 19 V) 79
+
nT

+2X((1+ Go,)? + Gp,)67°n3k

L2
— 367 [GTznglﬁ:()\p(l + G, + Gh,) + 280502 + 1120208)

min

A
+3ngn + 120k + ] 12031+ Ga,)? + G, )0 (63)

Z?:I(Fi(x?p?!w?)_F’i( i 0Ci >WT))

where Ap = p

Choice of 7)5. Assuming 7 < /T we can take 73 = ﬁ, details of this choice is discussed in the

end of this section, and after some algebra we have the end result:

1= L s g DALZ Th(1+ GE + G%) + 54L2,, + 57612, A\ Ap
T > - DoIGHR < Nii
t=0 = i=1
151202, 7%k + 37262 ((1 + G3,) +G3,)
* T
48 L2
60 8 Inax 216L12ndx
5
This concludes the proof.
D.4 Proof of Lemma 2 and Corollary 2
Let us restate and prove Lemma 2,
Lemma (Restating Lemma 2).
1 T-1 1 n
T > - D lwh = wi? <673k (64)
t=0 ' i=1
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Proof. Let t, be the latest synchronization time before t. Define v, = £ 3°" | [|[w’ — w!||2. Then:

n t
1 . . . 2
A S ST Rl - (i YV Rl )|
= J=tc k=1 J=tec
(a) . . )
<TZ”3ZH ZV RO e W] Y B e W )
=1
2 n n
n 1 1 1 _j 1 1
Y E SIS (Vo Rl ol wh) - Ve Bl ol )
: <
Vs Fio(x Y el J‘)) Vs Fi (it el wi)
. 112
+ Vo B e W) = O B e wi ]
te+T o9 n n
<723njz lz ' F( i+l it j) Vs Fi(x] I+ i+ W_j)) 2
= n n k ko wil'k k
Jj=tc i
. . L2
| S o) - S )|
+vajFi(xg“,cg+1 1) =V B el 2]
tet+T 772 n )\2 n
2 ‘
<r 3 8BS [ Sl w4+ 2w
Jj=tc i=1 k=1
te+T1
=7 Z 303 (AN27; + K+ 4X2v;) (x2)
Jj=tc

in (a) we use the facts that || Zfil ai||* <K Zfil lla;||?, t < T + t. and that we are summing over
non-negative terms. As a result, we have:

te+T

M <T Z 3775(8)\12]7]' + k)
Jj=tc
tet+T tet+Tte+T te+T7
= Z "< Z Z 3rn3( 8)\27] + k)= 247-21732,/\123 Z v + 3303k
t=t. j=t. j=te

Let us choose n3 such that 247'27]§ /\]2) < % &g </ 487—12 5z > Sum over all syncronization times, and
P
divide both sides by T

1 T-1
2,2
T < 5 Z v; + 3T N3k
t=0 j=0
=
—— v < 672 773/<a
T
t=0

Let us restate and prove Corollary 2.

Corollary (Restating Corollary 2). Recall, g' = 23" | Vo Fi(xit!, ¢l ™, wt). Then, we have:

[Tl ,
- Z n Z Hgt _ VW§Fi(X§+1’C§+17W§)“ < 36)\27-27732),{ 43k
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Proof. From (x1) < Lemma 2 in the proof of (2), we have:

t+7’ n tetT

y o ZHg_ w (L el wh) H Zggmjm

t=t. =1

Summing over all ¢, and dividing by T":

n T-1

151 1
TE: E:Hgt— wi Fy(xtHL et wf)‘ SUNZ D+ 3
n
= t=0

(@)
< 144)\27277%% + 3K

where (a) is from (2).

D.5 Choice of 13
Note that, in Lemma 2 we chose 713 such that n3 < ﬁ. Now, we further introduce upper bounds
P

on 73.

* We can choose 13 small enough so that L,,;,, = 13 — 4)\pn§; see (55) for the definition of
Lmin-

* We can choose 73 small enough so that 3 — 4\,n3 > . This is equivalent to choosing

< L.
3= gy,

These two choices implies Ly, > %3

.. . . 1 1
In the end, we have 2 critical constraints on 73, {73 : 73 < Vi, B < @} . Then, let

. 1 . _ 1 . .
{ns : n3 < W}' Moreover, assuming 7 < /7T we can take n3 = S, VT this choice clearly
satisfies the above constraints.

From (63) we have,

LSS

< 36 Lmax |:67' ngﬁ()\p(l + G2 L + G2 ) —+ 28773)\2 + 1127] )\3)

A
+ 3n3K + 12)\1,7732)/{ + TF] + 12)\2((1 + GQ1)2 + G? 2)7'2775/{
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1
Now, we plug in n3 = :
PRI = T
3., 1+G4 +G%) 1 1
_72Lfmx[47'2fs: \/1? 2 +21T2KT+84T2KE
31 8\, Ap 3 1
3 B p } 1462 G2 V22—
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max

_ SAL2, (1 4+ Gy, + GR,) + 54L2, 4+ 5T6L2 N\ A

VT
N 151202, 7%k + 57263 (1 + G, ) + GB,)
T
6048L2 2
+ %T“ + 21612, K
2

where L.y is defined in (61).
This completes the proof of Theorem 3. O

E Additional Details and Results for Experiments

In this section, we first discuss the implementation details for the prox steps for Algorithm 1 and
Algorithm 2 in Section E.1. Section E.2 discusses implementation details for the algorithms along
with hyperparameters which was omitted in Section 5 of the main paper due to space constraints.
Section E.3 provides additional experiments for comparison of QuPeD (Algorithm 2) with other
personalized learning schemes with additional types of heterogeneity and datasets. Section E.4
discusses the hardware resources on which the algorithms were implemented and the training times.

E.1 Proximal Updates

For the implementation of Algorithm 1,2, we consider ¢;-loss for the distance function R(x, c).
In other words, R(x,c) = min{3|lz — x|y : z; € {c1,--+ ,cm}, Vi}. For simplicity, we define
C=A{z:z €{c1, - ,cm}, Vi}. For the first type of update (update of x) we have:

. 1 2
PR, 3) = angmin { 5 x = ¥ + AR(x,0) |

ind L lx — y|2 + 2 min [z - x|
= arg min — (| X — — min ||z — X
iiRd 2ﬂ1 Y2 2 zeC !

arg min min { — [ ||2+/\|| |
= arg min min — |[|X — — ||z — X
B L2 YTy !

(65)

This corresponds to solving:

1 2
min min < — ||x — + Mz —x
i i { - x = 15 + Mz~ x|

Since both ¢; and squared ¢5 norms are decomposable; if we fix z, for the inner problem we have the
following solution to soft thresholding:

yi — AR, ify - AR > 2

o (2)i = Qyi + 29 iyt 23 <z (66)

z;, otherwise

As a result we have:

wip {1 0%2) ~ ¥15 + Nz - @)l

zeC (T

This problem is separable, in other words we have:

1
z' = argmin {(m*(z)i —yi)? 4+ Nz — $*(Z)i|} Vi
Zie{017"'70m} m
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Substituting *(z); and solving for z; gives us:

z; = argmin {|z; —yi|} Vi
zi€{c1, Cm
Or equivalently we have,
z" = argmin [z — y|1 = Qc(y) (67)
zeC

As aresult, prox, p(. o) () becomes the soft thresholding operator:

yi =g iy 2 Qely)i+ g
PIOX, XR(-,c) (Y)i =4qY+ %, ify; < Qc(}’)i — % (68)
Qc(y)i, otherwise

And for the second type of update we have prox, R(x,") (-) becomes:
. 1 2
rox x (@) =argmin ¢ — |jc — p —&—ARx,c}
PIOX,, AR(x, )( ) o { 212 [ Il (x,c)

ind L fle— 2+ 2 min ||z - x|
= arg min — [|C — — min ||Z — X
eem | 2 Hll2 T 5 28 !

. 1 A
argmln{||cu||§+Qc(X)X||1} (69)
cerm 212 2

Then,

d
. 1 A
IO, e (1) = arg min {2,]2@- )+ 5 D 1Qe00); - }
i=1

c;ER™

1 P
= argmin {27[2(0]' — 1)+ 5 ; L(Qc(x)i = ¢j)lej — wil}
We remark that the second term of the optimization problem is hard to solve; in particular we need to
know the assignments of z; to ¢;. In the algorithm, at each time point ¢, we are given the previous
epoch’s assignments. We can utilize that and approximate the optimization problem by assuming
ct*! will be in a neighborhood of ct. We can take the gradient of R(x‘*!, ¢) at ¢ = ¢ while finding
the optimal point. This is also equivalent to optimizing the first order Taylor approximation around
c = c'. As aresult we have the following optimization problem:

A d

L(Qer (x"*1)i = ¢j)lej — o]

. 1
ProX,, \g(xt+1,.) (1) &~ arg min {2172(%' — 1) + j

c;eR™

d t+1
A\ Ot — a7
+(¢; — C§)§ Z 1(Qer (x*1); = C;)%T
1 J

t t+1|

. . dlct—x . . .
In our implementation, we take % as 1if cg» > x’é“, —1if C;‘ < xf“ and 0 otherwise. Now

J
taking the derivative with respect to c; and setting it to 0 gives us:

d
)\772
Prox,, s et (W) ~ 1 = 5 (3 1Qer (xH); = )1t > ¢f)
=1
d
= Qe (xh); = )1 < b))
=1

Proximal map pulls the updated centers toward the median of the weights that are assigned to them.

Using P — oo. In the experiments we observed that using P — oo, i.e. using hard quantization
function produces good results and also simplifies the implementation. The implications of P — oo
are as follows:
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e We take Vi f(Qc(x)) = 0 and Vi fEXP(Qc(x), w) = 0.
S, PN (Qe(x); = 1)

* We take ch(éc(x)) = Vf(Qe(x) = : and
S0 BEEE(Qe(x); = )

C
d OfEP(Qe(x),
21:1 WH(QC(X)’L- = Cl)

Ve fEP(Qe(x), W) = Ve fEP(Qe(x), w) = :
S, 220 1 (g (x); = )

E.2 Implementation Details and Hyperparameters

In this section we discuss the implementation details and hyperparameters used for the algorithms
considered in Section 5 of our main paper.

Fine tuning. In both centralized and federated settings we employ a fine tuning procedure similar
to [1]. At the end of the regular training procedure, model weights are hard-quantized. After the
hard-quantization, during the fine tuning epochs we let the unquantized parts of the network to
continue training (e.g. batch normalization layers) and different from [1] we also continue to train
quantization levels.

E.2.1 Centralized Setting

For centralized training, we use CIFAR-10 dataset and train a ResNet [13] model following [1] and
[33]. We employ ADAM with learning rate 0.01 and no weight decay. We choose \(t) = 10~t. For
the implementation of ResNet models we used a toolbox®. In Table 1 we reported the results from
[33] directly and implemented ProxQuant using their published code’. We use a learning schedule
for 7, particularly, we start with 7, = 10~* and multiply it with 0.1 at epochs 80 and 140.

E.2.2 Federated Setting

For each of the methods we tuned the local step learning rate separately on the set
{0.2,0.15,0.125,0.1,0.075,0.05}. We observed that except for the two cases, for all other cases,
0.1 was the best choice for the learning rate in terms of accuracy: The two exceptions are the local
training methods on FEMNIST and Per-FedAvg on CIFAR-10, for which, respectively, 0.075 and
0.125 were the best choices for the learning rate.

* QuPeD'’: For CNN1 we choose A, = 0.25, A(t) = 1075¢ for 2Bits and A = 5 x 10"t 545 for
1Bit training on CIFAR-10. On FEMNIST !! and MNIST we choose A(t) = 5 x 10~5¢ for 2Bits

and A = 10~ 5¢ 5457 for 1Bit training. For CNN2 we use A, = 0.15. Global model has the same

learning schedule as the personalized models. Furthermore, we use 7o = 104
QuPeL: We used A\, = 0.2, n3 = 0.5 (same as pFedMe [7]) and took A values from QuPeD.

* Per-FedAvg [8] and pFedMe [7]:To implement Per-FedAvg, we used the same learning rate as
mentioned in Section 5, schedule for main learning rate and o = 0.001 for CNNI1 and o =
2.5 x 1073 for CNN2 (we tuned in the interval [8 x 107*,5 x 1073]), for the auxiliary learning
rate. For pFedMe we used the same learning rate schedule for main learning rate, K = 5 for the
number of local iterations; and we used A = 0.5, = 0.2 for CNN1 and A = 0.2, n = 0.15 for
CNN2 (we tuned in the interval [0.1, 1] for both parameters).

» Federated Mutual Learning [29]: Since authors do not discuss the hyperparameters in the paper,
we used a = B = 0.25 for CNN1 and a = 8 = 0.15 for CNN2, similar to our use of A\, in QuPeD.
Global model has the same learning schedule as the personalized models.

8https://github.com/akamaster/pytorch_resnet_cifar10
°https://github.com/allenbai01/ProxQuant

10For federated experiments we have used Pytorch’s Distributed package.

''We use https:/github.com/tao-shen/FEMNIST_pytorch to import FEMNIST dataset.
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For QuPeD and Federated ML we used CNN1 as the global model in all settings. For the other
methods where global and personalized models cannot be different we used the same structure as
personalized models.

E.3 Additional Results for Federated Setting

In this section we provide additional experimental results for comparison of QuPeD with other
pearsonalized learning schems from literature.

Comparison on another CNN architecture (CNN2). We first report experimental results on
CIFAR-10 for CNN2 in Table 5 (with the same setting we have for Table 2). This is a deeper
architecture than CNN1, as described in Section 5 in the main paper.

Table 5 Test accuracy (in %) for CNN2 model at all clients, CIFAR-10.

Method Test Accuracy in %
FedAvg (FP) 62.49 + 0.42
Local Training (FP) 73.86 £ 0.22
Local Training (2 Bits) 73.24 £0.14
Local Training (1 Bit) 70.23 £0.10
QuPeD (FP) 76.39 + 0.36
QuPeD (2 Bits) 75.32 £ 0.18
QuPeD (1 Bit) 72.01 +0.31
PFedMe (FP) [7] 74.70 £ 0.10
Per-FedAvg(FP) [8] 74.60 +0.48

Federated Mutual Learning(FP) [29] 75.74 £ 0.56

For the results in Table 5, it can be seen that the comments made for Table 2 in the main paper directly
hold as QuPeD is able to outperform other schemes by a significant margin. This demonstrates that
QuPeD also works for a deeper neural network (than CNN1 considered in the main paper).

Table 6 Test accuracy (in %) for CNN1 model at all clients, with 3 classes accessed per client on CIFAR-10.

Method Test Accuracy (in %)
FedAvg (FP) 59.23 £0.25
Local Training (FP) 78.03 + 0.59
Local Training (2 Bits) 77.47 + 0.64
Local Training (1 Bit) 75.89 + 0.66
QuPeD (FP) 80.30 + 0.60
QuPeD (2 Bits) 79.31 +0.74
QuPeD (1 Bit) 77.23 £ 0.58
QuPeL (2 Bits) 77.874+0.53
QuPeL (1 Bits) 74.46 £ 0.73
pFedMe (FP) [7] 78.22 +£0.91
Per-FedAvg (FP) [8] 75.08 + 0.39
Federated ML (FP) [29] 79.44 +0.82

Another Type of Data Heterogeneity. We report results for another data heterogeneity setting where
each client has access to data samples from random 3 classes on CIFAR-10. Sampling data from 3
random classes per client is a more challenging setting compared 4 classes per client considered
in Section 5. In Table 6 we see that FedAvg’s performance further decreased due to increased
heterogeneity. Moreover, most of the other personalized FL. methods are outperformed by local
training whereas QuPeD still performs better than local training, and other personalized FL. methods.
We observe that QuPeD with 2 Bits aggressive quantization outperforms all the other competing
methods except Federated ML [29] (for which it shows a similar accuracy). Moreover, QuPeD (1Bit)
is able to outperform Per-FedAvg.
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Table 7 Test accuracy (in %) comparison between the cases with and without center updates for CNN1 model at
all clients, 4 classes accessed per client on FEMNIST.

Method Test Accuracy (in %)
QuPeD (FP) 97.31 £0.12
QuPeD (2 Bits) 96.73 £ 0.27
QuPeD (1 Bit) 95.15 £+ 0.21
QuPeD (2 Bits) no center updates 96.48 £+ 0.10
QuPeD (1 Bit) no center updates 91.17 £ 0.58

Importance of updating the centers. In our proposed schemes: Algorithm 2, we optimize over both
the quantization levels and the model parameters. We compare performance of our proposed scheme
with the case when we only optimize over model parameters and not quantization levels in Table 7.
As seen from the results in the table, having the center updates in the optimization problem is critical,
particularly, for the 1Bit quantization case for which we observe an increase in the performance by
4%.

Results on MNIST. We now provide additional results on MNIST dataset to compared QuPeD with
other competing schemes. We consider 50 clients in total, where each client samples data from 3 or 4
random classes and uses CNN1. We train for a total of 50 epochs, for quantized training we allocate
the last 7 epochs for finetuning.

Table 8 Test accuracy (in %) for CNN1 model at all clients, on MNIST.

Method 3 classes per client 4 classes per client
FedAvg (FP) 98.64 +£0.10 98.65 £+ 0.09
Local Training (FP) 98.79 £ 0.03 98.66 £+ 0.15
Local Training (2 Bits) 98.53 £ 0.07 98.37 £0.11
Local Training (1 Bit) 98.41 £+ 0.02 97.95 £+ 0.20
QuPeD (FP) 99.05 +0.10 98.89 +0.11
QuPeD (2 Bits) 98.96 £0.13 98.67 £ 0.18
QuPeD (1 Bit) 98.57 £0.08 98.25 £ 0.16
QuPeL (2 Bits) 98.95+0.12 98.61 £0.19
QuPeL (1 Bits) 98.33 £0.14 98.11 £ 0.26
pFedMe (FP) [7] 98.98 £ 0.05 98.82 +£0.15
Per-FedAvg (FP) [8] 98.82 £+ 0.05 98.93 + 0.09
Federated ML (FP) [29] 99.00 £ 0.06 98.84 £0.13

QuPeD (FP) outperforms all methods except Per-FedAvg on MNIST when clients sample data from
4 random classes. The difference is almost negligible (0.04%). As we can observe in Table 8 with the
increased heterogeneity QuPeD starts to outperform Per-FedAvg by a 0.20% margin. Moreover, we
observe QuPeD with 2Bit quantization also outperforms Per-FedAvg.

Text classification task on AG News Dataset. To show that our method can also be applied
for tasks different than vision tasks. text classification problem using the AG News dataset
(available at https:/pytorch.org/text/stable/datasets.html). We used half of the dataset to make
the training procedure more challenging. We used EmbeddingBag structure available at
https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.html and distributed the data
such that each of the 42 clients has access to samples from 3 out of 4 classes. The results we obtained
are provided in Table 9

These results demonstrate the effectiveness of QuPeD on text data in comparison with local training.

E.4 Computational Resources

For our experiments, we used a server which has 6 Nvidia RTX2080Ti GPU’s and Intel Xeon Gold
6230 CPU @ 2.10GHz CPU’s. The longest epoch time is 125 seconds with QuPeD (2Bit) training on
CIFAR-10. Our code uses a maximum of 9GB memory per GPU.
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Table 9 Test accuracy (in %) for Embedding Bag model at all clients, on AG News.

Method

FedAvg (FP) 83.04 £ 0.60
Local training (FP) 84.20 £+ 1.53
Local training (2 Bits)  82.68 + 0.34
Local training (1 Bit) 82.12 £+ 2.17

QuPeD (FP) 85.06 + 1.07
QuPeD (2 Bits) 83.62 % 0.50
QuPeD (1 Bit) 82.72 +1.20
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