Under review as a conference paper at ICLR 2024

DIRECTIONALITY IN GRAPH TRANSFORMERS

Anonymous authors
Paper under double-blind review

A EXPERIMENT DETAILS

We test our code on a node with NVIDIA V100 GPUs (32GB RAM), 20-core 2.5Ghz Intel
Xeon CPU (768GB RAM), running Linux. We use Python and specifically the PyTorch li-
brary for our implementation. Our code is available via the anonymous Google Drive Link:
https://drive.google.com/file/d/193Tf8Mk6cen8kEwKfzP—zmSnkQDJzQBw/
view?usp=sharing

For fair comparison, we keep all the experiments with the number of learnable parameters around
100K with 4 layers for the graph classification tasks. We fix the batch size to 32, the number of
maximum epochs to 200, and we employ grid search for tuning the learning rate n € {2 x uli =
0,1,2,3,4} withu = 5 x 107%, and n = 8 x 1073 (or i = 4). We employ grid search for tuning
the number of hops k € {i|]1 < i < 9}. We apply a similar process to other models.

We use GCN (Kipf & Welling, [2016) and GAT (Velickovic et al.l [2017) from the Benchmark-
ing Graph Neural Networks framework (Dwivedi et al. [2020); we use DGCN (Tong et al.,
2020b), DiGCN (Tong et al., [2020a), and DiGCNIB (Tong et al.| |2020a) from PyTorch Geometric
Signed Directed framework (He et al.| [2022), and we run PNA (Corso et al., [2020), Graph Trans-
former (Dwivedi & Bresson, 2021), SAN (Kreuzer et al.| 2021), and EGT (Hussain et al., 2022)
using their provided implementations. Table[l|contains parameters used during experimentation.

For the MNIST (Achanta et al.| 2012), CIFAR10 (Krizhevsky et al., 2009), Ogbg-Code2 (Hu et al.,
2020), and Malnet-tiny (Freitas et al., 2020) datasets, we follow the exact experimental settings from
the provided papers and codes to ensure a fair comparison.

Table 1: Training Settings (default values)

FlowGraph
Hyperparameters Twitter
Batch Size 32
Number of Epochs 200
Early Stops 0
Max Learning Rate (1) 0.008
Number of Virtual Nodes (q) 0
Number of Layers 4
Number of Heads (h = d/d}) 8
Node dimensionality (d) 32
Edge dimensionality (d.) 32
Projection dimensionality (d,,) 4
SVD dimension (7) 8

B DATASET DETAILS

Table 2] shows the dataset statistics for each of the datasets used in our experiments. These include
the number of graph instances, average number of nodes and edges, and the number of graph classes.

https://drive.google.com/file/d/193Tf8Mk6cen8kEwKfzP-zmSnkQDJzQBw/view?usp=sharing
https://drive.google.com/file/d/193Tf8Mk6cen8kEwKfzP-zmSnkQDJzQBw/view?usp=sharing

Under review as a conference paper at ICLR 2024

Table 2: Datasets details: Number of graph instances N in the dataset, average number of nodes 7,
average number of directed edges e and the number of graph classes n, are tabulated

Dataset | N | Avg.n| Avg.e | Ne
FlowGraph2 2000 114.46 | 150.30 2
FlowGraph3 3000 111.66 | 150.70 3
FlowGraph6 6000 111.40 | 149.93 6
Twitter3 2919 131.76 | 2237.55 3
Twitter5 4865 131.76 | 2208.79 5
Malnet-tiny | 5000 | 14103 | 2859.9 | 6
MNIST 70000 70.57 564.53 10
CIFAR1O 60000 | 117.63 | 941.07 10

Ogbg-Code2 | 452,741 | 1252 | 124.2 | 5 subtokens

FlowGraph3 Label 0 FlowGraph3 Label 1 FlowGraph3 Label 2

Figure 1: The visualization of three categories of graphs in FlowGraph3 dataset.

B.1 FLOWGRAPH VISUALIZATION

Figure [T] visualizes FlowGraph 3. The yellow edges are the flows from left to right, the red edges
are the flows from right to left, and the green edges are noises. In all three samples, half of the edges
are noises with green edges. In the left sample, besides the noise edges, almost all the edges have
the flow from left to right; in the middle sample, 75% of the edges have the flow from left to right;
whereas in the right sample, 50% of the edges have the flow from left to right.

C MEASURING IMPORTANCE OF DIRECTIONALITY

Flipping Edge Directions We reverse the direction of 25% and 50% of graph edges, randomly
selected, and empirically evaluate the importance of directionality in all the datasets. Table[3]list our
findings. We use GAT(Velickovic et al.,|2017) and EGT (Hussain et al., 2022) as the representatives
for graph neural networks and graph transformers. We confirm that the derived notion of edge
direction in MNIST (Achanta et al.,|2012) and CIFAR10 (Krizhevsky et al.|[2009) is not significant:
classification results from both EGT and GAT models are almost agnostic to edge direction flips in
these datasets; the differences between the vanilla datasets and flipped datasets are at most 2.1%.

For the Ogbg—-Code?2 dataset (Hu et al.| 2020), we select SAT (Chen et al., [2022) and DAGformer
(Luol [2022)), two top-performing models, as the baseline for testing random flips. We observe that
DAG only exhibits a 1.2% decrease in performance when 50% of the edges in this dataset are
randomly flipped. This suggests that directionality is not a significant factor in this dataset.

We employ the current state-of-the-art model, Exphormer(Shirzad et al., 2023)), to examine the sig-
nificance of direction in Malnet—-tiny dataset (Freitas et al., 2020). It is observed that there’s a
6.12% decrease in performance in the flip50 case. This gap refers to the importance of directionality
in the Malnet—-tiny dataset.

Under review as a conference paper at ICLR 2024

For FlowGraph and Twitter datasets, the direction of edges is enforced by construction or
emerges naturally and is thus expected to correlate strongly with graph labels. In particular, DiGT
accuracy consistently decreases across all FlowGraph and Twitter datasets and all edge reversal
percentages. In FlowGraph, accuracy drops are sharper (and saturate as we increase the reversal
percentage): with 25% of edges flipped accuracy decreases in the range of 46.25% to 28.94%: from
97.42% t0 51.17% in FlowGraph?2 and from 46.80% to 17.86% in FlowGraph6.

Table 3: Random Flips of MNIST, CIFAR10, Ogbg—Code2, Malnet—tiny datasets.

MNIST CIFAR1O Ogbg-Code2 Malnet-tiny

Model Model Model
GAT 95.54 +/-0.21 64.22 +/- 0.46 | SAT 19.37 +/- 0.03 | Exphormer 94.02 +/- 0.21
GAT-Flip25 93.92+/-0.22 62.86 +/- 0.18 | SAT-Flip25 18.72 +/- 0.08 | Exphormer-Flip25 88.77 +/- 0.41
GAT-Flip50 93.43 +/- 0.23 62.11 +/- 0.78 | SAT-Flip50 18.70 +/- 0.03 | Exphormer-Flip50 87.90 +/- 1.65
EGT 98.41 +/-0.04 68.70 +/-0.41 | DAG 20.2 4+/-0.2
EGT-Flip25 97.90+/-0.11 67.27 +/- 0.56 | DAG-Flip25 18.9 +/- 0.2
EGT-Flip5S0 97.99 +/-0.09 67.28 +/- 0.38 | DAG-FlipS0 19.0 +/- 0.1

Table 4: Random Flips of F1owGraph and Twitter datasets.

FlowGraph?2 | FlowGraph3 | FlowGraph6 || Twitter3 Twitter5
Model
GAT 84.92 +/-1.90 | 58.83 +/-1.47 | 30.31 +/-0.28 74.59 +/- 1.59 | 56.79 +/- 0.05
GAT-Flip25 | 73.67 +/-0.72 | 44.16 +/- 1.70 | 48.62 +/- 0.80 67.69 +/- 1.06 | 48.62 +/- 0.80
GAT-Flip50 | 51.00 +/-3.89 | 33.00 +/- 2.38 | 17.31 +/- 0.66 65.64 +/- 1.71 | 44.34 +/- 2.05
DiGT 97.42 +/-0.82 | 74.55 +/- 0.69 | 46.80 +/- 0.97 91.67 +/- 0.79 | 85.94 +/- 0.25
DiGT-Flip25 | 51.17 +/- 1.25 | 33.50 +/- 0.36 | 17.86 +/- 0.92 89.29 +/- 0.90 | 77.47 +/- 0.90
DiGT-Flip50 | 49.67 +/- 1.39 | 32.33 +/- 1.66 | 16.78 +/- 0.04 82.96 +/- 1.13 | 65.44 +/- 0.38

D DETAILED COMPARISON OF DIRECTIONAL TRANSFORMER MODELS

We study how direction can be incorporated in the undirected graph Transformer architectures using
the approaches outlined in ??. In particular, we try three variants. The first is the use of the asym-
metric attention matrix, denoted by the suffix ‘-asym’, and the second is the use of dual encodings,
denoted by ‘-dual’ from ??. The third approach is to use the directional attention that is also used in
DiGT, denoted by the suffix ‘-DA’, i.e., taking softmax across the direction axis.

We compare the variants on FlowGraph and Twitter datasets on the Vanilla Trans-
former (Vaswani et al.,|2017) and EGT (Hussain et al.| 2022)) models, and also use Malnet-tiny
on the Exphormer (Shirzad et al., 2023) model.

From Table 5] we can observe that Vanilla-asym has the best performance on most of the datasets,
with second best on FlowGraph2. Table[6]shows that EGT-asym is once again the most effective
variant. Finally, when we incorporate the different directionality approaches into Exphormer, once
again the asymmetric attention approach yields the best results on the FlowGraph and Twitter
datasets. Interestingly, as seen in Table [/} Exphormer is the only method that can run on larger
graphs like in Malnet -t iny, where Exphormer-dual results in suprior performance. In fact, since
it beats the baseline Exphormer, this represents a new SOTA result on this dataset.

E ABLATION STUDY DETAILS

E.1 DIGT VARIANTS

We also explored what happens to the performance of DiGT if we use dual encoding approach,
or if we do not use the k-hop neighborhood. Since DiGT is inherently a dual encoding based

Under review as a conference paper at ICLR 2024

Table 5: Classification accuracy of Vanilla Graph Transformer and its variants.

FlowGraph?2 | FlowGraph3 | FlowGraph6 || Twitter3 Twitter5
Model H
Vanilla Transformer | 95.58 +/- 0.66 | 68.22 +/- 0.55 | 39.56 +/- 1.61 89.12 +/-0.43 | 77.03 +/- 1.40
Vanilla-sym 95.50 +/- 0.20 | 69.28 +/- 0.75 | 41.42 +/- 0.78 91.28 +/- 0.78 | 79.42 +/- 0.48
Vanilla-dual 94.92 +/-0.51 | 65.72 +/- 0.55 | 38.36 +/- 1.34 90.43 +/-0.48 | 79.93 +/- 0.21
Vanilla-DA 93.58 +/-1.01 | 68.22 +/- 1.23 | 38.08 +/- 0.82 66.10 +/-2.53 | 44.85 +/- 3.40

Table 6: Classification accuracy of EGT and its variants

FlowGraph2 | FlowGraph3 | FlowGraph6 H Twitter3 Twitter5

Model

EGT (Hussain et al.|[2022) | 95.00 +/- 1.67 | 72.06 +/- 1.16 | 42.87 +/- 0.62 86.49 +/- 0.73 | 73.94 +/- 1.47
EGT-asym 96.50 +/- 0.89 72.39 +/- 0.55 | 42.88 +/- 0.20 || 90.37 +/- 0.29 | 82.60 +/- 0.35
EGT-dual 95.17 +/- 1.33 | 71.83 +/-2.38 | 42.81 +/- 1.02 || 90.14 +/- 0.43 | 79.66 +/- 0.79
EGT-DA 96.48 +/-0.42 | 70.83 +/-2.68 | 42.92 +/- 0.59 87.07 +/- 1.91 | 77.88 +/-2.06

Table 7: Classification accuracy of Exphormer and its variants

FlowGraph2 | FlowGraph3 | FlowGraph6 H Twitter3 Twitter5 Malnet-tiny
Model

Exphormer 96.72 +/-0.44 | 72.81 +/-0.38 | 41.70 +/- 0.39 || 89.76 +/- 0.30 | 72.72 +/- 1.40 | 94.02 +/- 0.21
Exphormer-sym | 98.41 +/- 1.18 | 74.72 +/- 2.24 | 42.67 +/- 0.80 || 90.83 +/- 1.14 | 80.07 +/- 1.18 | 93.85 +/- 0.15
Exphormer-dual | 97.42 +/-0.31 | 73.39 +/-0.90 | 42.28 +/- 0.17 || 90.78 +/- 0.81 | 79.59 +/- 0.69 | 94.23 +/- 0.20
Exphormer-DA | 97.92 +/-0.82 | 74.67 +/-0.83 | 42.454/-0.12 || 90.54 +/- 0.49 | 79.83 +/- 1.35 | 93.60 +/- 0.35

method, we did not try the asymmetric single attention matrix approach. As such, DiGT-dual uses
dual key, query and value matrices only during the attention computation, whereas DiGT has dual
embeddings in all the layers including the input, feed-forward and output layers. DiGT-DA (no
k-hops) still uses directional attention, but without the k-hop mechanism. Table[8|shows that DiGT-
DA (no k-hops) surpasses DiGT-asym across all datasets. Nevertheless, restricting the attention to
k-hop neighborhood, the default DiGT strategy, yields the best overall results on all the datasets.

Table 8: Classification accuracy of DiGT and its variants.

‘ FlowGraph2 ‘ FlowGraph3 ‘ FlowGraph6 H Twitter3 ‘ Twitter5 ‘
Model

EGT (Hussain et al.|[2022) | 95.00 +/- 1.67 | 72.06 +/- 1.16 | 42.87 +/-0.62 || 86.49 +/- 0.73 | 73.94 +/- 1.47 |

DiGT-dual 9542 +/-1.36 | 72.17 +/- 1.30 | 44.06 +/- 0.57 || 87.86 +/-2.06 | 81.13 +/- 0.15
DiGT-DA (no k-hops) 96.52 +/- 1.39 | 74.33 +/-0.54 | 46.22 +/- 1.74 || 91.31 +/- 1.14 | 85.46+/- 1.26
DiGT 97.42 +/- 0.82 | 74.55 +/- 0.69 | 46.80 +/- 0.97 || 91.67 +/- 0.79 | 85.94 +/- 0.25

E.2 ABLATION STUDY: DOUBLE SOFTMAX

We were also curious about whether implementing two softmax functions — a standard softmax to
capture neighbor relations, and a stacking softmax to capture directionality — could enhance the
overall performance. The algorithm is shown at the Equation[I] Therefore, we conduct experiments
using the vanilla transformer, EGT, and Exphormer with dual softmax configurations. However, as
Table [9] demonstrates, utilizing two softmax functions does not aid the models in capturing the di-
rectionalities within graphs. The interaction between the two softmax functions appear to adversely

Under review as a conference paper at ICLR 2024

affect each other, leading to worse performance.
Agr = softmax ((QSKTT)/\/@> Arg = softmax((QTKST) /\/dyp) ()
As7,Ars = softmax(Asr, Ars).
Y =Wsr Asr V+Wrs Arg V
where Wgr, Wrg € R¥*? are learnable weight matrices.

Table 9: Classification accuracy using Double Softmax

FlowGraph2 | FlowGraph3 | FlowGraph6 || Twitter3 Twitter5 Malnet-tiny

Model

Vanilla Transformer | 95.58 +/- 0.66 | 68.22 +/- 0.55 | 39.56 +/- 1.61 89.12 +/-0.43 | 77.03 +/- 1.40

Vanilla-asym 95.50 +/-0.20 | 69.28 +/- 0.75 | 41.42 +/- 0.78 91.28 +/- 0.78 | 79.42 +/- 0.48
Vanilla-2softmax 50.83 +/- 1.70 | 33.72 +/-2.84 | 16.69 +/- 0.58 66.38 +/-5.96 | 47.21 +/-2.96

EGT 95.00 +/- 1.67 | 72.06 +/- 1.16 | 42.87 +/- 0.62 86.49 +/-0.73 | 73.94 +/- 1.47

EGT-asym 96.50 +/- 0.89 | 72.39 +/- 0.55 | 42.88 +/- 0.20 90.37 +/- 0.29 82.60 +/- 0.35

EGT-2softmax 95.08 +/- 1.30 | 72.50 +/- 0.76 | 42.44 +/- 0.79 89.57 +/- 1.14 | 81.13 +/- 1.78

Exphormer 96.72 +/-0.44 | 72.81 +/- 0.38 | 41.70 +/- 0.39 89.76 +/-0.30 | 72.72 +/- 1.40 | 94.02 +/- 0.21
Exphormer-asym 98.41 +/- 1.18 | 74.72 +/- 2.24 | 42.67 +/- 0.80 90.83 +/-1.14 | 80.07 +/- 1.18 | 93.85 +/-0.15
Exphormer-2softmax | 97.83 +/- 0.24 | 74.69 +/- 0.21 | 42.25 +/- 0.75 90.25 +/-0.52 | 80.00 +/- 0.87 | 94.03 +/- 0.17

E.3 ABLATION STUDY: AGGREGATION

We explored alternative aggregation methods, as opposed to merely summing the two value repre-
sentations described in Equation ??. We experimented with using maximum aggregation and mean
aggregation, as follows:

V = nax(WsrAsr V7, WrsArsVs) V=mean(WsrAsrVr, WrsArsVs) 2

Based on the superior performance for Vanilla-asym, EGT-asym, and Exphormer-asym, we select
them as the baselines for this ablation study. As seen in Table both the maximum and mean
aggregation approaches fell short in performance when compared to the original summation method.

Table 10: Classification accuracy of Aggregation approaches

Model | FlowGraph2 | FlowGraph3 | FlowGraph6 || Twitter3 | Twitter5 | Malnet-tiny
Vanilla Transformer 95.58 +/- 0.66 | 68.22 +/- 0.55 | 39.56 +/- 1.61 89.12 4+/-0.43 | 77.03 +/- 1.40

Vanilla-asym 95.50 +/-0.20 | 69.28 +/- 0.75 | 41.42 +/- 0.78 91.28 +/- 0.78 | 79.42 +/- 0.48
Vanilla-asym-max 93.62 +/-0.87 | 68.75 +/-1.75 | 41.31 +/- 1.67 89.12 +/- 0.43 | 77.06 +/- 0.81
Vanilla-asym-mean 95.08 +/- 0.51 | 69.03 +/- 1.44 | 40.08 +/- 1.54 89.06 +/- 1.48 | 76.41 +/- 1.60

EGT 95.00 +/- 1.67 | 72.06 +/- 1.16 | 42.87 +/- 0.62 86.49 +/-0.73 | 73.94 +/- 1.47

EGT-asym 96.50 +/- 0.89 72.39 +/- 0.55 | 42.88 +/- 0.20 | 90.37 +/- 0.29 | 82.60 +/- 0.35

EGT-asym-max 96.50 +/- 1.47 | 69.83 +/-2.68 | 41.22 +/-1.23 85.93 +/-2.72 | 71.59 +/-5.74
EGT-asym-mean 93.83 +/-2.54 | 71.33 +/-2.36 | 43.83 +/- 0.65 86.32 +/- 1.69 | 78.53 +/- 2.67

Exphormer 96.72 +/- 0.44 | 72.81 +/- 0.38 | 41.70 +/- 0.39 89.76 +/- 0.30 | 72.72 +/- 1.40 | 94.02 +/- 0.21
Exphormer-asym 98.41 +/- 1.18 | 74.72 +/- 2.24 | 42.67 +/- 0.80 || 90.83 +/- 1.14 | 80.07 +/- 1.18 | 93.85 +/- 0.15
Exphormer-asym-max | 98.00 +/- 0.41 | 74.72 +/- 0.96 | 42.14 +/-0.12 || 90.82 +/- 0.35 | 80.01 +/-0.11 | 93.62 +/- 0.08
Exphormer-asym-mean | 98.16 +/- 0.59 | 74.44 +/-0.15 | 42.42 +/-0.59 || 90.48 +/- 0.57 | 79.63 +/- 0.43 | 93.60 +/- 0.17

F COMPLEXITY AND LIMITATIONS

We designed our experiments so that we allocate the same hardware resources (GPU/CPU, amount
of memory) for all experiments and also control the number of learned weight parameters to be
the same for all models and for a given dataset. The recorded training timings provide a good
comparison metric for empirical time complexities (i.e., given that we have constrained empirical

Under review as a conference paper at ICLR 2024

space complexities to be completely on par). Here are some results that show that our method is very
competitive with graph transformers on this dimension: Training time for DiGT is 42s/epoch (for
FlowGraph6) and 57s/epoch (for Twitter3). In comparison: for EGT (Hussain et al., [2022)),
the training time is 30s/epoch and 50s/epoch, respectively. Graph neural networks’ training time
differs significantly due to their architectures. Vanilla GCN is fast, the training time is 2s/epoch and
3s/epoch, respectively. In contrast, for PNA (Corso et al., |2020) (a GCN-based architecture), the
training time is 62s/epoch and 297s/epoch.

In general, for NV nodes and d-dimensional vectors for node representations at each layer, graph
transformers learn weight matrices (space complexity) with O(N?) parameters each, and graph
neural networks learn weight matrices with O(d?) parameters each (with both (graph) transform-
ers and GCN producing N, d-dimensional representations for the nodes), conducting matrix-matrix
multiplications respectively of (time) complexities O(N2d) and O(d?N). Given that for the graph-
level tasks we conduct, the graphs are relatively small (small N, comparable or smaller to d), this
explains the generally favorable performance of our approach. On top of this, transformer architec-
tures like ours, perform multiplications by splitting the matrix dimension d into multiple heads and
conducting resulting multiplications in parallel (on GPUs).

As such, scalability is a concern for most graph transformer models that leverage global self-
attention (i.e., learning all-to-all node correlations as in the inspiring original transformer archi-
tecture), such as EGT, which is one of our baselines. All their experiments are conducted over
collections of relatively small graphs. Our paper tries to leverage graph transformers to extract the
graph structures on directed graphs in particular.

REFERENCES

Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine
Siisstrunk. Slic superpixels compared to state-of-the-art superpixel methods. IEEE transactions
on pattern analysis and machine intelligence, 34(11):2274-2282, 2012.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph rep-
resentation learning. In International Conference on Machine Learning, pp. 3469-3489. PMLR,
2022.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Lio, and Petar Veli¢kovi¢. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260-13271, 2020.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Scott Freitas, Yuxiao Dong, Joshua Neil, and Duen Horng Chau. A large-scale database for graph
representation learning. arXiv preprint arXiv:2011.07682, 2020.

Yixuan He, Xitong Zhang, Junjie Huang, Mihai Cucuringu, and Gesine Reinert. Pytorch geometric
signed directed: A survey and software on graph neural networks for signed and directed graphs.
arXiv preprint arXiv:2202.10793, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118-22133, 2020.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention
as a replacement for graph convolution. In 28th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Under review as a conference paper at ICLR 2024

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618-21629, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yuankai Luo. Dagformer: Directed acyclic graph transformer. arXiv preprint arXiv:2210.13148,
2022.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In International Conference on Machine
Learning, 2023.

Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and Andrew Lim. Di-
graph inception convolutional networks. Advances in Neural Information Processing Systems, 33,
2020a.

Zekun Tong, Yuxuan Liang, Changsheng Sun, David S Rosenblum, and Andrew Lim. Directed
graph convolutional network. arXiv preprint arXiv:2004.13970, 2020b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

	Experiment details
	Dataset details
	FlowGraph Visualization

	Measuring Importance of Directionality
	Detailed Comparison of Directional Transformer Models
	Ablation Study Details
	DiGT Variants
	Ablation Study: Double Softmax
	Ablation Study: Aggregation

	Complexity and Limitations

