
A Algorithm

The pseudocode of SES in Poker is shown in Algorithm 1

Algorithm 1 Procedure of SES in Poker
Initialize the game environment
Initialize the private cards distribution p of player 2 as uniform distribution
Initialize the prediction of opponent private cards distribution
Compute a blueprint strategy h�1,�2i
while Game Not Terminate do

P  current player
if P = P1 then . Opponent Player

Observe opponent action a

Update the prediction of opponent’s private cards based on a

else if P = P2 then . Resolving Player
if Do Subgame Resolving on Current Node then

Compute v
�
1 (I

i
1)

Construct Gadget Game
�
S
2  CFR(Gadget Game)

else
�
S
2  �2

end if
Sample action a based on �

S
2

p(Ii2) p(Ii2) · �S
2 (I

i
2, a)

Normalize p

else . Chance Node
Sample public cards C = {c1, c2, ..., ck} from current chance node
8i = 1, 2, ..., k, pci  0
Normalize p

end if
end while

B Proofs

B.1 Proof of Theorem 4.1

Theorem 4.1 (safety) Let S be a disjoint set of subgames S. Let �⇤ = h�⇤
1 ,�

⇤
2i be the NE where P2’s

strategy is constrained to be the same with �2 outside S. Define � = maxS2S,Ii
12Stop

|CBV
�⇤2
1 (Ii1)�

v
�
1 (I

i
1)|. Let p̃(Ii1) be the reach probability given by �

⇤
1 . Let p̂(Ii1) be the estimation of reach

probability p(Ii1) given by the real opponent strategy. Define ⌧ = maxS2S,Ii
12Stop

| p̂(I
i
1)�p̃(Ii

1)
p̃(Ii

1)
|.

Whenever 1� (2⌧ + 1)↵ > 0, we have a bounded exploitability given by:

exp(�0
2)  exp(�⇤

2) +
2

1� (2⌧ + 1)↵
�. (5)

Proof:
For simplicity, we will omit the subscript of CBV

�⇤2
1 by default. In order to prove Theorem 1, we

will use mathematical induction on the level of the infoset. The depth L has the same definition as in
Brown and Sandholm [2017], i.e.

• For all the infosets which are direct parents of the subgames, we define L(I) = 0.

• For the infosets that are not ancestors of the subgames, we define L(I) = 0.

• For any infosets that are ancestors of the subgames, we define
L(I) = maxI02succ(I) L(I

0) + 1. That is, it has a higher level than any of its successors.
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Base Case of Induction

Firstly, we will prove that for any infoset with level 0, the inequality of theorem 1 holds. For
convenience, we consider that theorem 1 in a specific subgame S.

We will prove the infoset at the top of the subgame first. Since SE(�⇤
2) � (1 � ↵)(��) +

↵
P
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since �
S
2 = argmax�̃2 SE(�̃2).

Furthermore, we have

X

i

p̂(Ii1)(v
�
1 (I

i
1)� CBV

�S
2 (Ii1))

=
X

i

p̂(Ii1)(v
�
1 (I

i
1)� CBV

�⇤2 (Ii1)) +
X

i

p̂(Ii1)(CBV
�⇤2 (Ii1)� CBV

�S
2 (Ii1))

�+
X

i

p̂(Ii1)(CBV
�⇤2 (Ii1)� CBV

�S
2 (Ii1))

=�+
X

i

p̃(Ii1)(CBV
�⇤2 (Ii1)� CBV

�S
2 (Ii1))

+
X

i

(p̂(Ii1)� p̃(Ii1))(CBV
�⇤2 (Ii1)� CBV

�S
2 (Ii1))

(7)

where the second term
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Then we have
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The last inequation holds since minIj
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Back to Equation 7, we have
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And substitute it into Equation 6,
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so that
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�S
2 (Ij1)  CBV
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for all Ij1 in the subgame.

And for infoset I out of the subgame with level 0, since the refined strategy �
S
2 and blueprint strategy

�2 are the same here, the CBV value is exactly the same and the inequality holds.

Inductive Step

The inductive step mostly follows that of Brown and Sandholm [2017].

Since CBV
�S
2 (I1)  CBV

�⇤2 (I1) +
2

1�(2⌧+1)↵� holds for every subgame S, �0
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1�(2⌧+1)↵� holds for any infoset with level lower or
equal to k, we will prove that it also holds for infoset with level k + 1.
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By definition of CBV (I1),
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By substituting the definition of CBV (I 01) into the equation above,
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Finally, by mathematical induction we get
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B.2 Proof of Theorem 4.2

Theorem 4.2 (opponent exploitation) Let ✏ = kp̂�pk1 be the L1 distance of the distribution p(Ii1) and
p̂(Ii1). Let ⌘ = minS2S maxIj
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Proof: Still, we only consider a specific subgame S first.
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So, we have
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Since ⌘ is defined as minimum over all subgames, we have
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C Poker Rules

Rules of Leduc Poker

Leduc Poker is a two players game. In Leduc Poker, there are 6 cards in total, three ranks({J,Q,K})
with two suits({a, b}) each. And at the beginning, every player should put 2 chip into the pot and
then will be dealt with one private card. Then, two players alternatively bet. They can call, raise and
fold. If any of them fold, the game ends and all chips in the pot belongs to the other player. And
when a player call, he has to put chips in the pot to ensure that he contributes equal chips as the other
player in the pot. When a player raise, he has to ensure that he contributes more chips than the other
player in the pot. A betting round ends when a player calls.

Leduc Poker is divided into two betting rounds. In the first round, a private card is dealt to each
player and then two player start to bet. After the first betting round ends and nobody folds, a public
card is dealt on board and the second betting round starts. When the second round ends, both of the
player show their private hands and the stronger hands win. If a player’s private card has the same
rank as the public card, then he wins. Otherwise, we have J < Q < K and the higher one wins.
And in each betting round, there will be at most two raises in our experiment and each raise should
contribute 2 more chip in the first round and 4 more chips in the second round.
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Table 2: The payoff matrix of the example zero-sum game. The values are the payoffs for player 2.
We will resolve for player 2.

P2
P1 L M R

U 3 2 4
O 2 3 9.9
D 3 2 9.9
F -100 -100 10

Rules of Flop Hold’em Poker

The rules of Flop Hold’em Poker is similar to that of Leduc Poker. In FHP, we use the standard
52-card deck. At the beginning, the first player will contribute 1 chip to the pot and the second player
will contribute 2 chips. And then they will be dealt with 2 private cards each and the first player start
to bet. There are still two betting rounds and the raise sizes are both 2 chips. At the end of the first
betting round, there will be 3 public cards dealt on board. And the players will show their private
card at the end of the second betting round and the larger one wins the game. In FHP, we have the
same rule of card order as a standard Texas hold ’em .

D Matrix Game

In this part, we offer a matrix game as an example to show the necessity of considering safety and
expected payoff simultaneously, and to demonstrate the superiority of SES over a simple mixing
strategy, which follows a best response to the estimated opponent model with probability ↵ and
follows the blueprint with probability 1� ↵.

In the matrix game shown in Table 2, let’s consider two specific NEs. In both NEs, P1 will play L/M
with 0.5 probability each. P2 will play U/O with 0.5 probability in the first NE and O/D with 0.5
probability in the second NE. Suppose the blueprint strategy is the first NE. Consider the case when
P1 plays a rather weak strategy that he will only play R. We apply SES to search for P2’s refined
strategy.

When the estimation of opponent strategy is accurate such that p̂ = p, the best response of P2 is
always playing F, which is highly exploitable, while SES finds the second NE under proper ↵. To
give more details, the exploitability and expected payoff of the strategy found by SES and the mixing
strategy are shown in Figure 4. We can see that SES achieves both lower exploitability and better
performance than the mixing strategy at almost all ↵ values.

Theoretically, for a mixing strategy mixp(�1,�
0
1) which plays �1 with probability p, and �

0
1 with

1� p [Johanson et al., 2007], we have the following propositions.

Proposition D.1. Utility of a mixing strategy: u(mixp(�1,�
0
1),�2) = pu(�1,�2)+(1�p)u(�0

1,�2).

Proposition D.2. Exploitability of a mixing strategy: exp(mixp(�1,�
0
1))  p exp(�1) + (1 �

p) exp(�0
1). The example in Figure 4 shows that the bound is tight.

Compared with the corresponding theorems 4.1 and 4.2 of SES, we find that the simple mixing
strategy cannot provide a safety guarantee and is inferior to SES. In some circumstances, exp(�unsafe)
can be quite large. Therefore, the exploitability of the mixing strategy can also be large even for a
rather small p. In contrast, as shown in Theorem 1, SES’s exploitability does not rely on exp(�unsafe),
which makes our bound for SES tighter than that of mixed strategy in most cases.

E Implementation Details

Leduc Poker. In Leduc Poker, we solve for a blueprint strategy using a variant of CFR algorithm
[Lanctot et al., 2009, Tammelin et al., 2015] with 1M iterations in the full game. Then we apply
search in subgames when the board card is dealt.
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Figure 4: Left: Expected payoffs of SES and the mixing strategy in the proposed matrix game
example. Right: Exploitability of the two algorithms.

Flop Hold’em Poker (FHP). As for FHP, there are 1,286,792 different infosets for each betting
sequence. We cluster them into 200 infosets by an abstraction algorithm [Johanson et al., 2013] in
order to make equilibrium finding feasible. Then, we compute a blueprint strategy in this abstraction
with 10,000,000 iterations. We apply search immediately once the flop cards are dealt.

Generate estimated opponent strategy. Given p and ✏, we use the following procedure to generate
the corresponding p̂ such that |p� p̂| = ✏. 1. In the beginning, we set p̂ = p. 2. We randomly choose a
subset S+ from index set S of p̂ and we set S� = S�S+. We ensure that

P
i2S+

(1.0� p̂(i)) > ✏/2

and
P

i2S�
p̂(i) > ✏/2 by the following procedure: to get S+, S�, we will randomly permute

the index of p̂ first to get permutation A. Then, we will sample k ⇠ Uniform(1, |A|). We will
check whether S+ = {A1, ..., Ak} and S� = {Ak+1, ..., A|A|} satisfy the condition above. We will
continue the process until S+, S� satisfy the condition above. 3. We divide ✏/2 into 10,000 pieces
with value ✏

20,000 assigned to each piece. 4. For S+, we will do reject sampling to sample 10,000
pieces to different indexes. We will pick i 2 S+ randomly each time. If p̂(i) + ✏

20,000 < 1.0, we will
assign one piece to i and increase p̂(i) by ✏

20,000 . The process will continue until we have assigned
all 10, 000 pieces. We will do the same thing for S� except that only when p(i) � ✏

20,000 > 0 we
will assign one piece to i.

F Comparison with EXP-STRATEGY

Table 3, 4, and 5 show the comparison between SES and EXP-STRATEGY.

G Theoretical Bound of EXP-STRATEGY

Similar to SES, EXP-STRATEGY maximizes the following objective,
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Table 3: Exploitability and evaluation performance of SES and EXP-STRATEGY, when strategy
estimation error is 0.1.

EXPLOITABILITY EVALUATION

Prshuffle ↵ EXP-STRATEGY SES EXP-STRATEGY SES

0.0

0.0 29.43(±0.01) 29.43(±0.01) 1.20(±0.01) 1.20(±0.01)
0.3 34.64(±0.11) 28.01(±0.07) -2.55(±0.07) 2.28(±0.03)
0.7 132.06(±0.68) 41.59(±0.37) -34.75(±0.14) 1.48(±0.08)
1.0 969.77(±6.92) 55.54(±1.08) -108.02(±0.93) -1.97(±0.23)

0.3

0.0 29.43(±0.01) 29.43(±0.00) 5.15(±0.19) 5.15(±0.19)
0.3 34.75(±0.13) 28.06(±0.04) 1.63(±0.40) 6.21(±0.25)
0.7 134.37(±2.59) 41.95(±0.39) -27.22(±0.91) 6.00(±0.81)
1.0 981.47(±11.86) 55.10(±1.13) -88.94(±6.07) 3.30(±0.96)

0.7

0.0 29.43(±0.01) 29.43(±0.01) 12.35(±1.52) 12.34(±1.52)
0.3 34.84(±0.12) 28.10(±0.02) 9.68(±1.39) 13.55(±1.58)
0.7 137.72(±2.55) 41.90(±0.13) -13.80(±2.08) 13.96(±1.42)
1.0 985.82(±30.43) 55.79(±0.50) -61.84(±5.38) 11.61(±1.56)

Table 4: Exploitability and evaluation performance of SES and EXP-STRATEGY, when strategy
estimation error is 0.3.

EXPLOITABILITY EVALUATION

Prshuffle ↵ EXP-STRATEGY SES EXP-STRATEGY SES

0.0

0.0 29.43(±0.01) 29.43(±0.01) 1.20(±0.01) 1.19(±0.03)
0.3 31.49(±0.27) 26.77(±0.07) 3.19(±0.06) 2.54(±0.04)
0.7 57.80(±2.70) 26.18(±0.67) 0.81(±0.53) 3.68(±0.06)
1.0 589.02(±9.71) 30.14(±2.51) -52.78(±1.76) 4.36(±0.23)

0.3

0.0 29.43(±0.01) 29.43(±0.00) 5.15(±0.19) 5.15(±0.19)
0.3 31.61(±0.25) 26.80(±0.03) 8.40(±0.87) 6.45(±0.24)
0.7 64.77(±4.49) 26.44(±0.53) 11.31(±2.90) 7.69(±0.38)
1.0 618.06(±16.53) 30.04(±1.17) -25.57(±2.38) 8.60(±0.53)

0.7

0.0 29.43(±0.01) 29.43(±0.01) 12.35(±1.52) 12.35(±1.52)
0.3 32.20(±0.33) 26.85(±0.02) 17.12(±0.97) 13.73(±1.56)
0.7 73.91(±1.56) 27.05(±0.35) 28.26(±0.30) 15.25(±1.44)
1.0 600.82(±5.67) 32.48(±1.41) 15.38(±4.74) 16.46(±1.31)

Proof: For any subgame S 2 S, we have
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Table 5: Exploitability and evaluation performance of SES and EXP-STRATEGY, when strategy
estimation error is 0.5.

EXPLOITABILITY EVALUATION

Prshuffle ↵ EXP-STRATEGY SES EXP-STRATEGY SES

0.0

0.0 29.43(±0.00) 29.43(±0.01) 1.20(±0.01) 1.20(±0.01)
0.3 34.76(±0.21) 28.01(±0.07) -2.32(±0.11) 2.28(±0.03)
0.7 156.79(±3.54) 41.59(±0.37) -39.72(±0.70) 1.48(±0.08)
1.0 1020.47(±10.09) 55.54(±1.08) -114.78(±0.47) -1.97(±0.23)

0.3

0.0 29.43(±0.01) 29.43(±0.01) 5.15(±0.19) 5.15(±0.19)
0.3 34.90(±0.21) 28.06(±0.04) 1.85(±0.51) 6.21(±0.25)
0.7 154.67(±8.22) 41.95(±0.39) -31.78(±1.64) 6.00(±0.81)
1.0 1024.30(±15.31) 55.10(±1.13) -96.89(±5.96) 3.30(±0.96)

0.7

0.0 29.43(±0.01) 29.43(±0.01) 12.34(±1.52) 12.34(±1.52)
0.3 34.95(±0.34) 28.10(±0.02) 9.58(±1.29) 13.55(±1.58)
0.7 158.98(±5.16) 41.90(±0.13) -17.76(±1.96) 13.96(±1.42)
1.0 1019.04(±28.61) 55.79(±0.50) -70.64(±4.37) 11.61(±1.56)

where the fourth line to the fifth line is derived from the fact that the fourth line is exactly the objective
of �S

2 subtracted a constant .

That is,
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Follows the same induction step,
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Therefore, �0
2 also satisfies the inequality above since every subgame of it satisfies that.

Theorem G.2. (opponent exploitation) Let ✏ = kp̂ � pk1 be the L1 distance of the distribution
p(Ii1) and p̂(Ii1). Let ⌘ = minS2S maxIj
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Proof:
Still, we only consider a specific subgame S first.
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So, we have
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and
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Therefore,
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Since ⌘ is defined as minimum over all subgames and ⌦ is defined as maximum over all subgames,
we have
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H Choosing ↵

We find that automatically choosing ↵ by explicitly incorporating modeling accuracy into search
formulation is non-trivial. It still requires additional information like the risk you are willing to take.

(i) Without further specifications, there is always a trade-off between safety and exploitation regard-
less of opponent modeling accuracy. Since the prediction is made based on past observation, high
accuracy (confidence) cannot guarantee the success in the future (since we do not have the assump-
tion that the opponent will not change his behavior in the next round). Therefore, to incorporate
accuracy(confidence) into objective, we need more information like the risk you are willing to take.
Quantifying the relationship between modeling confidence and ↵ theoretically will require more
assumptions about the opponent’s behavior than this paper does.

(ii) Empirically, exploitation and safety correspond to a fixed ↵ and prediction accuracy differ in
different games (FHP and Leduc) as our experiments imply.

Practically, we can use learning algorithms (e.g., bandit) to automatically select ↵ in each round with
respect to one’s specific goal.

I Potential Negative Social Impacts

Malicious uses of algorithmic exploitation techniques may cause negative social impacts. For instance,
in online advertising or e-commerce, improper usage of irrationality exploitation algorithms may
lure people into a scam. In some social areas, algorithmic exploitation may exacerbate inequality
and cause extra harm to vulnerable groups. The method that we propose is general-purpose, and
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positive/negative social impacts are generally related to specific applications. For instance, in training
or education, exploitation algorithms can help trainees or students to discover their shortcomings and
have opportunities to improve. Since the exploitation algorithm requires human data to build an agent
model and estimate the distribution p̂, actions can be taken from the privacy data protection side to
prevent such malicious abuse. We believe that regulations and laws should be established to restrain
any unethical applications and protect human privacy data.
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