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S1 Derivation of MAP Estimator

We detail here the derivation of the MAP estimator (8). The functional derivative of S(xz(y), z(y))
should be zero on the MAP estimator Z(y):

35 (a). ) = [ | 53s0n(w) + 55 s0u) |y + 0601

N
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By applying operator X to (§1), we obtain a linear integral equation that derives the MAP estimator
Z(y) as follows,

N
2(y) + 2/yk(y,y’)p(y’)i(y’)dy’ =2 k(y,yn)i(yn) ", yeV.

n=1
The linearity of the integral equation permits a representation of the form
N

ﬁ;(y) = QZh(:’%yn)i‘(yn)_lv (S2)
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where h(y,y’) is a positive semi-definite kernel defined by the following integral equation,

hy.y) +2 /y Ky, 8)p(s)h(s. 3 )ds = k(y.y'). (s3)

S2 Derivation of Predictive Covariance

We detail the derivation of the predictive covariance shown in (19-20). The predictive inverse co-
variance (precision), denoted by o*(y, y’), is given by the second functional derivative of .S, which
is written as

528(x, )

o (y,y') = 52 (w)or ) =2"(y,y") + 1" (y,9'),

=T

where

N
2y, y) =2 #(Ya) 26y — yn)d(y — un),
=1

n

(S4)
W (y,y') =2p(y")o(y —y') + £ (y,9).

Let the integral operators corresponding to o (y, y'), z(y,y’), and h(y, y’) be denoted by X, Z, and
‘H, respectively, and their inverse counterparts by *. Using the fact that operator Z* is factorized as,

z :/ 2y, y)dy' =U" Z7UY,
Y
Znn’ == 271:%(3/11)257171’, u" = / ’ 5(yl - yn)dy/’
Yy

we obtain the predictive covariance o(y,y’) with a finite (thus tractable) N-dimensional matrix
representation as follows:

= / o(y,y)dy' = (2" +H) = U Z7U+H)*
Y
=H—HU(Z +UHU ) UH
— [ My - hw) (2 + B)hiy)ay'
Yy

or equivalently,
o(y.y) = hy,y) —h(y) (Z + H)"'h(y), (85)

where H,,pr = h(Yn, Yn' ), R(y) = (h(y,y1),. .. ,h(y,yn)) "; we used the Woodbury matrix iden-
tity in this derivation. Here, Equation (84) states that the operators H, K, and A = 2 fy -p(y")o(y—

y')dy’ hold the relation,
H'=A+K" & IT+KAH =K,

which is equivalent to Equation (§3). Thus h(y, y’) in (83) is equal to the equivalent kernel function
defined by Equation (83).

S3 Derivation of Marginal Likelihood

We detail the derivation of the marginal likelihood, p(D), shown in (23). Under Laplace approxi-
mation (18), we can obtain the marginal likelihood by performing path integral as follows:

log p(D) = log / exp[-S(x(y), 2(y))] 72

~ —S(i:(y),@(y)) +10g/e—%ffyxy o (y.y") (2 ()2 W) (@ (y' )2 (")) dydy’ g,

= —5(2(y),2(y)) + %1°g |21,



where we used the relation in path integral (see Equation (9) in [B]),
1 . R X
Jeo|-5 [] 0w v -sw) )ity )dydy | 22 = /T
VXY

Substituting (§T) into (7), we can write down S(& (y), @(y)) as

S(&(y), £(y))

N
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3 log |K| — 2 Zlogm(yn) + )

n=1
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= 5 log K| 221ogx(yn)+/yp(y)w(y) dy
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n=1

1
5 log |K| —log|Z| — (log2 — 1)N,

where Z,,,,, = 2’1:i(yn)25m/. Furthermore, by using the matrix determinant lemma, we can
rewrite log | X| as

log | Y| = log|H — HU(Z + UHUT ) UH)|
=log |[H| —log|Z + UHUT| +1og |(Z + UHUT) — UH)H* (HUT)]|
=log |H| —log|Z + UHU | +log | Z|
=log|H| —log|IN + Z 'H|.

Finally, we obtain the marginal likelihood in a tractable form,

log p(D) = log\Z|—flog\IN+Z YH|+ - (10g|7-£| log [K[) + (log2 — 1)N.

S4 Functional Determinant of Equivalent Kernel

We detail the derivation of the functional determinant of equivalent kernel, |#|, when the naive and
degenerate approaches are applied.

S4.1 Naive Approach
The equivalent kernel is constructed under the naive approach as follows:
h(y.y') = k(y,y') —k(y) " (W' + K)"'k(y)),

where k(y) = (k(y,y1), ..., k(y,ys)) ", Wyjr = 2w;d;;:, and K0 = k(y;,y;) for 1 < 4,5 <
J. Let the integral operators corresponding to k(y) and k(y) " be denoted by K = fy - k(y')dy'
and KT = f - k(y') T dy', respectively. Then we can rewrite |#| as

H =K-K'W '+ K)"'K|=|K|W '+ K7W+ K- KKK, (S6)

where C* is the inverse operator of /', and we used the matrix determinant lemma. Mercer’s theorem
[5] states that the kernel function and its inverse counterpart, k(y,y’) and k*(y,y’), respectively,
have diagonal representations,

Z Vmem em )7 i Vm €7TL 67” y/)7 (S7)

m=1



where {e;,(-) }sm is an orthonormal basis comprising eigenfunctions of X, and {v;, }, is the set of

eigenvalues of K. Using the relation (87), we obtain a more tractable form of KKK, the Jx.J
matrix term appeared in (§8), as follows:

(KK*KT) / / K (y,y)dydy’
/y / (Z Vmem(Y)em (Y, )(mzl Vi € (Y ’(yj’)> (mi_lum,l,emu (y)emu(y')>dydy’
= i i milvmvm'v nem (Yj)em (Yjr )( /y em(y)em/'(y)dy> ( /y em/(y’)em"(y’)dy’)

= Z Z Z VmVm'V Hem(yj)em (Y5 ) O S = Z Umem (Yj)em (Yj0) = k(y;, y5),

m=1m'=1m'"=1 m=1
or equivalently,
KK*'K" = K. (S8)
Substituting (88) into (K8H) yields the result,

| =KW + K| W™ = [K||I; + WK™

S4.2 Degenerate Approach

The equivalent kernel is constructed under the degenerate approach as follows:

Wy, y') = d(y) " (I +24) o (y),

where

M
= ¢m®omy) =dy) oY), A= /yp(y)¢(y)¢(y)Tdy~

Mercer’s theorem [H] states that the kernel function of finite rank M has a diagonal representation
such that

Z Vmem em y/) < d)(y) = Ae(y)7 Amm’ = \/ﬂ(smm’; (Sg)

where {e,(-)}m, is an orthonormal basis comprising eigenfunctions of I, and {vy, } ., is the set
of eigenvalues of KC. Using the relation (§9), we can rewrite the equivalent kernel in terms of the
Mercer expansion,

h(y,y') = e(y) " AT (In +2A4) 'Ae(y’) = (Ve(y))'E (Ve(y'), (S10)

where E is a diagonal matrix whose diagonal entries are the eigenvalues of AT (I, + 2A)7 A,
and V is the modal matrix satisfying V' TV = I;. Equation (8I0) indicates that the eigenvalues of
H is equal to that of AT (I + 2A)~ 1A, and thus the functional determinant of # is equal to the
matrix determinant of AT (I +2A)71A,

|H| = |AT(I]\4 + 2A)_1A| = |A2||I]M +2A|_1 = ‘K:HI]\/[ + 2A|_1.

S5 Experimental Settings and Additional Results

S5.1 Model Configuration
Augmented Permanental Process (APP)

Let the number of samples for quasi-Monte Carlo method be denoted by .J, and the ranks of approx-
imate kernel function for Random feature map [B] and Nystrom approximation [R, U] be denoted by
Mgrm and Myys, respectively. For all the experiments in Section 4, we used the following values:

J =21 =2048, Mgpm = 100, Myys = 500.



Nystrom approximation randomly selects Myys points from the training data points, and if Myys is
larger than the number of the training data, N, then Myys is set as V.

We employed a popular gradient descent algorithm, Adam [4], to perform the minimization problem
(see Section 2.2),

N N
1 2
{0,})_, = arg min G, G = i E ‘2 Un E h(Yns Yo )0 — 1|
n=1

Un n’=1

where the learning parameter (Ir), the maximum number of iteration (/Vy.), and the stop condition
were set as follows:

Ir =0.05(N/|T))"Y2, Ny =500, G <1072,
where | 7| denotes the measure of observation domain 7. Here, (N/|T])~!/?
mated value of v,, = z(y,) ! when the intensity is constant over domain 7.

represents the esti-

We applied to the APPs a multiplicative Gaussian kernel, k(y, y’) = 6, H?”l e~ (0ava=va)* where

the hyper-parameter 6 = (6o, ...,0p,) was optimized for each data by r;aximizing the marginal
likelihood through the 25-points grid search. As an initial estimate, we set a hyper-parameter as

Dy
0; = [[ STD[{EI 2], 65 =STD[{ya(t)})_y] " for d=1,...,D,,  (SID)
d=1

where STD represents the standard deviation, y4(t) is the d-th element of y(t), 4 is the square root
of the intensity value estimated by a histogram density estimator with B bins as,

(%)% = (# of data points € [T + A(b—1)/B, T3 + Ab/B])/A, A =T — T,

and [T ", 7] is the boundary of 7 in each dimension d. B was set as 10 in the experiments.
Then we selected a set of five values for 0y and (64, ... ,0 D, ), respectively, as

0o ={1/3,1/2,1,2,3} x 05, (61,...,0p,) ={1/3,1/2,1,2,3} x (QT,...,HEy),

and performed a grid search on the 5 x 5 = 25 hyper-parameter points. APPgp, in Section 4.1
represents APPrpy with the initial hyper-parameter (65, 67, ..., 607, ).

We implemented APPs by using TensorFlow-2.2.

Kernel Intensity Estimator (KIE) and Local Likelihood Estimator (LLE)

We implemented KIEs and LLEs through library spatstat in R [I]. We used rhohat for scenarios
of one-dimensional covariate ()) C R), and rho2hat for scenarios of two-dimensional covariate
(Y C R?), where the variants of KIEs and LLEs were specified by arguments method, smoother
and bw, while the other arguments were set as the default values.

Integrated Nested Laplace Approximation (INLA)

INLA discretizes the observation domain 7 C RP* into QP* grid cells, and takes as input the
observed number of points and the representative covariate value in each grid cell. For all the
experiments in Section 4, we set () as 100. We implemented INLA through library INLA in R
(https://www.r-inla.org/): The call in INLA to fit a model for one-dimensional covariate scenarios
was

> formula =y ~ f(inla.group(cov,n = 100), model = “rwl”,
hyper = list(prec = list(param = prior)))
> result = inla(formula, data = data, family = “poisson”,
control.inla = list(strategy = “gaussian”)),

where cov is the covariate values in grid cells, and rwl represents that the random walk model of
order 1 is used as the prior process; The call in INLA to fit a model for two-dimensional covariate



scenarios was

> formula =y ~ f(inla.group(covi,n = 100), model = “rwl”,
hyper = list(prec = list(param = prior)))

+ f(inla.group(cov2,n = 100), model = “rwl”,
hyper = list(prec = list(param = prior)))

> result = inla(formula, data = data, family = “poisson”,

control.inla = list(strategy = “gaussian”)),

where covl and cov2 represent the first and the second elements of 2D covariate values in grid
cells, respectively. prior represents the hyper-parameter of prior process, and was optimized by
maximizing the marginal likelihood through grid search: Letting the hyper-parameter be denoted by
& = (&1,&2), we selected a set of four values for each element of £ as

& ={0.1,1,10,100}, & = {0.00005,0.0001,0.001,0.01}.

and performed a grid search on the 4 x 4 = 16 hyper-parameter points.

S5.2  Details of Covariate Map

In synthetic data experiments, we created a covariate map dr(t), which was defined as the shortest
distance from a given location ¢t € T to the set of lines arranged in the shape of the letter “R”, and
the covariate map was represented by a 100 x 100 pixel grid. KIEs/LLEs used the pixel image of
covariate map as argument covariate, while APPs and INLA constructed a continuous covariate
map based on the pixel image by using a linear interpolation method.

In copper, we created a covariate map as the shortest distance from a given location ¢ to the set
of line segments representing faults, and represented the covariate map by a 512 x 512 pixel grid.
In bei and clmfires, the covariate maps are provided as a 101 x 201 pixel grid and a 200 x 200
pixel grid, respectively. The pixel images of covariate map were used with the same procedure as in
synthetic data.

S5.3 Performance Metrics

In synthetic data experiments, the predictive performance was evaluated based on the integrated
p-quantile loss [1], defined as

1.5
b= /0 2(9() =) (Plaewy>atn — (1=2)gy<aty)) dv;

where I, §(y), and g(y) denote the indicator, the predicted p-quantile of the intensity function on co-
variate domain, and the true one, respectively. The integral was computed via 2000-points numerical
integration.

In real-world data experiments, the predictive performances were evaluated based on the negative
test log likelihood of point patterns (//i.s) and the negative test likelihood of counts (clies): lliest Was
computed as

o =— Y _ logA(t) + / A(t)dt,

tEDrest T

where A(t) is the estimated intensity function (e.g. A(£) = 22(y(t)) in APPs); the observation
domain 7 C R? was discretized into 5 x 5 grid cells, and cl.; was computed as

Cliest = Z (Ae —nclog A —log(n.!)), A= / A(t)dt,

¢
c€Cyrid

where Cgig is the set of 25 grid cells, n. is the number of test event points observed in grid cell
¢ € Cgrig, and T is the domain of grid cell c¢. The 2D integral was evaluated via 500 x 500 points
numerical integration.



Table S1: Results on two types of synthetic data across 100 trials with standard errors in brackets.
The underlines represent the best predictive performances on each metric, and the performances not
significantly (p < 1072) different from the best one under the Mann-Whitney U test with Holm
method [] are shown in bold. cpu is the CPU times in second, and [V is the average data size.

(dn) a=0.2(N =232) a=0.5(N = 586) a=1.0(N = 1180)
gi\er l.025 ls lors  cpu  lozs ls lors  cpu  lozs ls los cpu
KlErag, 017 148 036 005 040 289 059 006 114 517 086 0.06
(0.06) (0.35) (0.15) (0.00) (0.32) (0.63) (0.21) (0.00) (0.74) (1.12) (0.26) (0.00)
KlErag, 019 176 066 0.05 037 325 118 006 054 490 158 0.06
(0.06) (0.34) (0.30) (0.00) (0.20) (0.61) (0.50) (0.00) (0 24) (0 81) (0.58) (0.00)
KlEres; 0.19 171 056 005 059 345 105 006 190 618 1.62 0.06
(0.09) (0.35) (0.18) (0.00) (0.42) (0.65) (0.30) (0.00) (092) (111) (0.33) (0.00)
KlEres; 0.19 1.8 090 005 036 341 180 006 056 539 289 0.06
(0.04) (0.32) (0.26) (0.01) (0.13) (0.55) (0.43) (0.00) (0.21) (0.79) (0.47) (0.00)
KIEtr 0.16 126 022 005 061 279 040 006 215 513 062 006
SL(0.10) (041) (0.10) (0.00) (0.60) (0.70) (0.14) (0.00) (1.04) (1.03) (0.18) (0.00)
KlEir, 0.15 116 021 005 029 226 036 006 043 345 051 006
(0.05) (0.35) (0.10) (0.00) (0.20) (0.52) (0.10) (0.00) (0.26) (0.84) (0.12) (0.00)
LLEra 0.17 141 023 007 043 291 057 008 1.11 505 092 008
0.09) (0.39) (0.05) (0.00) (0.34) (0.80) (0.29) (0.00) (0.85) (1.11) (0.45) (0.00)
LLEse 037 145 171 007 071 287 195 008 1.10 487 238 0.08
(0.01) (0.40) (0.05) (0.00) (0.03) (0.77) (0.07) (0.00) (0.05) (1.05) (0.10) (0.00)
LLEtr 0.16 147 029 007 037 3.08 1.00 008 091 526 213 0.08
0.07) (0.39) (0.11) (0.00) (0.27) (0.76) (0.44) (0.00) (071) (097) (0.53) (0.00)
INLA 027 131 062 101 054 254 1.00 108 0.89 151 110
(0.03) (0.30) (0.13) (6.01) (0.06) (0.51) (0.14) (5.19) (007) (070) (0.20) (6.10)
APPuas 0.14 1.08 018 930 024 193 034 141 038 274 045 255
(0.06) (0.32) (0.09) (0.52) (0.10) (0.63) (0.22) (0.80) (0.26) (0.78) (0.33) (1.05)
APPays 0.14 1.08 018 061 024 193 034 262 038 272 044 281
(0.05) (0.31) (0.09) (0.09) (0.10) (0.62) (0.22) (0.19) (0.27) (0.78) (0.33) (0.35)
APPgy 013 106 018 242 024 190 034 248 037 2.65 043 256
0.07) (0.33) (0.13) (0.17) (0.10) (0.60) (0.24) (0.07) (0.27) (0.75) (0.34) (0.05)
APP! 0.17 138 024 030 031 248 045 032 049 366 060 035
RFM  (0.04) (0.32) (0.07) (0.01) (0.12) (0.64) (0.23) (0.01) (0.24) (0.82) (0.29) (0.01)
(dn) a=0.2(N =322) a=0.5(N =801) a=1.0(N = 1610)
92\¢R loess ls  lors cpu  lozs ls  lors cpu  lozs ls  lors  cpu
KlErag; 021 165 031 005 060 344 053 006 225 641 083 006
(0.06) (0.35) (0.15) (0.00) (0.32) (0.63) (0.21) (0.00) (074) (1 12) (0.26) (0.00)
KlEra, 021 173 037 005 040 3.17 065 006 066 494 090 0.06
(0.06) (0.34) (0.30) (0.00) (0.20) (0.61) (0.50) (0.00) (0.24) (0.81) (0.58) (0.00)
KlEreg, 025 179 038 005 078 3.8 075 006 270 7.01 124 006
(0.09) (0.35) (0.18) (0.00) (0.42) (0.65) (0.30) (0.00) (0.92) (1.11) (0.33) (0.00)
KlEres, 021 178 0.60 005 039 341 129 006 065 555 221 006
0.04) (0.32) (0.26) (0.01) (0.13) (0.55) (0.43) (0.00) (0.21) (0.79) (0.47) (0.00)
KiEwg, 032 179 026 005 119 374 048 006 380 692 077 006
(0.10) (0.41) (0.10) (0.00) (0.60) (0.70) (0.14) (0.00) (1.04) (1.03) (0.18) (0.00)
KiEwg, 018 147 024 006 038 276 040 006 083 477  0.64 006
(0.05) (0.35) (0.10) (0.00) (0.20) (0.52) (0.10) (0.00) (0.26) (0.84) (0.12) (0.00)
L LEra 024 167 028 007 074 347 054 008 195 617 1.02 0.08
(0.09) (0.39) (0.05) (0.00) (0.34) (0.80) (0.29) (0.00) (0.85) (1.11) (0.45) (0.00)
L1Ere 044 168 174 007 083 347 216 008 125 616 275 008
(0.01) (0.40) (0.05) (0.00) (0.03) (0.77) (0.07) (0.00) (005) (1.05) (0.10) (0.00)
LLEtr 022 169 031 007 0359 361 095 008 150 659 224 008
0.07) (0.39) (0.11) (0.00) (0.27) (0.76) (0.44) (0.00) (0.71) (0.97) (0.53) (0.00)
INLA 045 173 134 112 096 331 222 115 168 504 345 116
(0.03) (0.30) (0.13) (6.01) (0.06) (0.51) (0.14) (5.19) (0.07) (0.70) (0.20) (6.10)
APP 015 1.06 017 101 025 1.87 027 177 040 275 044 40.1
NAL - 0.06) (0.32) (0.09) (0.52) (0.10) (0.63) (0.22) (0.80) (026) (078) (0.33) (1.05)
APP 015 1.08 018 1.02 025 1.88 027 272 039 279 044 3.15
NYS 0.05) (0.31) (0.09) (0.09) (0.10) (0.62) (0.22) (0.19) (0.27) (0.78) (0.33) (0.35)
APP 014 099 017 240 022 176 026 257 036 253 040 2.78
REM (0.07) (0.33) (0.13) (0.17) (0.10) (0.60) (0.24) (0.07) (0.27) (0.75) (0.34) (0.05)
APPlony 020 157 028 030 037 276 046 034 057 406 065 040

(0.04) (0.32) (0.07) (0.01) (0.12) (0.64) (0.23) (0.01) (0.24) (0.82) (0.29) (0.01)




Table S2: Results on real-world data across 10 trials. Notations follow Table K1I.

copper bei clmfires
Liest Cliest cpu Lest Cliest cpu Lest Cliest cpu

5.65 1.64 0.32 292 1.31 0.26 2.39 1.30 0.24

KlEras: (0.37)  (0.09) (0.01) (0.00) (0.07) (0.00) (0.00) (0.08) (0.01)
KiEra 565 1.64 033 292 1.31 025 239 130  0.24
ST 038)  (0.09) (0.01) (0.00) (0.07) (0.00) (0.00) (0.08) (0.01)
KlEre 565 1.64 033 292 1.31 025 240 138  0.24
SL0.37)  (0.09) (0.01) (0.00) (0.07) (0.00) (0.00) (0.08) (0.01)
KlEres, 565 1.64 034 292 1.31 025 240 138 024
(0.38)  (0.09) (0.02) (0.00) (0.07) (0.01) (0.00) (0.08) (0.00)

INLA 564 166 829 290 1.13 131 239 118 129
034) (0.10) (3.00) (0.01) (0.06) (3.37) (0.01) (0.06) (4.61)

APP 565 1.64 821 2.96 1.51 200 2.42 1.38 304
NAL0.37)  (0.09)  (0.50) (0.03) (0.29) (4.67) (0.03) (0.10) (8.97)
APP 565 1.64 060 287 101 156 236 115 179
NYS0.37)  (0.09) (0.06) (0.01) (0.05) (0.41) (0.01) (0.07) (1.06)
APPart 565 1.64 212 288 1.02 464 236 116  4.28

(0.37) (0.09) (0.10) (0.01) (0.05) (0.21) (0.01) (0.07) (0.22)

S5.4 Full Results

Table K1 and Table 82 display the predictive performances of all compared methods on synthetic
and real-world data, respectively.

S6 Experiment on Larger Synthetic Data Set

We created data sets according to the scenario A\ (t) = g1(dr(t)) = aexp(5 — 3dg(t)) (see Section
4.1), in which the size of each data sets was controlled by the coefficient a from a = 0.5 to = 50,
resulting in the training data sets containing from 589 to 23,653 data points on average. The compu-
tational complexity of INLA depends not on the data size but on the size of domain discretization,
and thus we compared APPrpy with INLAs of 10 x 10 INLA1p), 50 x 50 (INLA5q), 100 x 100
(INLA1g9), and 150 x 150 (INLA150) domain discretization.

Table §3 and Figure K1 display the predictive performances and the CPU times as function of the
data size, showing that our APPrpy achieved better predictive performances than INLAs, while
APPrpv Was performed substantially faster than INLAs for at least up to tens of thousands of data
points. The performance gaps were not marginal (e.g., the improvements of the integrated absolute
error [ 5 were 18% ~ 38%). Figure K3 displays the predictive performances multiplied by the CPU
times (the lower, the better), which represent the predictive performances penalized by its execution
times, that is, the ratios of predictive performance to speed. Figure K3 also shows that our APPrpy
is beneficial against INLAs.

S7 Experiment on Synthetic Data of 2D Covariate

We created 2D data sets with 2D covariate (7 C R2, Y C R?) generated from the following inten-
sity function: A(t) = 0.0laexp(5 — 3dr(t)) * exp(5 — 4dz(t)?), which has 20 trial sequences.
Here dg(t) and dz(t) denote the shortest distances from a given location ¢ to the sets of lines
arranged in the shapes of the letters “R” and “Z”, respectively. The covariate map is given as
y(t) = (dgr(t),dz(t)). The coefficient o was set as 0.5 and 1.0. The predictive performance was
evaluated based on the integrated p-quantile loss 7], defined as 1, = [}, 2(g(y)—3(y)) (Ply(y)>g(y) —

(1= p)gy)<a(y)) 4y, where I, G(y), and g(y) denote the indicator, the predicted p-quantile of the
intensity function on covariate domain, and the true one, respectively. Here, we adopted [ g25, 5
(integrated absolute error) and [ g75. Table K4l shows the result.



Table S3: Results on larger synthetic data sets across 20 trials with standard errors in brackets. cpu
is the CPU times in second, and [V is the average data size for each data set.

(o, N) = (0.5, 589) (@, N) = (1.0, 1169) (@, N) = (5.0,5921)
l.025 ls lors  cpu  lozs ls lors  cpu  lozs ls l.975 cpu
INLA o 0.41 4.25 0.76 80.3 0.66 6.33 1.15 84.1 5.84 30.8 11.5 88.9
(0.11) (0.72) (0.18) (6.32) (0.14) (1.11) (0.30) (8.61) (1.22) (2.70) (2.38) (11.1)
INLA5g 0.48 266 0091 87.9 0.81 3.96 1.25 904  2.39 10.5 3.34 95.8
0.06) (0.58) (0.13) (10.9) (0.07) (0.83) (0.12) (7.36) (0.16) (2.16) (0.23) (12.0)
INLA100 0.52 2.68 1.05 114 0.89 3.79 1.42 118 2.76 10.8 3.92 114
(0.06) (0.64) (0.15) (9.53) (0.07) (0.95) (0.14) (9.10) (0.18) (1.88) (0.33) (11.0)
INLA:150 0.53 2.64 1.06 165 0.91 3.85 1.49 166 2.85 104  4.02 151
0.06) (0.60) (0.15) (14.0) (0.07) (0.99) (0.18) (123) (0.18) (1.77) (0.33) (11.6)
APPrem 0.24 2.16 0.36 2.43 0.36 2.60 0.45 2.58 1.10 6.60 1.20 4.58
(0.06) (0.61) (0.32) (0.08) (0.17) (0.81) (0.41) (0.04) (0.83) (2.06) (0.74) (0.24)

(a, N) = (10, 11808) (a, N) = (20, 23653)
l.025 ls lors  cpu  lozs 5 lors  cpu
INLA o 17.1 59.4 27.9 97.9 50.8 119 64.0 97.5
(3.07) (4.65) (4.85) (13.5) (5.88) (6.56) (9.01) (13.5)
INLA5o 3.89 17.6 4.99 102 6.20 28.9 7.81 101
(0.26) (2.49) (0.36) (10.9) (0.32) (4.47) (0.58) (12.0)
INLA1gp0 4.54 16.8 5.88 124 7.48 28.5 9.38 121
0.28) (2.04) (0.40) (12.7) (0.35) (3.78) (0.74) (12.2)
INLA 150 4.72 17.2 6.17 160 7.73 27.4 9.81 153
(0.31) (2.89) (0.43) (13.0) (0.30) (4.83) (0.75) (11.6)
APPrrm 1.21 10.6 2.13 8.73 4.98 20.6 4.89 18.4
(0.35) (2.65) (1.47) (1.01) (5.46) (10.0) (5.25) (2.67)
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Figure S1: Results on larger synthetic data sets across 20 trials. The predictive performances and
the CPU times as function of the data size: the lower, the better.

S8 Potential Negative Societal Impacts

Although our model itself does not contain either any ethical problems or negative societal impacts,
it could predict fine spatio-temporal patterns of people’s behaviors, which might harm their privacy
in some cases, and thus great care should be taken to protect personal information.
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Figure S2: Results on larger synthetic data sets across 20 trials. The predictive performances penal-
ized by the CPU times as function of the data size: the lower, the better.

Table S4: Results on synthetic data with 2D covariate across 20 trials. cpu is the CPU time in
second, and the underlines represent the best predictive performances on each metric. Notations
follow Table KT1.

A ) a=0.5 a=1.0
1y l.o2s ls lors  cpu  lozs ls l.o7s cpu
KlErag 19.7 11.0  2.31 0.17 404 22.6 473 0.18
(2.42) (120) (0.29) (0.01) (3.43) (1.68) (0.37) (0.01)
KlErag; 19.7 11.0 231 0.16 404 226 4.73 0.19
(2.41) (120) (0.29) (0.01) (3.43) (1.68) (0.37) (0.02)
KlEreg; 260 357 454 0.17 522 7.01 8.80 0.19
(0.83) (0.17) (0.61) (0.01) (1.23) (0.30) (0.82) (0.01)
KlEres; 260 357 454 016 522 7.01 8.80 0.18
(0.83) (0.17) (0.61) (0.01) (1.22) (0.30) (0.82) (0.01)
INLA 0.78 413 7.75 143 1.59 7.44 9.81 145
(0.06) (0.86) (1.60) (4.63) (0.28) (1.76) (1.22) (6.50)
APPuys 039 364 087 7.19 063 594 149 8.87
(0.08) (0.71) (0.15) (0.68) (0.11) (1.04) (0.21) (0.58)
APP 0.38 4.70 1.79 246 059 7.69 3.04 2.95

RFM

(0.09) (0.86) (0.26) (0.12) (0.08) (1.32) (0.44) (0.26)
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Figure S3: A schema for APP. Univariate covariate () C R) and two-dimensional observation do-
main (7~ C R?) are considered in this example.
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