
Supplementary Material
“Fast Bayesian Estimation of Point Process Intensity

as Function of Covariates”

Hideaki Kim Taichi Asami Hiroyuki Toda∗
NTT Human Informatics Laboratories

NTT Corporation
{hideaki.kin.cn, taichi.asami.ka}@hco.ntt.co.jp, hirotoda@acm.org

S1 Derivation of MAP Estimator

We detail here the derivation of the MAP estimator (8). The functional derivative of S(x
(
y), x(y)

)
should be zero on the MAP estimator x̂(y):

δS
(
x̂(y), x̂(y)

)
=

∫
Y

[
δS

δx̂(y)
δx(y) +

δS

δx̂(y)
δx(y)

]
dy +O((δx)2)

≃
∫
Y

[
2ρ(y)x̂(y)−

N∑
n=1

2

x̂(yn)
δ(y − yn) +

1

2
x̂(y)

]
δxdy +

∫
Y

1

2
x̂(y)δxdy

=

∫
Y

[
2ρ(y)x̂(y)−

N∑
n=1

2

x̂(yn)
δ(y − yn) + x̂(y)

]
δxdy = 0,

where the following relation was used,∫
Y
x̂(y)δxdy =

∫
Y
x̂(y)

∫
Y
k∗(y,y′)δx(y′)dy′dy

=

∫
Y
dy′δx(y′)

∫
Y
k∗(y,y′)x̂(y)dy

=

∫
Y
x̂(y′)δxdy′. ∵) k∗(y,y′) = k∗(y′,y)

Thus the following equation is derived,

x̂(y) + 2ρ(y)x̂(y) =

N∑
n=1

2

x̂(yn)
δ(y − yn), y ∈ Y. (S1)

By applying operator K to (S1), we obtain a linear integral equation that derives the MAP estimator
x̂(y) as follows,

x̂(y) + 2

∫
Y
k(y,y′)ρ(y′)x̂(y′)dy′ = 2

N∑
n=1

k(y,yn)x̂(yn)
−1, y ∈ Y.

The linearity of the integral equation permits a representation of the form

x̂(y) = 2

N∑
n=1

h(y,yn)x̂(yn)
−1, (S2)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
∗Current affiliation is Yokohama City University.

where h(y,y′) is a positive semi-definite kernel defined by the following integral equation,

h(y,y′) + 2

∫
Y
k(y, s)ρ(s)h(s,y′)ds = k(y,y′). (S3)

S2 Derivation of Predictive Covariance

We detail the derivation of the predictive covariance shown in (19-20). The predictive inverse co-
variance (precision), denoted by σ∗(y,y′), is given by the second functional derivative of S, which
is written as

σ∗(y,y′) =
δ2S(x, x)

δx(y)δx(y′)

∣∣∣∣
x=x̂

= z∗(y,y′) + h∗(y,y′),

where

z∗(y,y′) = 2

N∑
n=1

x̂(yn)
−2δ(y − yn)δ(y

′ − yn),

h∗(y,y′) = 2ρ(y′)δ(y − y′) + k∗(y,y′).

(S4)

Let the integral operators corresponding to σ(y,y′), z(y,y′), and h(y,y′) be denoted by Σ , Z , and
H, respectively, and their inverse counterparts by ∗. Using the fact that operator Z∗ is factorized as,

Z∗ =

∫
Y
· z∗(y,y′)dy′ = U⊤Z−1U ,

Znn′ = 2−1x̂(yn)
2δnn′ , Un =

∫
Y
· δ(y′ − yn)dy

′,

we obtain the predictive covariance σ(y,y′) with a finite (thus tractable) N -dimensional matrix
representation as follows:

Σ =

∫
Y
· σ(y,y′)dy′ = (Z∗ +H∗)∗ = (U⊤Z−1U +H∗)∗

= H−HU⊤(Z + UHU⊤)∗UH

=

∫
Y
·
[
h(y,y′)− h(y)⊤(Z +H)−1h(y′)

]
dy′,

or equivalently,
σ(y,y′) = h(y,y′)− h(y)⊤(Z +H)−1h(y′), (S5)

where Hnn′ = h(yn,yn′), h(y) = (h(y,y1),. . . ,h(y,yN))⊤; we used the Woodbury matrix iden-
tity in this derivation. Here, Equation (S4) states that the operators H, K, and A = 2

∫
Y · ρ(y′)δ(y−

y′)dy′ hold the relation,
H∗ = A+K∗ ⇔ (I +KA)H = K,

which is equivalent to Equation (S3). Thus h(y,y′) in (S5) is equal to the equivalent kernel function
defined by Equation (S3).

S3 Derivation of Marginal Likelihood

We detail the derivation of the marginal likelihood, p(D), shown in (23). Under Laplace approxi-
mation (18), we can obtain the marginal likelihood by performing path integral as follows:

log p(D) = log

∫
exp

[
−S(x

(
y), x(y)

)]
Dx

≃ −S
(
x̂(y), x̂(y)

)
+ log

∫
e−

1
2

∫∫
Y×Y σ∗(y,y′)(x(y)−x̂(y))(x(y′)−x̂(y′))dydy′

Dx

= −S
(
x̂(y), x̂(y)

)
+

1

2
log |Σ |,

2

where we used the relation in path integral (see Equation (9) in [3]),∫
exp

[
−1

2

∫∫
Y×Y

σ∗(y,y′)(x(y)−x̂(y))(x(y′)−x̂(y′))dydy′
]
Dx =

√
|Σ |.

Substituting (S1) into (7), we can write down S(x̂
(
y), x̂(y)

)
as

S
(
x̂(y), x̂(y)

)
=

1

2
log |K| − 2

N∑
n=1

log x̂(yn) +

∫
Y
ρ(y)x̂(y)2dy +

1

2

∫
Y
x̂(y)x̂(y)dy

=
1

2
log |K| − 2

N∑
n=1

log x̂(yn) +

∫
Y
ρ(y)x̂(y)2dy

+
1

2

∫
Y
x̂(y)

[N∑
n=1

2

x̂(yn)
δ(y − yn)− 2ρ(y)x̂(y)

]
dy

=
1

2
log |K| − 2

N∑
n=1

log x̂(yn) +N

=
1

2
log |K| − log |Z| − (log 2− 1)N,

where Znn′ = 2−1x̂(yn)
2δnn′ . Furthermore, by using the matrix determinant lemma, we can

rewrite log |Σ | as

log |Σ | = log |H −HU⊤(Z + UHU⊤)∗UH|
= log |H| − log |Z + UHU⊤|+ log |(Z + UHU⊤)− (UH)H∗(HU⊤)|
= log |H| − log |Z + UHU⊤|+ log |Z|
= log |H| − log |IN +Z−1H|.

Finally, we obtain the marginal likelihood in a tractable form,

log p(D) = log |Z| − 1

2
log |IN +Z−1H|+ 1

2

(
log |H| − log |K|

)
+ (log 2− 1)N.

S4 Functional Determinant of Equivalent Kernel

We detail the derivation of the functional determinant of equivalent kernel, |H|, when the naive and
degenerate approaches are applied.

S4.1 Naive Approach

The equivalent kernel is constructed under the naive approach as follows:

h(y,y′) = k(y,y′)− k(y)⊤(W−1 +K)−1k(y′),

where k(y) = (k(y,y1), . . . , k(y,yJ))
⊤, Wjj′ = 2wjδjj′ , and Kjj′ = k(yj ,yj′) for 1 ≤ j, j′ ≤

J . Let the integral operators corresponding to k(y) and k(y)⊤ be denoted by K =
∫
Y · k(y′)dy′

and K⊤ =
∫
Y · k(y′)⊤dy′, respectively. Then we can rewrite |H| as

|H| = |K − K⊤(W−1 +K)−1K| = |K||W−1 +K|−1|W−1 +K −KK∗K⊤|, (S6)

where K∗ is the inverse operator of K, and we used the matrix determinant lemma. Mercer’s theorem
[5] states that the kernel function and its inverse counterpart, k(y,y′) and k∗(y,y′), respectively,
have diagonal representations,

k(y,y′) =

∞∑
m=1

νmem(y)em(y′), k∗(y,y′) =

∞∑
m=1

ν−1
m em(y)em(y′), (S7)

3

where {em(·)}m is an orthonormal basis comprising eigenfunctions of K, and {νm}m is the set of
eigenvalues of K. Using the relation (S7), we obtain a more tractable form of KK∗K⊤, the J×J
matrix term appeared in (S6), as follows:(
KK∗K⊤)

jj′
=

∫
Y

∫
Y
kj(y)kj′(y

′)k∗(y,y′)dydy′

=

∫
Y

∫
Y

(∞∑
m=1

νmem(y)em(yj)

)(∞∑
m′=1

νm′em′(y)em′(yj′)

)(∞∑
m′′=1

ν−1
m′′em′′(y)em′′(y′)

)
dydy′

=

∞∑
m=1

∞∑
m′=1

∞∑
m′′=1

νmνm′ν−1
m′′em(yj)em′(yj′)

(∫
Y
em(y)em′′(y)dy

)(∫
Y
em′(y′)em′′(y′)dy′

)

=

∞∑
m=1

∞∑
m′=1

∞∑
m′′=1

νmνm′ν−1
m′′em(yj)em′(yj′)δmm′′δm′m′′ =

∞∑
m=1

νmem(yj)em(yj′) = k(yj ,yj′),

or equivalently,
KK∗K⊤ = K. (S8)

Substituting (S8) into (S6) yields the result,

|H| = |K||W−1 +K|−1|W−1| = |K||IJ +WK|−1.

S4.2 Degenerate Approach

The equivalent kernel is constructed under the degenerate approach as follows:

h(y,y′) = ϕ(y)⊤(IM + 2A)−1ϕ(y′),

where

k(y,y′) =

M∑
m=1

ϕm(y)ϕm(y′) = ϕ(y)⊤ϕ(y′), A =

∫
Y
ρ(y)ϕ(y)ϕ(y)⊤dy.

Mercer’s theorem [5] states that the kernel function of finite rank M has a diagonal representation
such that

k(y,y′) =

M∑
m=1

νmem(y)em(y′) ⇔ ϕ(y) = Λe(y), Λmm′ =
√
νmδmm′ , (S9)

where {em(·)}m is an orthonormal basis comprising eigenfunctions of K, and {νm}m is the set
of eigenvalues of K. Using the relation (S9), we can rewrite the equivalent kernel in terms of the
Mercer expansion,

h(y,y′) = e(y)⊤Λ⊤(IM + 2A)−1Λe(y′) = (V e(y))⊤Ξ (V e(y′)), (S10)

where Ξ is a diagonal matrix whose diagonal entries are the eigenvalues of Λ⊤(IM + 2A)−1Λ,
and V is the modal matrix satisfying V ⊤V = IM . Equation (S10) indicates that the eigenvalues of
H is equal to that of Λ⊤(IM + 2A)−1Λ, and thus the functional determinant of H is equal to the
matrix determinant of Λ⊤(IM + 2A)−1Λ,

|H| = |Λ⊤(IM + 2A)−1Λ| = |Λ2||IM + 2A|−1 = |K||IM + 2A|−1.

S5 Experimental Settings and Additional Results

S5.1 Model Configuration

Augmented Permanental Process (APP)

Let the number of samples for quasi-Monte Carlo method be denoted by J , and the ranks of approx-
imate kernel function for Random feature map [6] and Nyström approximation [8, 9] be denoted by
MRFM and MNYS, respectively. For all the experiments in Section 4, we used the following values:

J = 211 = 2048, MRFM = 100, MNYS = 500.

4

Nyström approximation randomly selects MNYS points from the training data points, and if MNYS is
larger than the number of the training data, N , then MNYS is set as N .

We employed a popular gradient descent algorithm, Adam [4], to perform the minimization problem
(see Section 2.2),

{v̂n}Nn=1 = arg min
{vn}

G, G ≜ 1

N

N∑
n=1

∣∣∣2 vn

N∑
n′=1

h(yn,yn′)vn′ − 1
∣∣∣2,

where the learning parameter (lr), the maximum number of iteration (Nite), and the stop condition
were set as follows:

lr = 0.05(N/|T |)−1/2, Nite = 500, G < 10−5,

where |T | denotes the measure of observation domain T . Here, (N/|T |)−1/2 represents the esti-
mated value of vn = x(yn)

−1 when the intensity is constant over domain T .

We applied to the APPs a multiplicative Gaussian kernel, k(y,y′) = θ0
∏Dy

d=1 e
−(θd(yd−y′

d))
2

, where
the hyper-parameter θ = (θ0, . . . , θDy

) was optimized for each data by maximizing the marginal
likelihood through the 25-points grid search. As an initial estimate, we set a hyper-parameter as

θ∗0 =

Dt∏
d=1

STD
[
{x̃b

d}Bb=1

]2/d
, θ∗d = STD

[
{yd(tn)}Nn=1

]−1
for d = 1, . . . , Dy, (S11)

where STD represents the standard deviation, yd(t) is the d-th element of y(t), x̃b
d is the square root

of the intensity value estimated by a histogram density estimator with B bins as,(
x̃b
d

)2
=

(
of data points ∈

[
T min
d +∆(b− 1)/B, T min

d +∆b/B
])
/∆, ∆ = T max

d − T min
d ,

and [T min
d , T max

d] is the boundary of T in each dimension d. B was set as 10 in the experiments.
Then we selected a set of five values for θ0 and (θ1, . . . , θDy), respectively, as

θ0 = {1/3, 1/2, 1, 2, 3} × θ∗0 , (θ1, . . . , θDy) = {1/3, 1/2, 1, 2, 3} × (θ∗1 , . . . , θ
∗
Dy

),

and performed a grid search on the 5 × 5 = 25 hyper-parameter points. APP′
RFM in Section 4.1

represents APPRFM with the initial hyper-parameter (θ∗0 , θ
∗
1 , . . . , θ

∗
Dy

).

We implemented APPs by using TensorFlow-2.2.

Kernel Intensity Estimator (KIE) and Local Likelihood Estimator (LLE)

We implemented KIEs and LLEs through library spatstat in R [1]. We used rhohat for scenarios
of one-dimensional covariate (Y ⊂ R), and rho2hat for scenarios of two-dimensional covariate
(Y ⊂ R2), where the variants of KIEs and LLEs were specified by arguments method, smoother
and bw, while the other arguments were set as the default values.

Integrated Nested Laplace Approximation (INLA)

INLA discretizes the observation domain T ⊂ RDt into QDt grid cells, and takes as input the
observed number of points and the representative covariate value in each grid cell. For all the
experiments in Section 4, we set Q as 100. We implemented INLA through library INLA in R

(https://www.r-inla.org/): The call in INLA to fit a model for one-dimensional covariate scenarios
was

> formula = y ∼ f(inla.group(cov, n = 100), model = “rw1”,

hyper = list(prec = list(param = prior)))

> result = inla(formula, data = data, family = “poisson”,

control.inla = list(strategy = “gaussian”)),

where cov is the covariate values in grid cells, and rw1 represents that the random walk model of
order 1 is used as the prior process; The call in INLA to fit a model for two-dimensional covariate

5

scenarios was

> formula = y ∼ f(inla.group(cov1, n = 100), model = “rw1”,

hyper = list(prec = list(param = prior)))

+ f(inla.group(cov2, n = 100), model = “rw1”,

hyper = list(prec = list(param = prior)))

> result = inla(formula, data = data, family = “poisson”,

control.inla = list(strategy = “gaussian”)),

where cov1 and cov2 represent the first and the second elements of 2D covariate values in grid
cells, respectively. prior represents the hyper-parameter of prior process, and was optimized by
maximizing the marginal likelihood through grid search: Letting the hyper-parameter be denoted by
ξ = (ξ1, ξ2), we selected a set of four values for each element of ξ as

ξ1 = {0.1, 1, 10, 100}, ξ2 = {0.00005, 0.0001, 0.001, 0.01}.

and performed a grid search on the 4× 4 = 16 hyper-parameter points.

S5.2 Details of Covariate Map

In synthetic data experiments, we created a covariate map dR(t), which was defined as the shortest
distance from a given location t ∈ T to the set of lines arranged in the shape of the letter “R”, and
the covariate map was represented by a 100×100 pixel grid. KIEs/LLEs used the pixel image of
covariate map as argument covariate, while APPs and INLA constructed a continuous covariate
map based on the pixel image by using a linear interpolation method.

In copper, we created a covariate map as the shortest distance from a given location t to the set
of line segments representing faults, and represented the covariate map by a 512×512 pixel grid.
In bei and clmfires, the covariate maps are provided as a 101×201 pixel grid and a 200×200
pixel grid, respectively. The pixel images of covariate map were used with the same procedure as in
synthetic data.

S5.3 Performance Metrics

In synthetic data experiments, the predictive performance was evaluated based on the integrated
ρ-quantile loss [7], defined as

lρ ≜
∫ 1.5

0

2
(
g(y)−ĝ(y)

)(
ρIg(y)>ĝ(y) −

(
1−ρ

)
Ig(y)≤ĝ(y)

)
dy,

where I, ĝ(y), and g(y) denote the indicator, the predicted ρ-quantile of the intensity function on co-
variate domain, and the true one, respectively. The integral was computed via 2000-points numerical
integration.

In real-world data experiments, the predictive performances were evaluated based on the negative
test log likelihood of point patterns (lltest) and the negative test likelihood of counts (cltest): lltest was
computed as

lltest = −
∑

t∈Dtest

log λ̂(t) +

∫
T
λ̂(t)dt,

where ˆλ(t) is the estimated intensity function (e.g. λ̂(t) = x̂2(y(t)) in APPs); the observation
domain T ⊂ R2 was discretized into 5×5 grid cells, and cltest was computed as

cltest =
∑

c∈Cgrid

(Λc − nc log Λc − log(nc!)), Λc =

∫
T c

λ̂(t)dt,

where Cgrid is the set of 25 grid cells, nc is the number of test event points observed in grid cell
c ∈ Cgrid, and T c is the domain of grid cell c. The 2D integral was evaluated via 500×500 points
numerical integration.

6

Table S1: Results on two types of synthetic data across 100 trials with standard errors in brackets.
The underlines represent the best predictive performances on each metric, and the performances not
significantly (p < 10−2) different from the best one under the Mann-Whitney U test with Holm
method [2] are shown in bold. cpu is the CPU times in second, and Ñ is the average data size.

g1(dR)
α = 0.2 (Ñ = 232) α = 0.5 (Ñ = 586) α = 1.0 (Ñ = 1180)

l.025 l.5 l.975 cpu l.025 l.5 l.975 cpu l.025 l.5 l.975 cpu

KIEraSI
0.17 1.48 0.36 0.05 0.40 2.89 0.59 0.06 1.14 5.17 0.86 0.06
(0.06) (0.35) (0.15) (0.00) (0.32) (0.63) (0.21) (0.00) (0.74) (1.12) (0.26) (0.00)

KIEraSJ
0.19 1.76 0.66 0.05 0.37 3.25 1.18 0.06 0.54 4.90 1.58 0.06
(0.06) (0.34) (0.30) (0.00) (0.20) (0.61) (0.50) (0.00) (0.24) (0.81) (0.58) (0.00)

KIEreSI
0.19 1.71 0.56 0.05 0.59 3.45 1.05 0.06 1.90 6.18 1.62 0.06
(0.09) (0.35) (0.18) (0.00) (0.42) (0.65) (0.30) (0.00) (0.92) (1.11) (0.33) (0.00)

KIEreSJ
0.19 1.82 0.90 0.05 0.36 3.41 1.80 0.06 0.56 5.39 2.89 0.06
(0.04) (0.32) (0.26) (0.01) (0.13) (0.55) (0.43) (0.00) (0.21) (0.79) (0.47) (0.00)

KIEtrSI
0.16 1.26 0.22 0.05 0.61 2.79 0.40 0.06 2.15 5.13 0.62 0.06
(0.10) (0.41) (0.10) (0.00) (0.60) (0.70) (0.14) (0.00) (1.04) (1.03) (0.18) (0.00)

KIEtrSJ
0.15 1.16 0.21 0.05 0.29 2.26 0.36 0.06 0.43 3.45 0.51 0.06
(0.05) (0.35) (0.10) (0.00) (0.20) (0.52) (0.10) (0.00) (0.26) (0.84) (0.12) (0.00)

LLEra 0.17 1.41 0.23 0.07 0.43 2.91 0.57 0.08 1.11 5.05 0.92 0.08
(0.09) (0.39) (0.05) (0.00) (0.34) (0.80) (0.29) (0.00) (0.85) (1.11) (0.45) (0.00)

LLEre 0.37 1.45 1.71 0.07 0.71 2.87 1.95 0.08 1.10 4.87 2.38 0.08
(0.01) (0.40) (0.05) (0.00) (0.03) (0.77) (0.07) (0.00) (0.05) (1.05) (0.10) (0.00)

LLEtr 0.16 1.47 0.29 0.07 0.37 3.08 1.00 0.08 0.91 5.26 2.13 0.08
(0.07) (0.39) (0.11) (0.00) (0.27) (0.76) (0.44) (0.00) (0.71) (0.97) (0.53) (0.00)

INLA 0.27 1.31 0.62 101 0.54 2.54 1.00 108 0.89 3.71 1.51 110
(0.03) (0.30) (0.13) (6.01) (0.06) (0.51) (0.14) (5.19) (0.07) (0.70) (0.20) (6.10)

APPNAI
0.14 1.08 0.18 9.30 0.24 1.93 0.34 14.1 0.38 2.74 0.45 25.5
(0.06) (0.32) (0.09) (0.52) (0.10) (0.63) (0.22) (0.80) (0.26) (0.78) (0.33) (1.05)

APPNYS
0.14 1.08 0.18 0.61 0.24 1.93 0.34 2.62 0.38 2.72 0.44 2.81
(0.05) (0.31) (0.09) (0.09) (0.10) (0.62) (0.22) (0.19) (0.27) (0.78) (0.33) (0.35)

APPRFM
0.13 1.06 0.18 2.42 0.24 1.90 0.34 2.48 0.37 2.65 0.43 2.56
(0.07) (0.33) (0.13) (0.17) (0.10) (0.60) (0.24) (0.07) (0.27) (0.75) (0.34) (0.05)

APP′
RFM

0.17 1.38 0.24 0.30 0.31 2.48 0.45 0.32 0.49 3.66 0.60 0.35
(0.04) (0.32) (0.07) (0.01) (0.12) (0.64) (0.23) (0.01) (0.24) (0.82) (0.29) (0.01)

g2(dR)
α = 0.2 (Ñ = 322) α = 0.5 (Ñ = 801) α = 1.0 (Ñ = 1610)

l.025 l.5 l.975 cpu l.025 l.5 l.975 cpu l.025 l.5 l.975 cpu

KIEraSI
0.21 1.65 0.31 0.05 0.60 3.44 0.53 0.06 2.25 6.41 0.83 0.06
(0.06) (0.35) (0.15) (0.00) (0.32) (0.63) (0.21) (0.00) (0.74) (1.12) (0.26) (0.00)

KIEraSJ
0.21 1.73 0.37 0.05 0.40 3.17 0.65 0.06 0.66 4.94 0.90 0.06
(0.06) (0.34) (0.30) (0.00) (0.20) (0.61) (0.50) (0.00) (0.24) (0.81) (0.58) (0.00)

KIEreSI
0.25 1.79 0.38 0.05 0.78 3.82 0.75 0.06 2.70 7.01 1.24 0.06
(0.09) (0.35) (0.18) (0.00) (0.42) (0.65) (0.30) (0.00) (0.92) (1.11) (0.33) (0.00)

KIEreSJ
0.21 1.78 0.60 0.05 0.39 3.41 1.29 0.06 0.65 5.55 2.21 0.06
(0.04) (0.32) (0.26) (0.01) (0.13) (0.55) (0.43) (0.00) (0.21) (0.79) (0.47) (0.00)

KIEtrSI
0.32 1.79 0.26 0.05 1.19 3.74 0.48 0.06 3.80 6.92 0.77 0.06
(0.10) (0.41) (0.10) (0.00) (0.60) (0.70) (0.14) (0.00) (1.04) (1.03) (0.18) (0.00)

KIEtrSJ
0.18 1.47 0.24 0.06 0.38 2.76 0.40 0.06 0.83 4.77 0.64 0.06
(0.05) (0.35) (0.10) (0.00) (0.20) (0.52) (0.10) (0.00) (0.26) (0.84) (0.12) (0.00)

LLEra 0.24 1.67 0.28 0.07 0.74 3.47 0.54 0.08 1.95 6.17 1.02 0.08
(0.09) (0.39) (0.05) (0.00) (0.34) (0.80) (0.29) (0.00) (0.85) (1.11) (0.45) (0.00)

LLEre 0.44 1.68 1.74 0.07 0.83 3.47 2.16 0.08 1.25 6.16 2.75 0.08
(0.01) (0.40) (0.05) (0.00) (0.03) (0.77) (0.07) (0.00) (0.05) (1.05) (0.10) (0.00)

LLEtr 0.22 1.69 0.31 0.07 0.59 3.61 0.95 0.08 1.50 6.59 2.24 0.08
(0.07) (0.39) (0.11) (0.00) (0.27) (0.76) (0.44) (0.00) (0.71) (0.97) (0.53) (0.00)

INLA 0.45 1.73 1.34 112 0.96 3.31 2.22 115 1.68 5.04 3.45 116
(0.03) (0.30) (0.13) (6.01) (0.06) (0.51) (0.14) (5.19) (0.07) (0.70) (0.20) (6.10)

APPNAI
0.15 1.06 0.17 10.1 0.25 1.87 0.27 17.7 0.40 2.75 0.44 40.1
(0.06) (0.32) (0.09) (0.52) (0.10) (0.63) (0.22) (0.80) (0.26) (0.78) (0.33) (1.05)

APPNYS
0.15 1.08 0.18 1.02 0.25 1.88 0.27 2.72 0.39 2.79 0.44 3.15
(0.05) (0.31) (0.09) (0.09) (0.10) (0.62) (0.22) (0.19) (0.27) (0.78) (0.33) (0.35)

APPRFM
0.14 0.99 0.17 2.40 0.22 1.76 0.26 2.57 0.36 2.53 0.40 2.78
(0.07) (0.33) (0.13) (0.17) (0.10) (0.60) (0.24) (0.07) (0.27) (0.75) (0.34) (0.05)

APP′
RFM

0.20 1.57 0.28 0.30 0.37 2.76 0.46 0.34 0.57 4.06 0.65 0.40
(0.04) (0.32) (0.07) (0.01) (0.12) (0.64) (0.23) (0.01) (0.24) (0.82) (0.29) (0.01)

7

Table S2: Results on real-world data across 10 trials. Notations follow Table S1.
copper bei clmfires

ltest cltest cpu ltest cltest cpu ltest cltest cpu

KIEraSI
5.65 1.64 0.32 2.92 1.31 0.26 2.39 1.30 0.24

(0.37) (0.09) (0.01) (0.00) (0.07) (0.00) (0.00) (0.08) (0.01)

KIEraSJ
5.65 1.64 0.33 2.92 1.31 0.25 2.39 1.30 0.24

(0.38) (0.09) (0.01) (0.00) (0.07) (0.00) (0.00) (0.08) (0.01)

KIEreSI
5.65 1.64 0.33 2.92 1.31 0.25 2.40 1.38 0.24

(0.37) (0.09) (0.01) (0.00) (0.07) (0.00) (0.00) (0.08) (0.01)

KIEreSJ
5.65 1.64 0.34 2.92 1.31 0.25 2.40 1.38 0.24

(0.38) (0.09) (0.02) (0.00) (0.07) (0.01) (0.00) (0.08) (0.00)

INLA 5.64 1.66 82.9 2.90 1.13 131 2.39 1.18 129
(0.34) (0.10) (3.00) (0.01) (0.06) (3.37) (0.01) (0.06) (4.61)

APPNAI
5.65 1.64 8.21 2.96 1.51 200 2.42 1.38 304

(0.37) (0.09) (0.50) (0.03) (0.29) (4.67) (0.03) (0.10) (8.97)

APPNYS
5.65 1.64 0.60 2.87 1.01 15.6 2.36 1.15 17.9

(0.37) (0.09) (0.06) (0.01) (0.05) (0.41) (0.01) (0.07) (1.06)

APPRFM
5.65 1.64 2.12 2.88 1.02 4.64 2.36 1.16 4.28

(0.37) (0.09) (0.10) (0.01) (0.05) (0.21) (0.01) (0.07) (0.22)

S5.4 Full Results

Table S1 and Table S2 display the predictive performances of all compared methods on synthetic
and real-world data, respectively.

S6 Experiment on Larger Synthetic Data Set

We created data sets according to the scenario λ1(t) = g1(dR(t)) = α exp(5− 3dR(t)) (see Section
4.1), in which the size of each data sets was controlled by the coefficient α from α = 0.5 to α = 50,
resulting in the training data sets containing from 589 to 23,653 data points on average. The compu-
tational complexity of INLA depends not on the data size but on the size of domain discretization,
and thus we compared APPRFM with INLAs of 10 × 10 (INLA10), 50 × 50 (INLA50), 100 × 100
(INLA100), and 150× 150 (INLA150) domain discretization.

Table S3 and Figure S1 display the predictive performances and the CPU times as function of the
data size, showing that our APPRFM achieved better predictive performances than INLAs, while
APPRFM was performed substantially faster than INLAs for at least up to tens of thousands of data
points. The performance gaps were not marginal (e.g., the improvements of the integrated absolute
error l.5 were 18% ∼ 38%). Figure S3 displays the predictive performances multiplied by the CPU
times (the lower, the better), which represent the predictive performances penalized by its execution
times, that is, the ratios of predictive performance to speed. Figure S3 also shows that our APPRFM
is beneficial against INLAs.

S7 Experiment on Synthetic Data of 2D Covariate

We created 2D data sets with 2D covariate (T ⊂ R2, Y ⊂ R2) generated from the following inten-
sity function: λ(t) = 0.01α exp(5 − 3dR(t)) ∗ exp(5 − 4dZ(t)

2), which has 20 trial sequences.
Here dR(t) and dZ(t) denote the shortest distances from a given location t to the sets of lines
arranged in the shapes of the letters “R” and “Z”, respectively. The covariate map is given as
y(t) = (dR(t), dZ(t)). The coefficient α was set as 0.5 and 1.0. The predictive performance was
evaluated based on the integrated ρ-quantile loss [7], defined as lρ≜

∫
Y 2

(
g(y)−ĝ(y)

)(
ρIg(y)>ĝ(y)−(

1−ρ
)
Ig(y)≤ĝ(y)

)
dy, where I, ĝ(y), and g(y) denote the indicator, the predicted ρ-quantile of the

intensity function on covariate domain, and the true one, respectively. Here, we adopted l.025, l.5
(integrated absolute error) and l.975. Table S4 shows the result.

8

Table S3: Results on larger synthetic data sets across 20 trials with standard errors in brackets. cpu
is the CPU times in second, and Ñ is the average data size for each data set.

(α, Ñ) = (0.5, 589) (α, Ñ) = (1.0, 1169) (α, Ñ) = (5.0, 5921)
l.025 l.5 l.975 cpu l.025 l.5 l.975 cpu l.025 l.5 l.975 cpu

INLA10 0.41 4.25 0.76 80.3 0.66 6.33 1.15 84.1 5.84 30.8 11.5 88.9
(0.11) (0.72) (0.18) (6.32) (0.14) (1.11) (0.30) (8.61) (1.22) (2.70) (2.38) (11.1)

INLA50 0.48 2.66 0.91 87.9 0.81 3.96 1.25 90.4 2.39 10.5 3.34 95.8
(0.06) (0.58) (0.13) (10.9) (0.07) (0.83) (0.12) (7.36) (0.16) (2.16) (0.23) (12.0)

INLA100 0.52 2.68 1.05 114 0.89 3.79 1.42 118 2.76 10.8 3.92 114
(0.06) (0.64) (0.15) (9.53) (0.07) (0.95) (0.14) (9.10) (0.18) (1.88) (0.33) (11.0)

INLA150 0.53 2.64 1.06 165 0.91 3.85 1.49 166 2.85 10.4 4.02 151
(0.06) (0.60) (0.15) (14.0) (0.07) (0.99) (0.18) (12.3) (0.18) (1.77) (0.33) (11.6)

APPRFM 0.24 2.16 0.36 2.43 0.36 2.60 0.45 2.58 1.10 6.60 1.20 4.58
(0.06) (0.61) (0.32) (0.08) (0.17) (0.81) (0.41) (0.04) (0.83) (2.06) (0.74) (0.24)

(α, Ñ) = (10, 11808) (α, Ñ) = (20, 23653)
l.025 l.5 l.975 cpu l.025 l.5 l.975 cpu

INLA10 17.1 59.4 27.9 97.9 50.8 119 64.0 97.5
(3.07) (4.65) (4.85) (13.5) (5.88) (6.56) (9.01) (13.5)

INLA50 3.89 17.6 4.99 102 6.20 28.9 7.81 101
(0.26) (2.49) (0.36) (10.9) (0.32) (4.47) (0.58) (12.0)

INLA100 4.54 16.8 5.88 124 7.48 28.5 9.38 121
(0.28) (2.04) (0.40) (12.7) (0.35) (3.78) (0.74) (12.2)

INLA150 4.72 17.2 6.17 160 7.73 27.4 9.81 153
(0.31) (2.89) (0.43) (13.0) (0.30) (4.83) (0.75) (11.6)

APPRFM 1.21 10.6 2.13 8.73 4.98 20.6 4.89 18.4
(0.35) (2.65) (1.47) (1.01) (5.46) (10.0) (5.25) (2.67)

l
 .0

2
5

l
 .5

l
 .9

7
5

C
P

U
 t
im

e
 [
s
e

c
]

5 10 15 20 250

Data size [x10]
3

10

0

20

30

40

50

5 10 15 20 250

Data size [x10]
3

5 10 15 20 250

Data size [x10]
3

5 10 15 20 250

Data size [x10]
3

0

20

40

60

0

25

50

75

100

0

50

150

100

APPRFM

INLA10

INLA50

INLA100

INLA150

Figure S1: Results on larger synthetic data sets across 20 trials. The predictive performances and
the CPU times as function of the data size: the lower, the better.

S8 Potential Negative Societal Impacts

Although our model itself does not contain either any ethical problems or negative societal impacts,
it could predict fine spatio-temporal patterns of people’s behaviors, which might harm their privacy
in some cases, and thus great care should be taken to protect personal information.

9

1

0

2

3

4

5
APPRFM

INLA10

INLA50

INLA100

INLA150

5 10 15 20 250

Data size [x10]
3

5 10 15 20 250

Data size [x10]
3

5 10 15 20 250

Data size [x10]
3

0

25

50

75

100

l
 .0

2
5
 x

 c
p

u
 [

x
1

0

]

3

l
 .5
 x

 c
p

u
 [

x
1

0

]

2

0

2

4

6

l
 .9

7
5
 x

 c
p

u
 [

x
1

0

]

3

Figure S2: Results on larger synthetic data sets across 20 trials. The predictive performances penal-
ized by the CPU times as function of the data size: the lower, the better.

Table S4: Results on synthetic data with 2D covariate across 20 trials. cpu is the CPU time in
second, and the underlines represent the best predictive performances on each metric. Notations
follow Table S1.

λ1(y)
α = 0.5 α = 1.0

l.025 l.5 l.975 cpu l.025 l.5 l.975 cpu

KIEraSI
19.7 11.0 2.31 0.17 40.4 22.6 4.73 0.18
(2.42) (1.20) (0.29) (0.01) (3.43) (1.68) (0.37) (0.01)

KIEraSJ
19.7 11.0 2.31 0.16 40.4 22.6 4.73 0.19
(2.41) (1.20) (0.29) (0.01) (3.43) (1.68) (0.37) (0.02)

KIEreSI
2.60 3.57 4.54 0.17 5.22 7.01 8.80 0.19
(0.83) (0.17) (0.61) (0.01) (1.23) (0.30) (0.82) (0.01)

KIEreSJ
2.60 3.57 4.54 0.16 5.22 7.01 8.80 0.18
(0.83) (0.17) (0.61) (0.01) (1.22) (0.30) (0.82) (0.01)

INLA 0.78 4.13 7.75 143 1.59 7.44 9.81 145
(0.06) (0.86) (1.60) (4.63) (0.28) (1.76) (1.22) (6.50)

APPNYS
0.39 3.64 0.87 7.19 0.63 5.94 1.49 8.87
(0.08) (0.71) (0.15) (0.68) (0.11) (1.04) (0.21) (0.58)

APPRFM
0.38 4.70 1.79 2.46 0.59 7.69 3.04 2.95
(0.09) (0.86) (0.26) (0.12) (0.08) (1.32) (0.44) (0.26)

References
[1] Adrian Baddeley and Rolf Turner. Spatstat: an R package for analyzing spatial point patterns.

Journal of Statistical Software, 12:1–42, 2005.

[2] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of
Statistics, pages 65–70, 1979.

[3] Hideaki Kim. Fast Bayesian inference for Gaussian Cox processes via path integral formulation.
In Advances in Neural Information Processing Systems 34, 2021.

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[5] James Mercer. Functions of positive and negative type, and their connection with the theory
of integral equations. Philosophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character, 209:415–446, 1909.

10

0 2 4 6 8 10

2

4

6

8

10

Covariate map: y(t) Intensity: λ(t) = x2(y(t))Latent function of covariate: x(y) Point events: { tn }

Generate

TTT

Figure S3: A schema for APP. Univariate covariate (Y ⊂ R) and two-dimensional observation do-
main (T ⊂ R2) are considered in this example.

[6] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances
in Neural Information Processing Systems 20, 2007.

[7] Matthias Seeger, David Salinas, and Valentin Flunkert. Bayesian intermittent demand forecast-
ing for large inventories. In Advances in Neural Information Processing Systems 29, 2016.

[8] Christopher Williams and Matthias Seeger. The effect of the input density distribution on kernel-
based classifiers. In International Conference on Machine Learning, pages 1159–1166. Citeseer,
2000.

[9] Christopher Williams and Matthias Seeger. Using the Nyström method to speed up kernel
machines. In Advances in Neural Information Processing Systems 13, 2000.

11

	Derivation of MAP Estimator
	Derivation of Predictive Covariance
	Derivation of Marginal Likelihood
	Functional Determinant of Equivalent Kernel
	Naive Approach
	Degenerate Approach

	Experimental Settings and Additional Results
	Model Configuration
	Details of Covariate Map
	Performance Metrics
	Full Results

	Experiment on Larger Synthetic Data Set
	Experiment on Synthetic Data of 2D Covariate
	Potential Negative Societal Impacts

