# Supplementary Material "Fast Bayesian Estimation of Point Process Intensity as Function of Covariates"

Hideaki Kim Taichi Asami Hiroyuki Toda\* NTT Human Informatics Laboratories NTT Corporation {hideaki.kin.cn, taichi.asami.ka}@hco.ntt.co.jp, hirotoda@acm.org

## S1 Derivation of MAP Estimator

We detail here the derivation of the MAP estimator (8). The functional derivative of  $S(x(y), \underline{x}(y))$  should be zero on the MAP estimator  $\hat{x}(y)$ :

$$\begin{split} \delta S\big(\hat{x}(\boldsymbol{y}), \underline{\hat{x}}(\boldsymbol{y})\big) &= \int_{\mathcal{Y}} \left[ \frac{\delta S}{\delta \hat{x}(\boldsymbol{y})} \delta x(\boldsymbol{y}) + \frac{\delta S}{\delta \underline{\hat{x}}(\boldsymbol{y})} \delta \underline{x}(\boldsymbol{y}) \right] d\boldsymbol{y} + O((\delta x)^2) \\ &\simeq \int_{\mathcal{Y}} \left[ 2\rho(\boldsymbol{y}) \hat{x}(\boldsymbol{y}) - \sum_{n=1}^{N} \frac{2}{\hat{x}(\boldsymbol{y}_n)} \delta(\boldsymbol{y} - \boldsymbol{y}_n) + \frac{1}{2} \underline{\hat{x}}(\boldsymbol{y}) \right] \delta x d\boldsymbol{y} + \int_{\mathcal{Y}} \frac{1}{2} \hat{x}(\boldsymbol{y}) \delta \underline{x} d\boldsymbol{y} \\ &= \int_{\mathcal{Y}} \left[ 2\rho(\boldsymbol{y}) \hat{x}(\boldsymbol{y}) - \sum_{n=1}^{N} \frac{2}{\hat{x}(\boldsymbol{y}_n)} \delta(\boldsymbol{y} - \boldsymbol{y}_n) + \underline{\hat{x}}(\boldsymbol{y}) \right] \delta x d\boldsymbol{y} = 0, \end{split}$$

where the following relation was used,

$$\begin{split} \int_{\mathcal{Y}} \hat{x}(\boldsymbol{y}) \delta \underline{x} d\boldsymbol{y} &= \int_{\mathcal{Y}} \hat{x}(\boldsymbol{y}) \int_{\mathcal{Y}} k^*(\boldsymbol{y}, \boldsymbol{y}') \delta x(\boldsymbol{y}') d\boldsymbol{y}' d\boldsymbol{y} \\ &= \int_{\mathcal{Y}} d\boldsymbol{y}' \delta x(\boldsymbol{y}') \int_{\mathcal{Y}} k^*(\boldsymbol{y}, \boldsymbol{y}') \hat{x}(\boldsymbol{y}) d\boldsymbol{y} \\ &= \int_{\mathcal{Y}} \underline{\hat{x}}(\boldsymbol{y}') \delta x d\boldsymbol{y}'. \quad \because k^*(\boldsymbol{y}, \boldsymbol{y}') = k^*(\boldsymbol{y}', \boldsymbol{y}) \end{split}$$

Thus the following equation is derived,

$$\underline{\hat{x}}(\boldsymbol{y}) + 2\rho(\boldsymbol{y})\hat{x}(\boldsymbol{y}) = \sum_{n=1}^{N} \frac{2}{\hat{x}(\boldsymbol{y}_n)} \delta(\boldsymbol{y} - \boldsymbol{y}_n), \quad \boldsymbol{y} \in \mathcal{Y}.$$
(S1)

By applying operator  $\mathcal{K}$  to (S1), we obtain a linear integral equation that derives the MAP estimator  $\hat{x}(y)$  as follows,

$$\hat{x}(\boldsymbol{y}) + 2 \int_{\mathcal{Y}} k(\boldsymbol{y}, \boldsymbol{y}') \rho(\boldsymbol{y}') \hat{x}(\boldsymbol{y}') d\boldsymbol{y}' = 2 \sum_{n=1}^{N} k(\boldsymbol{y}, \boldsymbol{y}_n) \hat{x}(\boldsymbol{y}_n)^{-1}, \quad \boldsymbol{y} \in \mathcal{Y}.$$

The linearity of the integral equation permits a representation of the form

$$\hat{x}(\boldsymbol{y}) = 2\sum_{n=1}^{N} h(\boldsymbol{y}, \boldsymbol{y}_n) \hat{x}(\boldsymbol{y}_n)^{-1},$$
(S2)

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

<sup>\*</sup>Current affiliation is Yokohama City University.

where h(y, y') is a positive semi-definite kernel defined by the following integral equation,

$$h(\boldsymbol{y}, \boldsymbol{y}') + 2 \int_{\mathcal{Y}} k(\boldsymbol{y}, \boldsymbol{s}) \rho(\boldsymbol{s}) h(\boldsymbol{s}, \boldsymbol{y}') d\boldsymbol{s} = k(\boldsymbol{y}, \boldsymbol{y}').$$
(S3)

## S2 Derivation of Predictive Covariance

We detail the derivation of the predictive covariance shown in (19-20). The predictive inverse covariance (precision), denoted by  $\sigma^*(\boldsymbol{y}, \boldsymbol{y}')$ , is given by the second functional derivative of S, which is written as

$$\sigma^*(\boldsymbol{y}, \boldsymbol{y}') = \frac{\delta^2 S(x, \underline{x})}{\delta x(\boldsymbol{y}) \delta x(\boldsymbol{y}')} \bigg|_{x=\hat{x}} = z^*(\boldsymbol{y}, \boldsymbol{y}') + h^*(\boldsymbol{y}, \boldsymbol{y}'),$$

where

$$z^{*}(\boldsymbol{y}, \boldsymbol{y}') = 2 \sum_{n=1}^{N} \hat{x}(\boldsymbol{y}_{n})^{-2} \delta(\boldsymbol{y} - \boldsymbol{y}_{n}) \delta(\boldsymbol{y}' - \boldsymbol{y}_{n}),$$
  

$$h^{*}(\boldsymbol{y}, \boldsymbol{y}') = 2\rho(\boldsymbol{y}') \delta(\boldsymbol{y} - \boldsymbol{y}') + k^{*}(\boldsymbol{y}, \boldsymbol{y}').$$
(S4)

Let the integral operators corresponding to  $\sigma(\mathbf{y}, \mathbf{y}')$ ,  $z(\mathbf{y}, \mathbf{y}')$ , and  $h(\mathbf{y}, \mathbf{y}')$  be denoted by  $\Sigma, Z$ , and  $\mathcal{H}$ , respectively, and their inverse counterparts by \*. Using the fact that operator  $Z^*$  is factorized as,

$$\begin{aligned} \mathcal{Z}^* &= \int_{\mathcal{Y}} \cdot z^*(\boldsymbol{y}, \boldsymbol{y}') d\boldsymbol{y}' = \mathcal{U}^\top \boldsymbol{Z}^{-1} \mathcal{U}, \\ \boldsymbol{Z}_{nn'} &= 2^{-1} \hat{x}(\boldsymbol{y}_n)^2 \delta_{nn'}, \quad \mathcal{U}_n = \int_{\mathcal{Y}} \cdot \delta(\boldsymbol{y}' - \boldsymbol{y}_n) d\boldsymbol{y}' \end{aligned}$$

we obtain the predictive covariance  $\sigma(\mathbf{y}, \mathbf{y}')$  with a finite (thus tractable) N-dimensional matrix representation as follows:

$$\begin{split} \boldsymbol{\varSigma} & = \int_{\mathcal{Y}} \cdot \boldsymbol{\sigma}(\boldsymbol{y}, \boldsymbol{y}') d\boldsymbol{y}' = (\mathcal{Z}^* + \mathcal{H}^*)^* = (\mathcal{U}^\top \boldsymbol{Z}^{-1} \mathcal{U} + \mathcal{H}^*)^* \\ & = \mathcal{H} - \mathcal{H} \mathcal{U}^\top (\boldsymbol{Z} + \mathcal{U} \mathcal{H} \mathcal{U}^\top)^* \mathcal{U} \mathcal{H} \\ & = \int_{\mathcal{Y}} \cdot \left[ h(\boldsymbol{y}, \boldsymbol{y}') - \boldsymbol{h}(\boldsymbol{y})^\top (\boldsymbol{Z} + \boldsymbol{H})^{-1} \boldsymbol{h}(\boldsymbol{y}') \right] d\boldsymbol{y}', \end{split}$$

or equivalently,

$$\sigma(\boldsymbol{y}, \boldsymbol{y}') = h(\boldsymbol{y}, \boldsymbol{y}') - \boldsymbol{h}(\boldsymbol{y})^{\top} (\boldsymbol{Z} + \boldsymbol{H})^{-1} \boldsymbol{h}(\boldsymbol{y}'), \tag{S5}$$

where  $\boldsymbol{H}_{nn'} = h(\boldsymbol{y}_n, \boldsymbol{y}_{n'}), h(\boldsymbol{y}) = (h(\boldsymbol{y}, \boldsymbol{y}_1), \dots, h(\boldsymbol{y}, \boldsymbol{y}_N))^{\top}$ ; we used the Woodbury matrix identity in this derivation. Here, Equation (S4) states that the operators  $\mathcal{H}, \mathcal{K}$ , and  $\mathcal{A} = 2 \int_{\mathcal{Y}} \cdot \rho(\boldsymbol{y}') \delta(\boldsymbol{y} - \boldsymbol{y}') d\boldsymbol{y}'$  hold the relation,

$$\mathcal{H}^* = \mathcal{A} + \mathcal{K}^* \iff (\mathcal{I} + \mathcal{K}\mathcal{A})\mathcal{H} = \mathcal{K},$$

which is equivalent to Equation (S3). Thus h(y, y') in (S5) is equal to the equivalent kernel function defined by Equation (S3).

## S3 Derivation of Marginal Likelihood

We detail the derivation of the marginal likelihood, p(D), shown in (23). Under Laplace approximation (18), we can obtain the marginal likelihood by performing path integral as follows:

$$\begin{split} \log p(\mathcal{D}) &= \log \int \exp\left[-S(x(\boldsymbol{y}), \underline{x}(\boldsymbol{y}))\right] \mathscr{D}x \\ &\simeq -S\left(\hat{x}(\boldsymbol{y}), \underline{\hat{x}}(\boldsymbol{y})\right) + \log \int e^{-\frac{1}{2} \iint_{\mathcal{Y}\times\mathcal{Y}} \sigma^*(\boldsymbol{y}, \boldsymbol{y}')(x(\boldsymbol{y}) - \hat{x}(\boldsymbol{y}))(x(\boldsymbol{y}') - \hat{x}(\boldsymbol{y}'))d\boldsymbol{y}d\boldsymbol{y}'} \mathscr{D}x \\ &= -S\left(\hat{x}(\boldsymbol{y}), \underline{\hat{x}}(\boldsymbol{y})\right) + \frac{1}{2} \log |\Sigma|, \end{split}$$

where we used the relation in path integral (see Equation (9) in [3]),

$$\int \exp\left[-\frac{1}{2} \iint_{\mathcal{Y}\times\mathcal{Y}} \sigma^*(\boldsymbol{y},\boldsymbol{y}')(x(\boldsymbol{y})-\hat{x}(\boldsymbol{y}))(x(\boldsymbol{y}')-\hat{x}(\boldsymbol{y}'))d\boldsymbol{y}d\boldsymbol{y}'\right] \mathscr{D}x = \sqrt{|\Sigma|}.$$

Substituting (S1) into (7), we can write down  $S(\hat{x}(y), \hat{x}(y))$  as

$$\begin{split} S(\hat{x}(\boldsymbol{y}), \hat{\underline{x}}(\boldsymbol{y})) &= \frac{1}{2} \log |\mathcal{K}| - 2 \sum_{n=1}^{N} \log \hat{x}(\boldsymbol{y}_n) + \int_{\mathcal{Y}} \rho(\boldsymbol{y}) \hat{x}(\boldsymbol{y})^2 d\boldsymbol{y} + \frac{1}{2} \int_{\mathcal{Y}} \hat{x}(\boldsymbol{y}) \hat{\underline{x}}(\boldsymbol{y}) d\boldsymbol{y} \\ &= \frac{1}{2} \log |\mathcal{K}| - 2 \sum_{n=1}^{N} \log \hat{x}(\boldsymbol{y}_n) + \int_{\mathcal{Y}} \rho(\boldsymbol{y}) \hat{x}(\boldsymbol{y})^2 d\boldsymbol{y} \\ &\quad + \frac{1}{2} \int_{\mathcal{Y}} \hat{x}(\boldsymbol{y}) \left[ \sum_{n=1}^{N} \frac{2}{\hat{x}(\boldsymbol{y}_n)} \delta(\boldsymbol{y} - \boldsymbol{y}_n) - 2\rho(\boldsymbol{y}) \hat{x}(\boldsymbol{y}) \right] d\boldsymbol{y} \\ &= \frac{1}{2} \log |\mathcal{K}| - 2 \sum_{n=1}^{N} \log \hat{x}(\boldsymbol{y}_n) + N \\ &= \frac{1}{2} \log |\mathcal{K}| - \log |\boldsymbol{Z}| - (\log 2 - 1)N, \end{split}$$

where  $Z_{nn'} = 2^{-1} \hat{x}(y_n)^2 \delta_{nn'}$ . Furthermore, by using the matrix determinant lemma, we can rewrite  $\log |\Sigma|$  as

$$\begin{split} \log |\Sigma| &= \log |\mathcal{H} - \mathcal{H}\mathcal{U}^{\top} (\boldsymbol{Z} + \mathcal{U}\mathcal{H}\mathcal{U}^{\top})^{*} \mathcal{U}\mathcal{H}| \\ &= \log |\mathcal{H}| - \log |\boldsymbol{Z} + \mathcal{U}\mathcal{H}\mathcal{U}^{\top}| + \log |(\boldsymbol{Z} + \mathcal{U}\mathcal{H}\mathcal{U}^{\top}) - (\mathcal{U}\mathcal{H})\mathcal{H}^{*} (\mathcal{H}\mathcal{U}^{\top})| \\ &= \log |\mathcal{H}| - \log |\boldsymbol{Z} + \mathcal{U}\mathcal{H}\mathcal{U}^{\top}| + \log |\boldsymbol{Z}| \\ &= \log |\mathcal{H}| - \log |\boldsymbol{I}_{N} + \boldsymbol{Z}^{-1}\boldsymbol{H}|. \end{split}$$

Finally, we obtain the marginal likelihood in a tractable form,

$$\log p(\mathcal{D}) = \log |\mathbf{Z}| - \frac{1}{2} \log |\mathbf{I}_N + \mathbf{Z}^{-1}\mathbf{H}| + \frac{1}{2} \left( \log |\mathcal{H}| - \log |\mathcal{K}| \right) + (\log 2 - 1)N.$$

## S4 Functional Determinant of Equivalent Kernel

We detail the derivation of the functional determinant of equivalent kernel,  $|\mathcal{H}|$ , when the naive and degenerate approaches are applied.

#### S4.1 Naive Approach

The equivalent kernel is constructed under the naive approach as follows:

$$h(\boldsymbol{y}, \boldsymbol{y}') = k(\boldsymbol{y}, \boldsymbol{y}') - \boldsymbol{k}(\boldsymbol{y})^{\top} (\boldsymbol{W}^{-1} + \boldsymbol{K})^{-1} \boldsymbol{k}(\boldsymbol{y}'),$$

where  $\mathbf{k}(\mathbf{y}) = (k(\mathbf{y}, \mathbf{y}_1), \dots, k(\mathbf{y}, \mathbf{y}_J))^\top$ ,  $\mathbf{W}_{jj'} = 2w_j \delta_{jj'}$ , and  $\mathbf{K}_{jj'} = k(\mathbf{y}_j, \mathbf{y}_{j'})$  for  $1 \leq j, j' \leq J$ . Let the integral operators corresponding to  $\mathbf{k}(\mathbf{y})$  and  $\mathbf{k}(\mathbf{y})^\top$  be denoted by  $\underline{\mathcal{K}} = \int_{\mathcal{Y}} \cdot \mathbf{k}(\mathbf{y}') d\mathbf{y}'$  and  $\underline{\mathcal{K}}^\top = \int_{\mathcal{Y}} \cdot \mathbf{k}(\mathbf{y}')^\top d\mathbf{y}'$ , respectively. Then we can rewrite  $|\mathcal{H}|$  as

$$|\mathcal{H}| = |\mathcal{K} - \underline{\mathcal{K}}^{\top} (\boldsymbol{W}^{-1} + \boldsymbol{K})^{-1} \underline{\mathcal{K}}| = |\mathcal{K}| |\boldsymbol{W}^{-1} + \boldsymbol{K}|^{-1} |\boldsymbol{W}^{-1} + \boldsymbol{K} - \underline{\mathcal{K}} \mathcal{K}^{*} \underline{\mathcal{K}}^{\top}|, \qquad (S6)$$

where  $\mathcal{K}^*$  is the inverse operator of  $\mathcal{K}$ , and we used the matrix determinant lemma. Mercer's theorem [5] states that the kernel function and its inverse counterpart, k(y, y') and  $k^*(y, y')$ , respectively, have diagonal representations,

$$k(\mathbf{y}, \mathbf{y}') = \sum_{m=1}^{\infty} \nu_m e_m(\mathbf{y}) e_m(\mathbf{y}'), \quad k^*(\mathbf{y}, \mathbf{y}') = \sum_{m=1}^{\infty} \nu_m^{-1} e_m(\mathbf{y}) e_m(\mathbf{y}'), \tag{S7}$$

where  $\{e_m(\cdot)\}_m$  is an orthonormal basis comprising eigenfunctions of  $\mathcal{K}$ , and  $\{\nu_m\}_m$  is the set of eigenvalues of  $\mathcal{K}$ . Using the relation (S7), we obtain a more tractable form of  $\underline{\mathcal{K}}\mathcal{K}^*\underline{\mathcal{K}}^\top$ , the  $J \times J$  matrix term appeared in (S6), as follows:

$$\begin{split} \left(\underline{\mathcal{K}}\mathcal{K}^{*}\underline{\mathcal{K}}^{\top}\right)_{jj'} &= \int_{\mathcal{Y}}\int_{\mathcal{Y}}\mathbf{k}_{j}(\mathbf{y})\mathbf{k}_{j'}(\mathbf{y}')k^{*}(\mathbf{y},\mathbf{y}')d\mathbf{y}d\mathbf{y}'\\ &= \int_{\mathcal{Y}}\int_{\mathcal{Y}}\left(\sum_{m=1}^{\infty}\nu_{m}e_{m}(\mathbf{y})e_{m}(\mathbf{y}_{j})\right)\left(\sum_{m'=1}^{\infty}\nu_{m'}e_{m'}(\mathbf{y})e_{m'}(\mathbf{y}_{j'})\right)\left(\sum_{m''=1}^{\infty}\nu_{m''}e_{m''}(\mathbf{y})e_{m''}(\mathbf{y}')\right)d\mathbf{y}d\mathbf{y}'\\ &= \sum_{m=1}^{\infty}\sum_{m'=1}^{\infty}\sum_{m''=1}^{\infty}\nu_{m}\nu_{m'}\nu_{m''}^{-1}e_{m}(\mathbf{y}_{j})e_{m'}(\mathbf{y}_{j'})\left(\int_{\mathcal{Y}}e_{m}(\mathbf{y})e_{m''}(\mathbf{y})d\mathbf{y}\right)\left(\int_{\mathcal{Y}}e_{m'}(\mathbf{y}')e_{m''}(\mathbf{y}')d\mathbf{y}'\right)\\ &= \sum_{m=1}^{\infty}\sum_{m'=1}^{\infty}\sum_{m''=1}^{\infty}\nu_{m}\nu_{m'}\nu_{m''}^{-1}e_{m}(\mathbf{y}_{j})e_{m'}(\mathbf{y}_{j'})\delta_{mm''}\delta_{m'm''} = \sum_{m=1}^{\infty}\nu_{m}e_{m}(\mathbf{y}_{j})e_{m}(\mathbf{y}_{j'})=k(\mathbf{y}_{j},\mathbf{y}_{j'}), \end{split}$$

or equivalently,

$$\underline{\mathcal{K}}\underline{\mathcal{K}}^*\underline{\mathcal{K}}^{\top} = \boldsymbol{K}.$$
(S8)

Substituting (S8) into (S6) yields the result,

$$|\mathcal{H}| = |\mathcal{K}||W^{-1} + K|^{-1}|W^{-1}| = |\mathcal{K}||I_J + WK|^{-1}.$$

#### S4.2 Degenerate Approach

The equivalent kernel is constructed under the degenerate approach as follows:

$$h(\boldsymbol{y}, \boldsymbol{y}') = \boldsymbol{\phi}(\boldsymbol{y})^{\top} (\boldsymbol{I}_M + 2\boldsymbol{A})^{-1} \boldsymbol{\phi}(\boldsymbol{y}'),$$

where

$$k(\boldsymbol{y},\boldsymbol{y}') = \sum_{m=1}^{M} \phi_m(\boldsymbol{y}) \phi_m(\boldsymbol{y}') = \boldsymbol{\phi}(\boldsymbol{y})^{\top} \boldsymbol{\phi}(\boldsymbol{y}'), \ \boldsymbol{A} = \int_{\mathcal{Y}} \rho(\boldsymbol{y}) \boldsymbol{\phi}(\boldsymbol{y}) \boldsymbol{\phi}(\boldsymbol{y})^{\top} d\boldsymbol{y}.$$

Mercer's theorem [5] states that the kernel function of finite rank M has a diagonal representation such that

$$k(\boldsymbol{y},\boldsymbol{y}') = \sum_{m=1}^{M} \nu_m e_m(\boldsymbol{y}) e_m(\boldsymbol{y}') \quad \Leftrightarrow \quad \boldsymbol{\phi}(\boldsymbol{y}) = \boldsymbol{\Lambda} \boldsymbol{e}(\boldsymbol{y}), \quad \boldsymbol{\Lambda}_{mm'} = \sqrt{\nu_m} \delta_{mm'}, \qquad (S9)$$

where  $\{e_m(\cdot)\}_m$  is an orthonormal basis comprising eigenfunctions of  $\mathcal{K}$ , and  $\{\nu_m\}_m$  is the set of eigenvalues of  $\mathcal{K}$ . Using the relation (S9), we can rewrite the equivalent kernel in terms of the Mercer expansion,

$$h(\boldsymbol{y},\boldsymbol{y}') = \boldsymbol{e}(\boldsymbol{y})^{\top} \boldsymbol{\Lambda}^{\top} (\boldsymbol{I}_M + 2\boldsymbol{A})^{-1} \boldsymbol{\Lambda} \boldsymbol{e}(\boldsymbol{y}') = (\boldsymbol{V} \boldsymbol{e}(\boldsymbol{y}))^{\top} \boldsymbol{\Xi} (\boldsymbol{V} \boldsymbol{e}(\boldsymbol{y}')), \quad (S10)$$

where  $\Xi$  is a diagonal matrix whose diagonal entries are the eigenvalues of  $\Lambda^{\top} (I_M + 2A)^{-1} \Lambda$ , and V is the modal matrix satisfying  $V^{\top} V = I_M$ . Equation (S10) indicates that the eigenvalues of  $\mathcal{H}$  is equal to that of  $\Lambda^{\top} (I_M + 2A)^{-1} \Lambda$ , and thus the functional determinant of  $\mathcal{H}$  is equal to the matrix determinant of  $\Lambda^{\top} (I_M + 2A)^{-1} \Lambda$ ,

$$|\mathcal{H}| = |\mathbf{\Lambda}^{\top} (\mathbf{I}_M + 2\mathbf{A})^{-1} \mathbf{\Lambda}| = |\mathbf{\Lambda}^2| |\mathbf{I}_M + 2\mathbf{A}|^{-1} = |\mathcal{K}| |\mathbf{I}_M + 2\mathbf{A}|^{-1}.$$

## S5 Experimental Settings and Additional Results

#### S5.1 Model Configuration

#### Augmented Permanental Process (APP)

Let the number of samples for quasi-Monte Carlo method be denoted by J, and the ranks of approximate kernel function for Random feature map [6] and Nyström approximation [8, 9] be denoted by  $M_{\text{RFM}}$  and  $M_{\text{NYS}}$ , respectively. For all the experiments in Section 4, we used the following values:

$$J = 2^{11} = 2048, \quad M_{\rm RFM} = 100, \quad M_{\rm NYS} = 500.$$

Nyström approximation randomly selects  $M_{NYS}$  points from the training data points, and if  $M_{NYS}$  is larger than the number of the training data, N, then  $M_{NYS}$  is set as N.

We employed a popular gradient descent algorithm, *Adam* [4], to perform the minimization problem (see Section 2.2),

$$\{\hat{v}_n\}_{n=1}^N = \operatorname*{arg\,min}_{\{v_n\}} G \triangleq \frac{1}{N} \sum_{n=1}^N \left| 2 \, v_n \sum_{n'=1}^N h(\boldsymbol{y}_n, \boldsymbol{y}_{n'}) v_{n'} - 1 \right|^2,$$

where the learning parameter (lr), the maximum number of iteration  $(N_{ite})$ , and the stop condition were set as follows:

$$lr = 0.05(N/|\mathcal{T}|)^{-1/2}, \quad N_{\text{ite}} = 500, \quad G < 10^{-5},$$

where  $|\mathcal{T}|$  denotes the measure of observation domain  $\mathcal{T}$ . Here,  $(N/|\mathcal{T}|)^{-1/2}$  represents the estimated value of  $v_n = x(y_n)^{-1}$  when the intensity is constant over domain  $\mathcal{T}$ .

We applied to the APPs a multiplicative Gaussian kernel,  $k(\boldsymbol{y}, \boldsymbol{y}') = \theta_0 \prod_{d=1}^{D_y} e^{-(\theta_d(y_d - y'_d))^2}$ , where the hyper-parameter  $\theta = (\theta_0, \dots, \theta_{D_y})$  was optimized for each data by maximizing the marginal likelihood through the 25-points grid search. As an initial estimate, we set a hyper-parameter as

$$\theta_0^* = \prod_{d=1}^{D_t} \text{STD}\big[\{\tilde{x}_d^b\}_{b=1}^B\big]^{2/d}, \quad \theta_d^* = \text{STD}\big[\{\boldsymbol{y}_d(\boldsymbol{t}_n)\}_{n=1}^N\big]^{-1} \text{ for } d = 1, \dots, D_y, \quad (S11)$$

where STD represents the standard deviation,  $y_d(t)$  is the *d*-th element of y(t),  $\tilde{x}_d^b$  is the square root of the intensity value estimated by a histogram density estimator with *B* bins as,

$$(\tilde{x}_d^b)^2 = (\# \text{ of data points } \in [\mathcal{T}_d^{\min} + \Delta(b-1)/B, \ \mathcal{T}_d^{\min} + \Delta b/B])/\Delta, \ \Delta = \mathcal{T}_d^{\max} - \mathcal{T}_d^{\min},$$

and  $[\mathcal{T}_d^{\min}, \mathcal{T}_d^{\max}]$  is the boundary of  $\mathcal{T}$  in each dimension d. B was set as 10 in the experiments. Then we selected a set of five values for  $\theta_0$  and  $(\theta_1, \ldots, \theta_{D_y})$ , respectively, as

$$\theta_0 = \{1/3, 1/2, 1, 2, 3\} \times \theta_0^*, \quad (\theta_1, \dots, \theta_{D_y}) = \{1/3, 1/2, 1, 2, 3\} \times (\theta_1^*, \dots, \theta_{D_y}^*),$$

and performed a grid search on the  $5 \times 5 = 25$  hyper-parameter points. APP'<sub>RFM</sub> in Section 4.1 represents APP<sub>RFM</sub> with the initial hyper-parameter  $(\theta_0^*, \theta_1^*, \dots, \theta_{D_n}^*)$ .

We implemented APPs by using TensorFlow-2.2.

#### Kernel Intensity Estimator (KIE) and Local Likelihood Estimator (LLE)

We implemented KIEs and LLEs through library spatstat in R [1]. We used rhohat for scenarios of one-dimensional covariate ( $\mathcal{Y} \subset \mathbb{R}$ ), and rho2hat for scenarios of two-dimensional covariate ( $\mathcal{Y} \subset \mathbb{R}^2$ ), where the variants of KIEs and LLEs were specified by arguments method, smoother and bw, while the other arguments were set as the default values.

#### Integrated Nested Laplace Approximation (INLA)

INLA discretizes the observation domain  $\mathcal{T} \subset \mathcal{R}^{D_t}$  into  $Q^{D_t}$  grid cells, and takes as input the observed number of points and the representative covariate value in each grid cell. For all the experiments in Section 4, we set Q as 100. We implemented INLA through library INLA in R (https://www.r-inla.org/): The call in INLA to fit a model for one-dimensional covariate scenarios was

where cov is the covariate values in grid cells, and rw1 represents that the random walk model of order 1 is used as the prior process; The call in INLA to fit a model for two-dimensional covariate

scenarios was

where cov1 and cov2 represent the first and the second elements of 2D covariate values in grid cells, respectively. prior represents the hyper-parameter of prior process, and was optimized by maximizing the marginal likelihood through grid search: Letting the hyper-parameter be denoted by  $\boldsymbol{\xi} = (\xi_1, \xi_2)$ , we selected a set of four values for each element of  $\boldsymbol{\xi}$  as

 $\xi_1 = \{0.1, 1, 10, 100\}, \quad \xi_2 = \{0.00005, 0.0001, 0.001, 0.01\}.$ 

and performed a grid search on the  $4 \times 4 = 16$  hyper-parameter points.

#### S5.2 Details of Covariate Map

In synthetic data experiments, we created a covariate map  $d_R(t)$ , which was defined as the shortest distance from a given location  $t \in \mathcal{T}$  to the set of lines arranged in the shape of the letter "R", and the covariate map was represented by a  $100 \times 100$  pixel grid. KIEs/LLEs used the pixel image of covariate map as argument covariate, while APPs and INLA constructed a continuous covariate map based on the pixel image by using a linear interpolation method.

In copper, we created a covariate map as the shortest distance from a given location t to the set of line segments representing faults, and represented the covariate map by a  $512 \times 512$  pixel grid. In bei and clmfires, the covariate maps are provided as a  $101 \times 201$  pixel grid and a  $200 \times 200$  pixel grid, respectively. The pixel images of covariate map were used with the same procedure as in synthetic data.

#### **S5.3** Performance Metrics

In synthetic data experiments, the predictive performance was evaluated based on the integrated  $\rho$ -quantile loss [7], defined as

$$l_{\rho} \triangleq \int_{0}^{1.5} 2(g(y) - \hat{g}(y)) (\rho \mathbf{I}_{g(y) > \hat{g}(y)} - (1 - \rho) \mathbf{I}_{g(y) \le \hat{g}(y)}) dy,$$

where I,  $\hat{g}(y)$ , and g(y) denote the indicator, the predicted  $\rho$ -quantile of the intensity function on covariate domain, and the true one, respectively. The integral was computed via 2000-points numerical integration.

In real-world data experiments, the predictive performances were evaluated based on the negative test log likelihood of point patterns ( $ll_{test}$ ) and the negative test likelihood of counts ( $cl_{test}$ ):  $ll_{test}$  was computed as

$$ll_{ ext{test}} = -\sum_{oldsymbol{t}\in\mathcal{D}_{ ext{test}}} \log \hat{\lambda}(oldsymbol{t}) + \int_{\mathcal{T}} \hat{\lambda}(oldsymbol{t}) doldsymbol{t},$$

where  $\hat{\lambda}(t)$  is the estimated intensity function (e.g.  $\hat{\lambda}(t) = \hat{x}^2(y(t))$  in APPs); the observation domain  $\mathcal{T} \subset \mathcal{R}^2$  was discretized into  $5 \times 5$  grid cells, and  $cl_{\text{test}}$  was computed as

$$cl_{ ext{test}} = \sum_{c \in \mathcal{C}_{ ext{grid}}} (\Lambda_c - n_c \log \Lambda_c - \log(n_c!)), \quad \Lambda_c = \int_{\mathcal{T}^c} \hat{\lambda}(t) dt,$$

where  $C_{\text{grid}}$  is the set of 25 grid cells,  $n_c$  is the number of test event points observed in grid cell  $c \in C_{\text{grid}}$ , and  $\mathcal{T}^c$  is the domain of grid cell c. The 2D integral was evaluated via  $500 \times 500$  points numerical integration.

Table S1: Results on two types of synthetic data across 100 trials with standard errors in brackets. The underlines represent the best predictive performances on each metric, and the performances not significantly ( $p < 10^{-2}$ ) different from the best one under the Mann-Whitney U test with Holm method [2] are shown in bold. *cpu* is the CPU times in second, and  $\tilde{N}$  is the average data size.

|                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                              | = 0.2 (1                                                                                                                                                                                                                                                                                                                                 | $\tilde{N} = 22^{\circ}$                                                                                                                                                                                                                                                                | 2)                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -05(i)                                                                                                                                                                                                                                                                                                                        | $\tilde{N} = 586$                                                                                                                                                                                                                                                                  | 3)                                                                                                                                                                                                                                                                                                                                                | $\alpha = 1.0 \; (\tilde{N} = 1180)$                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $g_1(d_R)$                                                                                                                                                                                      | $l_{.025}$                                                                                                                                                                                                                                                                                                                     | = 0.2 (1)<br>$l_{.5}$                                                                                                                                                                                                                                                                                                                    | $l_{.975} = 2.52$                                                                                                                                                                                                                                                                       | cpu                                                                                                                                                                                                                                                                                                                                                | $l_{.025}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 0.5 (1)<br>$l_{.5}$                                                                                                                                                                                                                                                                                                         | $l_{.975} = 0.000$                                                                                                                                                                                                                                                                 | cpu                                                                                                                                                                                                                                                                                                                                               | $l_{.025}$                                                                                                                                                                                                                                                                                                                    | $l_{.5}$                                                                                                                                                                                                                                                                                                             | $l_{.975}$                                                                                                                                                                                                                                                                                        | cpu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KIEra <sub>SI</sub>                                                                                                                                                                             | 0.17                                                                                                                                                                                                                                                                                                                           | 1.48                                                                                                                                                                                                                                                                                                                                     | 0.36                                                                                                                                                                                                                                                                                    | 0.05                                                                                                                                                                                                                                                                                                                                               | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.89                                                                                                                                                                                                                                                                                                                          | 0.59                                                                                                                                                                                                                                                                               | 0.06                                                                                                                                                                                                                                                                                                                                              | 1.14                                                                                                                                                                                                                                                                                                                          | 5.17                                                                                                                                                                                                                                                                                                                 | 0.86                                                                                                                                                                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ringi                                                                                                                                                                                           | (0.06)                                                                                                                                                                                                                                                                                                                         | (0.35)                                                                                                                                                                                                                                                                                                                                   | (0.15)                                                                                                                                                                                                                                                                                  | (0.00)                                                                                                                                                                                                                                                                                                                                             | (0.32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.63)                                                                                                                                                                                                                                                                                                                        | (0.21)                                                                                                                                                                                                                                                                             | (0.00)                                                                                                                                                                                                                                                                                                                                            | (0.74)                                                                                                                                                                                                                                                                                                                        | (1.12)                                                                                                                                                                                                                                                                                                               | (0.26)                                                                                                                                                                                                                                                                                            | (0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>KIE</b> ra <sub>SJ</sub>                                                                                                                                                                     | 0.19                                                                                                                                                                                                                                                                                                                           | 1.76                                                                                                                                                                                                                                                                                                                                     | 0.66                                                                                                                                                                                                                                                                                    | 0.05                                                                                                                                                                                                                                                                                                                                               | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.25                                                                                                                                                                                                                                                                                                                          | 1.18                                                                                                                                                                                                                                                                               | 0.06                                                                                                                                                                                                                                                                                                                                              | 0.54                                                                                                                                                                                                                                                                                                                          | 4.90                                                                                                                                                                                                                                                                                                                 | 1.58                                                                                                                                                                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| KILIASJ                                                                                                                                                                                         | (0.06)                                                                                                                                                                                                                                                                                                                         | (0.34)                                                                                                                                                                                                                                                                                                                                   | (0.30)                                                                                                                                                                                                                                                                                  | (0.00)                                                                                                                                                                                                                                                                                                                                             | (0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.61)                                                                                                                                                                                                                                                                                                                        | (0.50)                                                                                                                                                                                                                                                                             | (0.00)                                                                                                                                                                                                                                                                                                                                            | (0.24)                                                                                                                                                                                                                                                                                                                        | (0.81)                                                                                                                                                                                                                                                                                                               | (0.58)                                                                                                                                                                                                                                                                                            | (0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>VIE</b> no                                                                                                                                                                                   | 0.19                                                                                                                                                                                                                                                                                                                           | 1.71                                                                                                                                                                                                                                                                                                                                     | 0.56                                                                                                                                                                                                                                                                                    | 0.05                                                                                                                                                                                                                                                                                                                                               | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.45                                                                                                                                                                                                                                                                                                                          | 1.05                                                                                                                                                                                                                                                                               | 0.06                                                                                                                                                                                                                                                                                                                                              | 1.90                                                                                                                                                                                                                                                                                                                          | 6.18                                                                                                                                                                                                                                                                                                                 | 1.62                                                                                                                                                                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| KIEre <sub>SI</sub>                                                                                                                                                                             | (0.09)                                                                                                                                                                                                                                                                                                                         | (0.35)                                                                                                                                                                                                                                                                                                                                   | (0.18)                                                                                                                                                                                                                                                                                  | (0.00)                                                                                                                                                                                                                                                                                                                                             | (0.42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.65)                                                                                                                                                                                                                                                                                                                        | (0.30)                                                                                                                                                                                                                                                                             | (0.00)                                                                                                                                                                                                                                                                                                                                            | (0.92)                                                                                                                                                                                                                                                                                                                        | (1.11)                                                                                                                                                                                                                                                                                                               | (0.33)                                                                                                                                                                                                                                                                                            | (0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                 | 0.19                                                                                                                                                                                                                                                                                                                           | 1.82                                                                                                                                                                                                                                                                                                                                     | 0.90                                                                                                                                                                                                                                                                                    | 0.05                                                                                                                                                                                                                                                                                                                                               | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.41                                                                                                                                                                                                                                                                                                                          | 1.80                                                                                                                                                                                                                                                                               | 0.06                                                                                                                                                                                                                                                                                                                                              | 0.56                                                                                                                                                                                                                                                                                                                          | 5.39                                                                                                                                                                                                                                                                                                                 | 2.89                                                                                                                                                                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>KIEre</b> <sub>SJ</sub>                                                                                                                                                                      | (0.04)                                                                                                                                                                                                                                                                                                                         | (0.32)                                                                                                                                                                                                                                                                                                                                   | (0.26)                                                                                                                                                                                                                                                                                  | (0.01)                                                                                                                                                                                                                                                                                                                                             | (0.13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.55)                                                                                                                                                                                                                                                                                                                        | (0.43)                                                                                                                                                                                                                                                                             | (0.00)                                                                                                                                                                                                                                                                                                                                            | (0.21)                                                                                                                                                                                                                                                                                                                        | (0.79)                                                                                                                                                                                                                                                                                                               | (0.47)                                                                                                                                                                                                                                                                                            | (0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                 | 0.16                                                                                                                                                                                                                                                                                                                           | 1.26                                                                                                                                                                                                                                                                                                                                     | 0.22                                                                                                                                                                                                                                                                                    | 0.05                                                                                                                                                                                                                                                                                                                                               | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.79                                                                                                                                                                                                                                                                                                                          | 0.40                                                                                                                                                                                                                                                                               | 0.06                                                                                                                                                                                                                                                                                                                                              | 2.15                                                                                                                                                                                                                                                                                                                          | 5.13                                                                                                                                                                                                                                                                                                                 | 0.62                                                                                                                                                                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| KIEtr <sub>SI</sub>                                                                                                                                                                             | (0.10)                                                                                                                                                                                                                                                                                                                         | (0.41)                                                                                                                                                                                                                                                                                                                                   | (0.10)                                                                                                                                                                                                                                                                                  | (0.00)                                                                                                                                                                                                                                                                                                                                             | (0.60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.70)                                                                                                                                                                                                                                                                                                                        | (0.14)                                                                                                                                                                                                                                                                             | (0.00)                                                                                                                                                                                                                                                                                                                                            | (1.04)                                                                                                                                                                                                                                                                                                                        | (1.03)                                                                                                                                                                                                                                                                                                               | (0.18)                                                                                                                                                                                                                                                                                            | (0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                           | 1.16                                                                                                                                                                                                                                                                                                                                     | 0.21                                                                                                                                                                                                                                                                                    | 0.05                                                                                                                                                                                                                                                                                                                                               | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.26                                                                                                                                                                                                                                                                                                                          | 0.36                                                                                                                                                                                                                                                                               | 0.06                                                                                                                                                                                                                                                                                                                                              | 0.43                                                                                                                                                                                                                                                                                                                          | 3.45                                                                                                                                                                                                                                                                                                                 | 0.51                                                                                                                                                                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>KIEtr</b> <sub>SJ</sub>                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                 | (0.05)                                                                                                                                                                                                                                                                                                                         | (0.35)                                                                                                                                                                                                                                                                                                                                   | (0.10)                                                                                                                                                                                                                                                                                  | (0.00)                                                                                                                                                                                                                                                                                                                                             | (0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.52)                                                                                                                                                                                                                                                                                                                        | (0.10)                                                                                                                                                                                                                                                                             | (0.00)                                                                                                                                                                                                                                                                                                                                            | (0.26)                                                                                                                                                                                                                                                                                                                        | (0.84)                                                                                                                                                                                                                                                                                                               | (0.12)                                                                                                                                                                                                                                                                                            | (0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LLEra                                                                                                                                                                                           | 0.17                                                                                                                                                                                                                                                                                                                           | 1.41                                                                                                                                                                                                                                                                                                                                     | 0.23                                                                                                                                                                                                                                                                                    | 0.07                                                                                                                                                                                                                                                                                                                                               | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.91                                                                                                                                                                                                                                                                                                                          | 0.57                                                                                                                                                                                                                                                                               | 0.08                                                                                                                                                                                                                                                                                                                                              | 1.11                                                                                                                                                                                                                                                                                                                          | 5.05                                                                                                                                                                                                                                                                                                                 | 0.92                                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22214                                                                                                                                                                                           | (0.09)                                                                                                                                                                                                                                                                                                                         | (0.39)                                                                                                                                                                                                                                                                                                                                   | (0.05)                                                                                                                                                                                                                                                                                  | (0.00)                                                                                                                                                                                                                                                                                                                                             | (0.34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.80)                                                                                                                                                                                                                                                                                                                        | (0.29)                                                                                                                                                                                                                                                                             | (0.00)                                                                                                                                                                                                                                                                                                                                            | (0.85)                                                                                                                                                                                                                                                                                                                        | (1.11)                                                                                                                                                                                                                                                                                                               | (0.45)                                                                                                                                                                                                                                                                                            | (0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LLEre                                                                                                                                                                                           | 0.37                                                                                                                                                                                                                                                                                                                           | 1.45                                                                                                                                                                                                                                                                                                                                     | 1.71                                                                                                                                                                                                                                                                                    | 0.07                                                                                                                                                                                                                                                                                                                                               | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.87                                                                                                                                                                                                                                                                                                                          | 1.95                                                                                                                                                                                                                                                                               | 0.08                                                                                                                                                                                                                                                                                                                                              | 1.10                                                                                                                                                                                                                                                                                                                          | 4.87                                                                                                                                                                                                                                                                                                                 | 2.38                                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LLLIC                                                                                                                                                                                           | (0.01)                                                                                                                                                                                                                                                                                                                         | (0.40)                                                                                                                                                                                                                                                                                                                                   | (0.05)                                                                                                                                                                                                                                                                                  | (0.00)                                                                                                                                                                                                                                                                                                                                             | (0.03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.77)                                                                                                                                                                                                                                                                                                                        | (0.07)                                                                                                                                                                                                                                                                             | (0.00)                                                                                                                                                                                                                                                                                                                                            | (0.05)                                                                                                                                                                                                                                                                                                                        | (1.05)                                                                                                                                                                                                                                                                                                               | (0.10)                                                                                                                                                                                                                                                                                            | (0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LLE4.                                                                                                                                                                                           | 0.16                                                                                                                                                                                                                                                                                                                           | 1.47                                                                                                                                                                                                                                                                                                                                     | 0.29                                                                                                                                                                                                                                                                                    | 0.07                                                                                                                                                                                                                                                                                                                                               | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.08                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                               | 0.08                                                                                                                                                                                                                                                                                                                                              | 0.91                                                                                                                                                                                                                                                                                                                          | 5.26                                                                                                                                                                                                                                                                                                                 | 2.13                                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LLEtr                                                                                                                                                                                           | (0.07)                                                                                                                                                                                                                                                                                                                         | (0.39)                                                                                                                                                                                                                                                                                                                                   | (0.11)                                                                                                                                                                                                                                                                                  | (0.00)                                                                                                                                                                                                                                                                                                                                             | (0.27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.76)                                                                                                                                                                                                                                                                                                                        | (0.44)                                                                                                                                                                                                                                                                             | (0.00)                                                                                                                                                                                                                                                                                                                                            | (0.71)                                                                                                                                                                                                                                                                                                                        | (0.97)                                                                                                                                                                                                                                                                                                               | (0.53)                                                                                                                                                                                                                                                                                            | (0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                 | 0.27                                                                                                                                                                                                                                                                                                                           | 1.31                                                                                                                                                                                                                                                                                                                                     | 0.62                                                                                                                                                                                                                                                                                    | 101                                                                                                                                                                                                                                                                                                                                                | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.54                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                               | 108                                                                                                                                                                                                                                                                                                                                               | 0.89                                                                                                                                                                                                                                                                                                                          | 3.71                                                                                                                                                                                                                                                                                                                 | 1.51                                                                                                                                                                                                                                                                                              | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| INLA                                                                                                                                                                                            | (0.03)                                                                                                                                                                                                                                                                                                                         | (0.30)                                                                                                                                                                                                                                                                                                                                   | (0.13)                                                                                                                                                                                                                                                                                  | (6.01)                                                                                                                                                                                                                                                                                                                                             | (0.06)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.51)                                                                                                                                                                                                                                                                                                                        | (0.14)                                                                                                                                                                                                                                                                             | (5.19)                                                                                                                                                                                                                                                                                                                                            | (0.07)                                                                                                                                                                                                                                                                                                                        | (0.70)                                                                                                                                                                                                                                                                                                               | (0.20)                                                                                                                                                                                                                                                                                            | (6.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                 | 0.14                                                                                                                                                                                                                                                                                                                           | 1.08                                                                                                                                                                                                                                                                                                                                     | 0.18                                                                                                                                                                                                                                                                                    | 9.30                                                                                                                                                                                                                                                                                                                                               | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.93                                                                                                                                                                                                                                                                                                                          | 0.34                                                                                                                                                                                                                                                                               | 14.1                                                                                                                                                                                                                                                                                                                                              | 0.38                                                                                                                                                                                                                                                                                                                          | 2.74                                                                                                                                                                                                                                                                                                                 | 0.45                                                                                                                                                                                                                                                                                              | 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| APP <sub>NAI</sub>                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                 | (0.06)                                                                                                                                                                                                                                                                                                                         | (0.32)                                                                                                                                                                                                                                                                                                                                   | (0.09)                                                                                                                                                                                                                                                                                  | (0.52)                                                                                                                                                                                                                                                                                                                                             | (0.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.63)                                                                                                                                                                                                                                                                                                                        | (0.22)                                                                                                                                                                                                                                                                             | (0.80)                                                                                                                                                                                                                                                                                                                                            | (0.26)                                                                                                                                                                                                                                                                                                                        | (0.78)                                                                                                                                                                                                                                                                                                               | (0.33)                                                                                                                                                                                                                                                                                            | (1.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| APP <sub>NYS</sub>                                                                                                                                                                              | 0.14                                                                                                                                                                                                                                                                                                                           | 1.08                                                                                                                                                                                                                                                                                                                                     | 0.18                                                                                                                                                                                                                                                                                    | 0.61                                                                                                                                                                                                                                                                                                                                               | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.93                                                                                                                                                                                                                                                                                                                          | 0.34                                                                                                                                                                                                                                                                               | 2.62                                                                                                                                                                                                                                                                                                                                              | 0.38                                                                                                                                                                                                                                                                                                                          | 2.72                                                                                                                                                                                                                                                                                                                 | 0.44                                                                                                                                                                                                                                                                                              | 2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                 | (0.05)                                                                                                                                                                                                                                                                                                                         | (0.31)                                                                                                                                                                                                                                                                                                                                   | (0.09)                                                                                                                                                                                                                                                                                  | (0.09)                                                                                                                                                                                                                                                                                                                                             | (0.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.62)                                                                                                                                                                                                                                                                                                                        | (0.22)                                                                                                                                                                                                                                                                             | (0.19)                                                                                                                                                                                                                                                                                                                                            | (0.27)                                                                                                                                                                                                                                                                                                                        | (0.78)                                                                                                                                                                                                                                                                                                               | (0.33)                                                                                                                                                                                                                                                                                            | (0.35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| APP <sub>RFM</sub>                                                                                                                                                                              | <u>0.13</u>                                                                                                                                                                                                                                                                                                                    | <u>1.06</u>                                                                                                                                                                                                                                                                                                                              | 0.18                                                                                                                                                                                                                                                                                    | 2.42                                                                                                                                                                                                                                                                                                                                               | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>1.90</u>                                                                                                                                                                                                                                                                                                                   | 0.34                                                                                                                                                                                                                                                                               | 2.48                                                                                                                                                                                                                                                                                                                                              | <u>0.37</u>                                                                                                                                                                                                                                                                                                                   | 2.65                                                                                                                                                                                                                                                                                                                 | <u>0.43</u>                                                                                                                                                                                                                                                                                       | 2.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7 11 I RFM                                                                                                                                                                                      | (0.07)                                                                                                                                                                                                                                                                                                                         | (0.33)                                                                                                                                                                                                                                                                                                                                   | (0.13)                                                                                                                                                                                                                                                                                  | (0.17)                                                                                                                                                                                                                                                                                                                                             | (0.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.60)                                                                                                                                                                                                                                                                                                                        | (0.24)                                                                                                                                                                                                                                                                             | (0.07)                                                                                                                                                                                                                                                                                                                                            | (0.27)                                                                                                                                                                                                                                                                                                                        | (0.75)                                                                                                                                                                                                                                                                                                               | (0.34)                                                                                                                                                                                                                                                                                            | (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                 | 0.17                                                                                                                                                                                                                                                                                                                           | 1.38                                                                                                                                                                                                                                                                                                                                     | 0.24                                                                                                                                                                                                                                                                                    | 0.30                                                                                                                                                                                                                                                                                                                                               | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.48                                                                                                                                                                                                                                                                                                                          | 0.45                                                                                                                                                                                                                                                                               | 0.32                                                                                                                                                                                                                                                                                                                                              | 0.49                                                                                                                                                                                                                                                                                                                          | 3.66                                                                                                                                                                                                                                                                                                                 | 0.60                                                                                                                                                                                                                                                                                              | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $APP'_{RFM}$                                                                                                                                                                                    | (0.04)                                                                                                                                                                                                                                                                                                                         | (0.32)                                                                                                                                                                                                                                                                                                                                   | (0.07)                                                                                                                                                                                                                                                                                  | (0.01)                                                                                                                                                                                                                                                                                                                                             | (0.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.64)                                                                                                                                                                                                                                                                                                                        | (0.23)                                                                                                                                                                                                                                                                             | (0.01)                                                                                                                                                                                                                                                                                                                                            | (0.24)                                                                                                                                                                                                                                                                                                                        | (0.82)                                                                                                                                                                                                                                                                                                               | (0.29)                                                                                                                                                                                                                                                                                            | (0.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                   | $\alpha = 1.0 \; (\tilde{N} = 1610)$                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a(d)                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                              | - 0 2 ()                                                                                                                                                                                                                                                                                                                                 | $\tilde{N} = 220$                                                                                                                                                                                                                                                                       | 2)                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -05(i)                                                                                                                                                                                                                                                                                                                        | $\tilde{N} = 801$                                                                                                                                                                                                                                                                  | 1)                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                      | $-10(\hat{\lambda})$                                                                                                                                                                                                                                                                                                 | t = 1610                                                                                                                                                                                                                                                                                          | 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $g_2(d_R)$                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                              | = 0.2 (1)                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               | $\tilde{N}_{1} = 801$                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $g_2(d_R)$                                                                                                                                                                                      | $lpha l_{.025}$                                                                                                                                                                                                                                                                                                                | $= 0.2 (l_{.5})$                                                                                                                                                                                                                                                                                                                         | $\tilde{N} = 322$<br>$l_{.975}$                                                                                                                                                                                                                                                         | 2) cpu                                                                                                                                                                                                                                                                                                                                             | $lpha l_{.025}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= 0.5 (l_{.5})$                                                                                                                                                                                                                                                                                                              | $\tilde{N} = 801$ $l_{.975}$                                                                                                                                                                                                                                                       | cpu                                                                                                                                                                                                                                                                                                                                               | $\alpha = l_{.025}$                                                                                                                                                                                                                                                                                                           | $= 1.0 (\hat{N}_{l.5})$                                                                                                                                                                                                                                                                                              | V = 1610<br>$l_{.975}$                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0) \\ cpu \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                              | $l_{.5}$ $`$                                                                                                                                                                                                                                                                                                                             | $l_{.975}$                                                                                                                                                                                                                                                                              | cpu                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               | $l_{.975}$                                                                                                                                                                                                                                                                         | cpu                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                      | $l_{.975}$                                                                                                                                                                                                                                                                                        | cpu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $g_2(d_R)$<br>KIEra <sub>SI</sub>                                                                                                                                                               | <i>l</i> .025<br>0.21                                                                                                                                                                                                                                                                                                          | <i>l</i> .5                                                                                                                                                                                                                                                                                                                              | <i>l</i> .975<br>0.31                                                                                                                                                                                                                                                                   | <i>cpu</i><br>0.05                                                                                                                                                                                                                                                                                                                                 | <i>l</i> .025<br><b>0.60</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>l</i> .5<br>3.44                                                                                                                                                                                                                                                                                                           | <i>l</i> .975<br>0.53                                                                                                                                                                                                                                                              | <i>cpu</i><br>0.06                                                                                                                                                                                                                                                                                                                                | <i>l</i> .025                                                                                                                                                                                                                                                                                                                 | <i>l</i> .5<br>6.41                                                                                                                                                                                                                                                                                                  | <i>l</i> .975<br><b>0.83</b>                                                                                                                                                                                                                                                                      | <i>cpu</i><br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| KIEra <sub>SI</sub>                                                                                                                                                                             | l.025<br>0.21<br>(0.06)                                                                                                                                                                                                                                                                                                        | $l_{.5}$<br>1.65<br>(0.35)                                                                                                                                                                                                                                                                                                               | $     \begin{array}{r}       l_{.975} \\       0.31 \\       (0.15)     \end{array} $                                                                                                                                                                                                   | cpu<br>0.05<br>(0.00)                                                                                                                                                                                                                                                                                                                              | $     \begin{array}{r}       l_{.025} \\       0.60 \\       (0.32)     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>l</i> .5<br>3.44<br>(0.63)                                                                                                                                                                                                                                                                                                 | l.975<br>0.53<br>(0.21)                                                                                                                                                                                                                                                            | cpu<br>0.06<br>(0.00)                                                                                                                                                                                                                                                                                                                             | <i>l</i> .025<br>2.25<br>(0.74)                                                                                                                                                                                                                                                                                               | <i>l</i> .5<br>6.41<br>(1.12)                                                                                                                                                                                                                                                                                        | $     \begin{array}{r}       l_{.975} \\       0.83 \\       (0.26)     \end{array} $                                                                                                                                                                                                             | <i>cpu</i><br>0.06<br>(0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                 | <i>l</i> <sub>.025</sub><br>0.21<br>(0.06)<br>0.21                                                                                                                                                                                                                                                                             | <i>l</i> .5<br>1.65<br>(0.35)<br>1.73                                                                                                                                                                                                                                                                                                    | l.975<br>0.31<br>(0.15)<br>0.37                                                                                                                                                                                                                                                         | cpu<br>0.05<br>(0.00)<br>0.05                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} l_{.025} \\ 0.60 \\ (0.32) \\ 0.40 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>l</i> .5<br>3.44<br>(0.63)<br>3.17                                                                                                                                                                                                                                                                                         | l.975<br>0.53<br>(0.21)<br>0.65                                                                                                                                                                                                                                                    | cpu<br>0.06<br>(0.00)<br>0.06                                                                                                                                                                                                                                                                                                                     | l.025<br>2.25<br>(0.74)<br>0.66                                                                                                                                                                                                                                                                                               | <i>l</i> .5<br>6.41<br>(1.12)<br>4.94                                                                                                                                                                                                                                                                                | <i>l</i> .975<br>0.83<br>(0.26)<br>0.90                                                                                                                                                                                                                                                           | cpu<br>0.06<br>(0.00)<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub>                                                                                                                                                      | $\begin{array}{c} l_{.025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \end{array}$                                                                                                                                                                                                                                                    | l.5     1.65     (0.35)     1.73     (0.34)                                                                                                                                                                                                                                                                                              | $\begin{array}{c} l_{.975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \end{array}$                                                                                                                                                                                                             | cpu<br>0.05<br>(0.00)<br>0.05<br>(0.00)                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} l_{.025} \\ \hline 0.60 \\ (0.32) \\ 0.40 \\ (0.20) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \end{array}$                                                                                                                                                                                                                                              | $\begin{array}{c} l_{.975} \\ 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \end{array}$                                                                                                                                                                                                        | cpu<br>0.06<br>(0.00)<br>0.06<br>(0.00)                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \end{array}$                                                                                                                                                                                                                                            | $\begin{array}{c} l_{.5} \\ \hline 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \end{array}$                                                                                                                                                                                                                                     | $\begin{array}{c} l_{.975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \end{array}$                                                                                                                                                                                                                       | cpu<br>0.06<br>(0.00)<br>0.06<br>(0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub>                                                                                                                                                      | $\begin{array}{c} l_{.025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \end{array}$                                                                                                                                                                                                                                            | $\begin{array}{c} l_{.5} \\ \hline 1.65 \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \end{array}$                                                                                                                                                                                                                                                 | $\begin{array}{c} l_{.975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \end{array}$                                                                                                                                                                                                     | cpu<br>0.05<br>(0.00)<br>0.05<br>(0.00)<br>0.05                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} l_{.025} \\ \hline 0.60 \\ (0.32) \\ 0.40 \\ (0.20) \\ 0.78 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \end{array}$                                                                                                                                                                                                                                      | $\begin{array}{c} l_{.975} \\ 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \end{array}$                                                                                                                                                                                                | <i>cpu</i><br>0.06<br>(0.00)<br>0.06<br>(0.00)<br>0.06                                                                                                                                                                                                                                                                                            | $\begin{array}{c} l_{.025} \\ 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \end{array}$                                                                                                                                                                                                                                           | $\begin{array}{c} l_{.5} \\ \hline 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \end{array}$                                                                                                                                                                                                                             | $\begin{array}{c} l_{.975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \end{array}$                                                                                                                                                                                                               | cpu<br>0.06<br>(0.00)<br>0.06<br>(0.00)<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| KIEra <sub>SI</sub>                                                                                                                                                                             | $\begin{array}{c} l_{.025} \\ \hline 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \end{array}$                                                                                                                                                                                                                           | $\begin{array}{c} l_{.5} \\ \hline 1.65 \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \end{array}$                                                                                                                                                                                                                                       | $\begin{array}{c} l_{.975} \\ \hline 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \end{array}$                                                                                                                                                                                    | cpu<br>0.05<br>(0.00)<br>0.05<br>(0.00)<br>0.05<br>(0.00)                                                                                                                                                                                                                                                                                          | $\begin{array}{c} l_{.025} \\ \hline 0.60 \\ (0.32) \\ 0.40 \\ (0.20) \\ 0.78 \\ (0.42) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \end{array}$                                                                                                                                                                                                                            | $\begin{array}{c} l_{.975} \\ 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \end{array}$                                                                                                                                                                                      | cpu<br>0.06<br>(0.00)<br>0.06<br>(0.00)<br>0.06<br>(0.00)                                                                                                                                                                                                                                                                                         | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \end{array}$                                                                                                                                                                                                                          | $\begin{array}{c} l_{.5} \\ \hline 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \end{array}$                                                                                                                                                                                                                   | $\begin{array}{c} l_{.975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \end{array}$                                                                                                                                                                                                     | <i>cpu</i><br>0.06<br>(0.00)<br>0.06<br>(0.00)<br>0.06<br>(0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SI</sub>                                                                                                                               | $\begin{array}{c} l_{.025} \\ \hline 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \end{array}$                                                                                                                                                                                                                   | $\begin{array}{c} l_{.5} \\ \hline 1.65 \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \end{array}$                                                                                                                                                                                                                               | $\begin{array}{c} l_{.975} \\ \hline 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \end{array}$                                                                                                                                                                            | $\begin{array}{c} cpu \\ 0.05 \\ (0.00) \\ 0.05 \\ (0.00) \\ 0.05 \\ (0.00) \\ 0.05 \end{array}$                                                                                                                                                                                                                                                   | $\begin{array}{c} l_{.025} \\ \hline 0.60 \\ (0.32) \\ 0.40 \\ (0.20) \\ 0.78 \\ (0.42) \\ 0.39 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} l.5\\ 3.44\\ (0.63)\\ 3.17\\ (0.61)\\ 3.82\\ (0.65)\\ 3.41 \end{array}$                                                                                                                                                                                                                                     | $\begin{array}{c} l_{.975} \\ 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \end{array}$                                                                                                                                                                              | <i>cpu</i><br>0.06<br>(0.00)<br>0.06<br>(0.00)<br>0.06<br>(0.00)<br>0.06                                                                                                                                                                                                                                                                          | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \end{array}$                                                                                                                                                                                                                  | $\begin{array}{c} l_{.5} \\ \hline 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \end{array}$                                                                                                                                                                                                           | $\begin{array}{c} l_{.975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \end{array}$                                                                                                                                                                                             | <i>cpu</i><br>0.06<br>(0.00)<br>0.06<br>(0.00)<br>0.06<br>(0.00)<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub>                                                                                                                                                      | $\begin{array}{c} l_{.025} \\ \hline 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \end{array}$                                                                                                                                                                                                         | $\begin{array}{c} l_{.5} \\ \hline 1.65 \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \end{array}$                                                                                                                                                                                                                     | $\begin{array}{c} l_{.975} \\ \hline 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \end{array}$                                                                                                                                                                  | $\begin{array}{c} cpu \\ 0.05 \\ (0.00) \\ 0.05 \\ (0.00) \\ 0.05 \\ (0.00) \\ 0.05 \\ (0.01) \end{array}$                                                                                                                                                                                                                                         | $\begin{array}{c} l_{.025} \\ \hline 0.60 \\ (0.32) \\ 0.40 \\ (0.20) \\ 0.78 \\ (0.42) \\ 0.39 \\ (0.13) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} l.5\\ \hline 3.44\\ (0.63)\\ 3.17\\ (0.61)\\ 3.82\\ (0.65)\\ 3.41\\ (0.55) \end{array}$                                                                                                                                                                                                                     | $\begin{array}{c} l_{.975} \\ 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \end{array}$                                                                                                                                                                    | <i>cpu</i><br>0.06<br>(0.00)<br>0.06<br>(0.00)<br>0.06<br>(0.00)<br>0.06<br>(0.00)                                                                                                                                                                                                                                                                | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \end{array}$                                                                                                                                                                                                        | $\begin{array}{c} l_{.5} \\ \hline 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \end{array}$                                                                                                                                                                                                 | $\begin{array}{c} l_{.975} \\ \hline 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \end{array}$                                                                                                                                                                            | $\begin{array}{c} cpu \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SI</sub><br>KIEre <sub>SJ</sub>                                                                                                        | $\begin{array}{c} l_{.025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \end{array}$                                                                                                                                                                                                        | $\begin{array}{c} l_{.5} \\ \hline 1.65 \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \end{array}$                                                                                                                                                                                                             | $\begin{array}{c} l_{.975} \\ \hline 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \end{array}$                                                                                                                                                          | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.01)\\ 0.05\\ \end{array}$                                                                                                                                                                                                                                        | $\begin{array}{c} l_{.025} \\ 0.60 \\ (0.32) \\ 0.40 \\ (0.20) \\ 0.78 \\ (0.42) \\ 0.39 \\ (0.13) \\ 1.19 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} l.5\\ 3.44\\ (0.63)\\ 3.17\\ (0.61)\\ 3.82\\ (0.65)\\ 3.41\\ (0.55)\\ 3.74\end{array}$                                                                                                                                                                                                                      | $\begin{array}{c} l_{.975} \\ 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \end{array}$                                                                                                                                                            | $\begin{array}{c} cpu \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \\ 0.06 \end{array}$                                                                                                                                                                                                                                | $\begin{array}{c} l_{.025} \\ 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \end{array}$                                                                                                                                                                                                       | $\begin{array}{c} l.5\\ \hline 6.41\\ (1.12)\\ 4.94\\ (0.81)\\ 7.01\\ (1.11)\\ 5.55\\ (0.79)\\ 6.92 \end{array}$                                                                                                                                                                                                     | $\begin{array}{c} l_{.975} \\ \hline 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \end{array}$                                                                                                                                                                    | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SI</sub>                                                                                                                               | $\begin{array}{c} l_{.025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \end{array}$                                                                                                                                                                                              | $\begin{array}{c} l_{.5} \\ \hline 1.65 \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \end{array}$                                                                                                                                                                                                   | $\begin{array}{c} l_{.975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \end{array}$                                                                                                                                                       | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.01)\\ 0.05\\ (0.00) \end{array}$                                                                                                                                                                                                                                 | $\begin{array}{c} l_{.025} \\ \hline 0.60 \\ (0.32) \\ 0.40 \\ (0.20) \\ 0.78 \\ (0.42) \\ 0.39 \\ (0.13) \\ 1.19 \\ (0.60) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \end{array}$                                                                                                                                                                                        | $\begin{array}{c} l_{.975} \\ 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \end{array}$                                                                                                                                                  | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\end{array}$                                                                                                                                                                                                                                 | $\begin{array}{c} l_{.025} \\ 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \end{array}$                                                                                                                                                                                             | $\begin{array}{c} l.5\\ \hline 6.41\\ (1.12)\\ 4.94\\ (0.81)\\ 7.01\\ (1.11)\\ 5.55\\ (0.79)\\ 6.92\\ (1.03)\end{array}$                                                                                                                                                                                             | $\begin{array}{c} l_{.975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \end{array}$                                                                                                                                                                 | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SI</sub><br>KIEre <sub>SJ</sub>                                                                                                        | $\begin{array}{c} l_{.025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.18 \end{array}$                                                                                                                                                                                      | $\begin{array}{c} l_{.5} \\ \hline 1.65 \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \end{array}$                                                                                                                                                                                           | $\begin{array}{c} l_{.975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \end{array}$                                                                                                                                               | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.01)\\ 0.05\\ (0.00)\\ 0.06\\ \end{array}$                                                                                                                                                                                                                        | $\begin{array}{c} l_{.025} \\ 0.60 \\ (0.32) \\ 0.40 \\ (0.20) \\ 0.78 \\ (0.42) \\ 0.39 \\ (0.13) \\ 1.19 \\ (0.60) \\ 0.38 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \end{array}$                                                                                                                                                                                | $\begin{array}{c} l{975} \\ 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \end{array}$                                                                                                                                            | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ \end{array}$                                                                                                                                                                                                       | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \end{array}$                                                                                                                                                                              | $\begin{array}{c} l_{.5} \\ \hline 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \\ 6.92 \\ (1.03) \\ 4.77 \end{array}$                                                                                                                                                                       | $\begin{array}{c} l_{.975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \end{array}$                                                                                                                                                         | $\begin{array}{c} cpu \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \\ 0.06 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SI</sub><br>KIEre <sub>SJ</sub>                                                                                                        | $\begin{array}{c} l_{.025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \end{array}$                                                                                                                                                                                              | $\begin{array}{c} l_{.5} \\ \hline 1.65 \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \end{array}$                                                                                                                                                                                                   | $\begin{array}{c} l_{.975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \end{array}$                                                                                                                                                       | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.01)\\ 0.05\\ (0.00) \end{array}$                                                                                                                                                                                                                                 | $\begin{array}{c} l.025\\ 0.60\\ (0.32)\\ 0.40\\ (0.20)\\ 0.78\\ (0.42)\\ 0.39\\ (0.13)\\ 1.19\\ (0.60)\\ 0.38\\ (0.20) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \end{array}$                                                                                                                                                                                        | $\begin{array}{c} l_{.975} \\ 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \end{array}$                                                                                                                                                  | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\end{array}$                                                                                                                                                                                                                                 | $\begin{array}{c} l_{.025} \\ 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \end{array}$                                                                                                                                                                                             | $\begin{array}{c} l.5\\ \hline 6.41\\ (1.12)\\ 4.94\\ (0.81)\\ 7.01\\ (1.11)\\ 5.55\\ (0.79)\\ 6.92\\ (1.03)\end{array}$                                                                                                                                                                                             | $\begin{array}{c} l_{.975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \end{array}$                                                                                                                                                                 | $\begin{array}{c} cpu \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SJ</sub><br>KIEtr <sub>SI</sub><br>KIEtr <sub>SJ</sub>                                                                                 | $\begin{array}{c} l{025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.18 \\ (0.05) \\ 0.24 \end{array}$                                                                                                                                                                      | $\begin{array}{c} l_{.5} \\ \hline 1.65 \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \end{array}$                                                                                                                                                                         | $\begin{array}{c} l_{.975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \end{array}$                                                                                                                                               | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.01)\\ 0.05\\ (0.00)\\ 0.06\\ \end{array}$                                                                                                                                                                                                                        | $\begin{array}{c} l_{.025} \\ 0.60 \\ (0.32) \\ 0.40 \\ (0.20) \\ 0.78 \\ (0.42) \\ 0.39 \\ (0.13) \\ 1.19 \\ (0.60) \\ 0.38 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \end{array}$                                                                                                                                                                                | $\begin{array}{c} l{975} \\ 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \end{array}$                                                                                                                                            | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ \end{array}$                                                                                                                                                                                                       | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \end{array}$                                                                                                                                                                              | $\begin{array}{c} l_{.5} \\ \hline 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \\ 6.92 \\ (1.03) \\ 4.77 \end{array}$                                                                                                                                                                       | $\begin{array}{c} l_{.975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \end{array}$                                                                                                                                                         | $\begin{array}{c} cpu \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \\ 0.06 \\ (0.00) \\ 0.06 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SI</sub><br>KIEre <sub>SJ</sub>                                                                                                        | $\begin{array}{c} l{025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.18 \\ (0.05) \\ 0.24 \end{array}$                                                                                                                                                                      | $\begin{array}{c} l_{.5} \\ \hline 1.65 \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \end{array}$                                                                                                                                                                         | $\begin{array}{c} l{975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.28 \end{array}$                                                                                                                               | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.01)\\ 0.05\\ (0.00)\\ 0.06\\ (0.00)\\ 0.07\\ \end{array}$                                                                                                                                                                                                        | $\begin{array}{c} l.025\\ 0.60\\ (0.32)\\ 0.40\\ (0.20)\\ 0.78\\ (0.42)\\ 0.39\\ (0.13)\\ 1.19\\ (0.60)\\ 0.38\\ (0.20)\\ 0.74 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \\ (0.52) \\ 3.47 \end{array}$                                                                                                                                                              | $\begin{array}{c} l_{.975} \\ 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \\ (0.10) \\ 0.54 \end{array}$                                                                                                                        | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\end{array}$                                                                                                                                                                                                          | $\begin{array}{c} l{025} \\ 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \\ (0.26) \\ 1.95 \end{array}$                                                                                                                                                                     | $\begin{array}{c} l.5\\ \hline 6.41\\ (1.12)\\ 4.94\\ (0.81)\\ 7.01\\ (1.11)\\ 5.55\\ (0.79)\\ 6.92\\ (1.03)\\ 4.77\\ (0.84)\\ 6.17 \end{array}$                                                                                                                                                                     | $\begin{array}{c} l{975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \\ (0.12) \\ 1.02 \end{array}$                                                                                                                                         | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>LLEra                                                                        | $\begin{array}{c} l{025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.18 \\ (0.05) \\ 0.24 \\ (0.09) \end{array}$                                                                                                                                                            | $\begin{array}{c} l_{.5} \\ \hline 1.65 \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \\ (0.39) \end{array}$                                                                                                                                                               | $\begin{array}{c} l{975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.28 \\ (0.05) \end{array}$                                                                                                                     | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.01)\\ 0.05\\ (0.01)\\ 0.05\\ (0.00)\\ 0.06\\ (0.00)\\ 0.07\\ (0.00) \end{array}$                                                                                                                                                                                 | $\begin{array}{c} l.025\\ 0.60\\ (0.32)\\ 0.40\\ (0.20)\\ 0.78\\ (0.42)\\ 0.39\\ (0.13)\\ 1.19\\ (0.60)\\ 0.38\\ (0.20)\\ 0.74\\ (0.34) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \\ (0.52) \\ 3.47 \\ (0.80) \end{array}$                                                                                                                                                    | $\begin{array}{c} l_{.975} \\ 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \\ (0.10) \\ 0.54 \\ (0.29) \end{array}$                                                                                                              | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ \end{array}$                                                                                                                                                                                              | $\begin{array}{c} l{025} \\ 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \\ (0.26) \\ 1.95 \\ (0.85) \end{array}$                                                                                                                                                           | $\begin{array}{c} l.5\\ \hline 6.41\\ (1.12)\\ 4.94\\ (0.81)\\ 7.01\\ (1.11)\\ 5.55\\ (0.79)\\ 6.92\\ (1.03)\\ 4.77\\ (0.84)\\ 6.17\\ (1.11)\\ \end{array}$                                                                                                                                                          | $\begin{array}{c} l{975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \\ (0.12) \\ 1.02 \\ (0.45) \end{array}$                                                                                                                               | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SJ</sub><br>KIEtr <sub>SI</sub><br>KIEtr <sub>SJ</sub>                                                                                 | $\begin{array}{c} l.025\\ 0.21\\ (0.06)\\ 0.21\\ (0.06)\\ 0.25\\ (0.09)\\ 0.21\\ (0.04)\\ 0.32\\ (0.10)\\ 0.18\\ (0.05)\\ 0.24\\ (0.09)\\ 0.44\\ \end{array}$                                                                                                                                                                  | $\begin{array}{c} l_{.5} \\ \hline 1.65 \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \\ (0.39) \\ 1.68 \end{array}$                                                                                                                                                       | $\begin{array}{c} l{975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.28 \\ (0.05) \\ 1.74 \end{array}$                                                                                                             | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.01)\\ 0.05\\ (0.01)\\ 0.05\\ (0.00)\\ 0.06\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ \end{array}$                                                                                                                                                                        | $\begin{array}{c} l.025\\ \hline 0.60\\ (0.32)\\ 0.40\\ (0.20)\\ 0.78\\ (0.42)\\ 0.39\\ (0.13)\\ 1.19\\ (0.60)\\ 0.38\\ (0.20)\\ 0.74\\ (0.34)\\ 0.83\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \\ (0.52) \\ 3.47 \\ (0.80) \\ 3.47 \end{array}$                                                                                                                                            | $\begin{array}{c} l_{.975} \\ \hline 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \\ (0.10) \\ 0.54 \\ (0.29) \\ 2.16 \end{array}$                                                                                               | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ \end{array}$                                                                                                                                                                       | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \\ (0.26) \\ 1.95 \\ (0.85) \\ 1.25 \end{array}$                                                                                                                                          | $\begin{array}{c} l_{.5} \\ \hline 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \\ 6.92 \\ (1.03) \\ 4.77 \\ (0.84) \\ 6.17 \\ (1.11) \\ 6.16 \end{array}$                                                                                                                                   | $\begin{array}{c} l{975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \\ (0.12) \\ 1.02 \\ (0.45) \\ 2.75 \end{array}$                                                                                                                       | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>LLEra<br>LLEre                                                               | $\begin{array}{c} l{025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.18 \\ (0.05) \\ 0.24 \\ (0.09) \\ 0.44 \\ (0.01) \end{array}$                                                                                                                                          | $\begin{array}{c} l_{.5} \\ \hline \\ 1.65 \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \\ (0.39) \\ 1.68 \\ (0.40) \end{array}$                                                                                                                                          | $\begin{array}{c} l{975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.28 \\ (0.05) \\ 1.74 \\ (0.05) \end{array}$                                                                                                   | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.01)\\ 0.05\\ (0.01)\\ 0.05\\ (0.00)\\ 0.06\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ \end{array}$                                                                                                                                                               | $\begin{array}{c} l.025\\ \hline 0.60\\ (0.32)\\ 0.40\\ (0.20)\\ 0.78\\ (0.42)\\ 0.39\\ (0.13)\\ 1.19\\ (0.60)\\ 0.38\\ (0.20)\\ 0.74\\ (0.34)\\ 0.83\\ (0.03)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \\ (0.52) \\ 3.47 \\ (0.80) \\ 3.47 \\ (0.77) \end{array}$                                                                                                                                  | $\begin{array}{c} l_{.975} \\ \hline 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \\ (0.10) \\ 0.54 \\ (0.29) \\ 2.16 \\ (0.07) \end{array}$                                                                                     | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00) \end{array}$                                                                                                                                                                | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \\ (0.26) \\ 1.95 \\ (0.85) \\ 1.25 \\ (0.05) \end{array}$                                                                                                                                | $\begin{array}{c} l_{.5} \\ \hline 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \\ 6.92 \\ (1.03) \\ 4.77 \\ (0.84) \\ 6.17 \\ (1.11) \\ 6.16 \\ (1.05) \end{array}$                                                                                                                         | $\begin{array}{c} l{975} \\ \hline 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \\ (0.12) \\ 1.02 \\ (0.45) \\ 2.75 \\ (0.10) \end{array}$                                                                                                      | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>LLEra                                                                        | $\begin{array}{c} l{025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.18 \\ (0.05) \\ 0.24 \\ (0.09) \\ 0.44 \\ (0.01) \\ 0.22 \end{array}$                                                                                                                                  | $\begin{array}{c} l_{.5} \\ \hline l.65 \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \\ (0.39) \\ 1.68 \\ (0.40) \\ 1.69 \end{array}$                                                                                                                                     | $\begin{array}{c} l{975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.28 \\ (0.05) \\ 1.74 \\ (0.05) \\ 0.31 \end{array}$                                                                                           | cpu           0.05           (0.00)           0.05           (0.00)           0.05           (0.00)           0.05           (0.00)           0.05           (0.00)           0.05           (0.00)           0.05           (0.00)           0.06           (0.00)           0.07           (0.00)           0.07           (0.00)           0.07 | $\begin{array}{c} l.025\\ \hline 0.60\\ (0.32)\\ 0.40\\ (0.20)\\ 0.78\\ (0.42)\\ 0.39\\ (0.42)\\ 0.39\\ (0.13)\\ 1.19\\ (0.60)\\ 0.74\\ (0.38)\\ (0.20)\\ 0.74\\ (0.34)\\ 0.83\\ (0.03)\\ 0.59\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.74 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \\ (0.52) \\ 3.47 \\ (0.80) \\ 3.47 \\ (0.77) \\ 3.61 \end{array}$                                                                                                                          | $\begin{array}{c} l_{.975} \\ \hline 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \\ (0.10) \\ 0.54 \\ (0.29) \\ 2.16 \\ (0.07) \\ 0.95 \end{array}$                                                                             | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ \end{array}$                                                                                                                                                                       | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \\ (0.26) \\ 1.95 \\ (0.85) \\ 1.25 \\ (0.05) \\ 1.50 \end{array}$                                                                                                                        | $\begin{array}{c} l_{.5} \\ \hline 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \\ 6.92 \\ (1.03) \\ 4.77 \\ (0.84) \\ 6.17 \\ (1.11) \\ 6.16 \\ (1.05) \\ 6.59 \end{array}$                                                                                                                 | $\begin{array}{c} l{975} \\ \hline 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \\ (0.12) \\ 1.02 \\ (0.45) \\ 2.75 \\ (0.10) \\ 2.24 \end{array}$                                                                                              | cpu           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.08           (0.00)           0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>LLEra<br>LLEre<br>LLEtr                                                      | $\begin{array}{c} l{025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.18 \\ (0.05) \\ 0.24 \\ (0.05) \\ 0.24 \\ (0.09) \\ 0.44 \\ (0.01) \\ 0.22 \\ (0.07) \end{array}$                                                                                                      | $\begin{array}{c} l_{.5} \\ \hline l.65 \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \\ (0.39) \\ 1.68 \\ (0.40) \\ 1.69 \\ (0.39) \end{array}$                                                                                                                           | $\begin{array}{c} l{975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.28 \\ (0.05) \\ 1.74 \\ (0.05) \\ 0.31 \\ (0.11) \end{array}$                                                                                 | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.06\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\end{array}$                                                                                                                                                  | $\begin{array}{c} l.025\\ \hline 0.60\\ (0.32)\\ 0.40\\ (0.20)\\ 0.78\\ (0.42)\\ 0.39\\ (0.42)\\ 0.39\\ (0.13)\\ 1.19\\ (0.60)\\ 0.38\\ (0.20)\\ 0.74\\ (0.34)\\ 0.83\\ (0.03)\\ 0.59\\ (0.27) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.74 \\ (0.70) \\ 2.76 \\ (0.70) \\ 2.76 \\ (0.52) \\ 3.47 \\ (0.80) \\ 3.47 \\ (0.77) \\ 3.61 \\ (0.76) \end{array}$                                                                                                                | $\begin{array}{c} l_{.975} \\ \hline 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \\ (0.10) \\ 0.54 \\ (0.29) \\ 2.16 \\ (0.07) \\ 0.95 \\ (0.44) \end{array}$                                                                   | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\end{array}$                                                                                                                                                 | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \\ (0.26) \\ 1.95 \\ (0.85) \\ 1.25 \\ (0.05) \\ 1.50 \\ (0.71) \end{array}$                                                                                                              | $\begin{array}{c} l_{.5} \\ \hline 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \\ 6.92 \\ (1.03) \\ 4.77 \\ (0.84) \\ 6.17 \\ (1.11) \\ 6.16 \\ (1.05) \\ 6.59 \\ (0.97) \end{array}$                                                                                                       | $\begin{array}{c} l{975} \\ \hline 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \\ (0.12) \\ 1.02 \\ (0.45) \\ 2.75 \\ (0.10) \\ 2.24 \\ (0.53) \end{array}$                                                                                    | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08$ |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>LLEra<br>LLEre                                                               | $\begin{array}{c} l{025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.32 \\ (0.10) \\ 0.18 \\ (0.05) \\ 0.24 \\ (0.05) \\ 0.24 \\ (0.05) \\ 0.24 \\ (0.01) \\ 0.22 \\ (0.07) \\ 0.45 \end{array}$                                                                            | $\begin{array}{c} l_{.5} \\ \hline l.65 \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \\ (0.39) \\ 1.68 \\ (0.40) \\ 1.69 \\ (0.39) \\ 1.73 \end{array}$                                                                                                                   | $\begin{array}{c} l{975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.25 \\ 1.74 \\ (0.05) \\ 0.31 \\ (0.11) \\ 1.34 \end{array}$                                               | cpu           0.05           (0.00)           0.05           (0.00)           0.05           (0.00)           0.05           (0.00)           0.05           (0.00)           0.05           (0.00)           0.05           (0.00)           0.06           (0.00)           0.07           (0.00)           0.07           (0.00)           112  | $\begin{array}{c} l.025\\ \hline 0.60\\ (0.32)\\ 0.40\\ (0.20)\\ 0.78\\ (0.42)\\ 0.39\\ (0.42)\\ 0.39\\ (0.13)\\ 1.19\\ (0.60)\\ 0.38\\ (0.20)\\ 0.74\\ (0.34)\\ 0.83\\ (0.03)\\ 0.59\\ (0.27)\\ 0.96\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.74 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \\ (0.52) \\ 3.47 \\ (0.80) \\ 3.47 \\ (0.77) \\ 3.61 \\ (0.76) \\ 3.31 \end{array}$                                                                                                        | $\begin{array}{c} l_{.975} \\ \hline 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \\ (0.10) \\ 0.54 \\ (0.29) \\ 2.16 \\ (0.07) \\ 0.95 \\ (0.44) \\ 2.22 \end{array}$                                                           | cpu           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.08           (0.00)           0.08           (0.00)           115 | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \\ (0.26) \\ 1.95 \\ (0.85) \\ 1.25 \\ (0.05) \\ 1.50 \\ (0.71) \\ 1.68 \end{array}$                                                                                                      | $\begin{array}{c} l_{.5} \\ \hline 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \\ 6.92 \\ (1.03) \\ 4.77 \\ (0.84) \\ 6.17 \\ (1.11) \\ 6.16 \\ (1.05) \\ 6.59 \\ (0.97) \\ 5.04 \end{array}$                                                                                               | $\begin{array}{c} l{975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \\ (0.12) \\ 1.02 \\ (0.45) \\ 2.75 \\ (0.10) \\ 2.24 \\ (0.53) \\ 3.45 \end{array}$                                                                                   | cpu           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.06           (0.00)           0.08           (0.00)           0.08           (0.00)           116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>LLEra<br>LLEre<br>LLEtr                                                      | $\begin{array}{c} l{025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.32 \\ (0.10) \\ 0.18 \\ (0.05) \\ 0.24 \\ (0.09) \\ 0.44 \\ (0.01) \\ 0.22 \\ (0.07) \\ 0.45 \\ (0.03) \end{array}$                                                                                    | $\begin{array}{c} l_{.5} \\ \hline l_{.6} \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \\ (0.39) \\ 1.68 \\ (0.40) \\ 1.69 \\ (0.39) \\ 1.73 \\ (0.30) \end{array}$                                                                                                       | $\begin{array}{c} l{975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.28 \\ (0.05) \\ 1.74 \\ (0.05) \\ 0.31 \\ (0.11) \\ 1.34 \\ (0.13) \end{array}$                                                               | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.06\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 112\\ (6.01) \end{array}$                                                                                                                                                  | $\begin{array}{c} l.025\\ \hline 0.60\\ (0.32)\\ 0.40\\ (0.20)\\ 0.78\\ (0.42)\\ 0.39\\ (0.42)\\ 0.39\\ (0.13)\\ 1.19\\ (0.60)\\ 0.38\\ (0.20)\\ 0.74\\ (0.34)\\ 0.83\\ (0.03)\\ 0.59\\ (0.27)\\ 0.96\\ (0.06) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \\ (0.52) \\ 3.47 \\ (0.52) \\ 3.47 \\ (0.77) \\ 3.61 \\ (0.76) \\ 3.31 \\ (0.51) \end{array}$                                                                                              | $\begin{array}{c} l_{.975} \\ \hline 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \\ (0.10) \\ 0.54 \\ (0.29) \\ 2.16 \\ (0.07) \\ 0.95 \\ (0.44) \\ 2.22 \\ (0.14) \end{array}$                                                 | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 115\\ (5.19) \end{array}$                                                                                                                                                                 | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \\ (0.26) \\ 1.95 \\ (0.85) \\ 1.25 \\ (0.05) \\ 1.50 \\ (0.71) \\ 1.68 \\ (0.07) \end{array}$                                                                                            | $\begin{array}{c} l_{.5} \\ \hline 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \\ 6.92 \\ (1.03) \\ 4.77 \\ (0.84) \\ 6.17 \\ (1.11) \\ 6.16 \\ (1.05) \\ 6.59 \\ (0.97) \\ 5.04 \\ (0.70) \end{array}$                                                                                     | $\begin{array}{c} l{975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \\ (0.12) \\ 1.02 \\ (0.45) \\ 2.75 \\ (0.10) \\ 2.24 \\ (0.53) \\ 3.45 \\ (0.20) \end{array}$                                                                         | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 116\\ (6.10) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>LLEra<br>LLEre<br>LLEtr<br>INLA                                              | $\begin{array}{c} l{025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.32 \\ (0.10) \\ 0.18 \\ (0.05) \\ 0.24 \\ (0.05) \\ 0.24 \\ (0.09) \\ 0.44 \\ (0.01) \\ 0.22 \\ (0.07) \\ 0.45 \\ (0.03) \\ 0.15 \end{array}$                                                          | $\begin{array}{c} l_{.5} \\ \hline l_{.6} \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \\ (0.39) \\ 1.68 \\ (0.40) \\ 1.69 \\ (0.39) \\ 1.73 \\ (0.30) \\ 1.06 \end{array}$                                                                                               | $\begin{array}{c} l{975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.28 \\ (0.05) \\ 1.74 \\ (0.05) \\ 0.31 \\ (0.11) \\ 1.34 \\ (0.13) \\ 0.17 \end{array}$                                                       | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 112\\ (6.01)\\ 10.1\\ \end{array}$                                                                                                                                                         | $\begin{array}{c} l.025\\ \hline 0.60\\ (0.32)\\ 0.40\\ (0.20)\\ 0.78\\ (0.42)\\ 0.39\\ (0.42)\\ 0.39\\ (0.42)\\ 0.39\\ (0.42)\\ 0.38\\ (0.20)\\ 0.74\\ (0.34)\\ 0.59\\ (0.27)\\ 0.96\\ (0.06)\\ 0.25\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \\ (0.52) \\ 3.47 \\ (0.72) \\ 3.47 \\ (0.77) \\ 3.61 \\ (0.76) \\ 3.31 \\ (0.51) \\ \textbf{1.87} \end{array}$                                                                             | $\begin{array}{c} l_{.975} \\ \hline 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \\ (0.10) \\ 0.54 \\ (0.29) \\ 2.16 \\ (0.29) \\ 2.16 \\ (0.07) \\ 0.95 \\ (0.44) \\ 2.22 \\ (0.14) \\ 0.27 \end{array}$                       | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 115\\ (5.19)\\ 17.7\end{array}$                                                                                                                                                           | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \\ (0.26) \\ 1.95 \\ (0.85) \\ 1.25 \\ (0.05) \\ 1.50 \\ 0.51 \\ 1.50 \\ (0.71) \\ 1.68 \\ (0.07) \\ 0.40 \end{array}$                                                                    | $\begin{array}{c} l_{.5} \\ \hline 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \\ 6.92 \\ (1.03) \\ 4.77 \\ (0.84) \\ 6.17 \\ (1.11) \\ 6.16 \\ (1.05) \\ 6.59 \\ (0.97) \\ 5.04 \\ (0.70) \\ \textbf{2.75} \end{array}$                                                                    | $\begin{array}{c} l{975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \\ (0.12) \\ 1.02 \\ (0.45) \\ 2.75 \\ (0.10) \\ 2.24 \\ (0.53) \\ 3.45 \\ (0.20) \\ \textbf{0.44} \end{array}$                                                        | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 116\\ (6.10)\\ 40.1\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>LLEra<br>LLEre<br>LLEtr                                                      | $\begin{array}{c} l{025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.32 \\ (0.10) \\ 0.18 \\ (0.05) \\ 0.24 \\ (0.09) \\ 0.44 \\ (0.09) \\ 0.44 \\ (0.01) \\ 0.22 \\ (0.07) \\ 0.45 \\ (0.03) \\ 0.15 \\ (0.06) \end{array}$                                                | $\begin{array}{c} l_{.5} \\ \hline l_{.6} \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \\ (0.39) \\ 1.68 \\ (0.40) \\ 1.68 \\ (0.40) \\ 1.68 \\ (0.39) \\ 1.73 \\ (0.30) \\ 1.06 \\ (0.32) \end{array}$                                                                   | $\begin{array}{c} l{975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.28 \\ (0.05) \\ 1.74 \\ (0.05) \\ 0.31 \\ (0.11) \\ 1.34 \\ (0.13) \\ 0.17 \\ (0.09) \end{array}$                           | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.06\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 112\\ (6.01)\\ 10.1\\ (0.52) \end{array}$                                                                                                                                  | $\begin{array}{c} l{025} \\ \hline 0.60 \\ (0.32) \\ 0.40 \\ (0.20) \\ 0.78 \\ (0.42) \\ 0.39 \\ (0.42) \\ 0.39 \\ (0.42) \\ 0.39 \\ (0.42) \\ 0.39 \\ (0.42) \\ 0.38 \\ (0.20) \\ 0.74 \\ (0.34) \\ 0.83 \\ (0.20) \\ 0.74 \\ (0.34) \\ 0.59 \\ (0.27) \\ 0.96 \\ (0.06) \\ 0.25 \\ (0.10) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \\ (0.52) \\ 3.47 \\ (0.70) \\ 3.47 \\ (0.77) \\ 3.61 \\ (0.76) \\ 3.31 \\ (0.51) \\ \textbf{1.87} \\ (0.63) \end{array}$                                                                   | $\begin{array}{c} l_{.975} \\ \hline 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \\ (0.10) \\ 0.54 \\ (0.29) \\ 2.16 \\ (0.29) \\ 2.16 \\ (0.07) \\ 0.95 \\ (0.44) \\ 2.22 \\ (0.14) \\ 0.27 \\ (0.22) \end{array}$             | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 115\\ (5.19)\\ 17.7\\ (0.80) \end{array}$                                                                                                                                 | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \\ (0.26) \\ 1.95 \\ (0.85) \\ 1.25 \\ (0.05) \\ 1.55 \\ (0.05) \\ 1.50 \\ (0.71) \\ 1.68 \\ (0.07) \\ 0.40 \\ (0.26) \end{array}$                                                        | $\begin{array}{c} l_{.5} \\ \hline \\ 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \\ 6.92 \\ (1.03) \\ 4.77 \\ (0.84) \\ 6.17 \\ (1.11) \\ 6.16 \\ (1.05) \\ 6.59 \\ (0.97) \\ 5.04 \\ (0.70) \\ \textbf{2.75} \\ (0.78) \end{array}$                                                       | $\begin{array}{c} l{975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \\ (0.12) \\ 1.02 \\ (0.45) \\ 2.75 \\ (0.10) \\ 2.24 \\ (0.53) \\ 3.45 \\ (0.20) \\ \textbf{0.44} \\ (0.33) \end{array}$                                              | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 116\\ (6.10)\\ 40.1\\ (1.05)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>LLEra<br>LLEre<br>LLEtr<br>INLA<br>APP <sub>NAI</sub>                        | $\begin{array}{c} l{025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.32 \\ (0.10) \\ 0.18 \\ (0.05) \\ 0.24 \\ (0.09) \\ 0.44 \\ (0.09) \\ 0.44 \\ (0.01) \\ 0.22 \\ (0.07) \\ 0.45 \\ (0.03) \\ 0.15 \\ (0.06) \\ 0.15 \end{array}$                                        | $\begin{array}{c} l_{.5} \\ \hline l_{.6} \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \\ (0.39) \\ 1.68 \\ (0.40) \\ 1.68 \\ (0.40) \\ 1.69 \\ (0.39) \\ 1.73 \\ (0.30) \\ 1.06 \\ (0.32) \\ 1.08 \end{array}$                                                           | $\begin{array}{c} l{975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.28 \\ (0.05) \\ 1.74 \\ (0.05) \\ 0.31 \\ (0.11) \\ 1.34 \\ (0.13) \\ 0.17 \end{array}$                                                       | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 112\\ (6.01)\\ 10.1\\ \end{array}$                                                                                                                                                         | $\begin{array}{c} l.025\\ \hline 0.60\\ (0.32)\\ 0.40\\ (0.20)\\ 0.78\\ (0.42)\\ 0.39\\ (0.42)\\ 0.39\\ (0.13)\\ 1.19\\ (0.60)\\ 0.38\\ (0.20)\\ 0.74\\ (0.34)\\ 0.83\\ (0.03)\\ 0.59\\ (0.27)\\ 0.96\\ (0.06)\\ 0.25\\ (0.10)\\ 0.25\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \\ (0.52) \\ 3.47 \\ (0.70) \\ 3.47 \\ (0.77) \\ 3.61 \\ (0.76) \\ 3.31 \\ (0.76) \\ 3.31 \\ (0.51) \\ 1.87 \\ (0.63) \\ 1.88 \end{array}$                                                  | $\begin{array}{c} l_{.975} \\ \hline 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \\ (0.10) \\ 0.54 \\ (0.29) \\ 2.16 \\ (0.07) \\ 0.95 \\ (0.44) \\ 2.22 \\ (0.14) \\ 0.27 \\ (0.22) \\ 0.27 \end{array}$                       | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 115\\ (5.19)\\ 117.7\\ (0.80)\\ 2.72\\ \end{array}$                                                                                                                       | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \\ (0.26) \\ 1.95 \\ (0.85) \\ 1.25 \\ (0.05) \\ 1.50 \\ (0.71) \\ 1.68 \\ (0.07) \\ 0.40 \\ (0.26) \\ 0.39 \end{array}$                                                                  | $\begin{array}{c} l_{.5} \\ \hline \\ 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \\ 6.92 \\ (1.03) \\ 4.77 \\ (0.84) \\ 6.17 \\ (1.11) \\ 6.16 \\ (1.05) \\ 6.59 \\ (0.97) \\ 5.04 \\ (0.70) \\ \textbf{2.75} \\ (0.78) \\ \textbf{2.79} \end{array}$                                      | $\begin{array}{c} l{975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \\ (0.12) \\ 1.02 \\ (0.45) \\ 2.75 \\ (0.10) \\ 2.24 \\ (0.53) \\ 3.45 \\ (0.20) \\ \textbf{0.44} \end{array}$                                                        | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 116\\ (6.10)\\ 40.1\\ (1.05)\\ 3.15\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>LLEra<br>LLEre<br>LLEtr<br>INLA                                              | $\begin{array}{c} l{025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.32 \\ (0.10) \\ 0.18 \\ (0.05) \\ 0.24 \\ (0.09) \\ 0.44 \\ (0.01) \\ 0.22 \\ (0.07) \\ 0.45 \\ (0.03) \\ 0.15 \\ (0.06) \\ 0.15 \\ (0.05) \end{array}$                                                | $\begin{array}{c} l_{.5} \\ \hline l_{.6} \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \\ (0.39) \\ 1.68 \\ (0.40) \\ 1.68 \\ (0.40) \\ 1.68 \\ (0.39) \\ 1.73 \\ (0.30) \\ 1.06 \\ (0.32) \end{array}$                                                                   | $\begin{array}{c} l{975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.28 \\ (0.05) \\ 1.74 \\ (0.05) \\ 0.31 \\ (0.11) \\ 1.34 \\ (0.13) \\ 0.17 \\ (0.09) \end{array}$                           | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.06\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 112\\ (6.01)\\ 10.1\\ (0.52) \end{array}$                                                                                                                                  | $\begin{array}{c} l{025} \\ \hline 0.60 \\ (0.32) \\ 0.40 \\ (0.20) \\ 0.78 \\ (0.42) \\ 0.39 \\ (0.42) \\ 0.39 \\ (0.42) \\ 0.38 \\ (0.42) \\ 0.38 \\ (0.20) \\ 0.74 \\ (0.34) \\ 0.83 \\ (0.03) \\ 0.59 \\ (0.27) \\ 0.96 \\ (0.06) \\ 0.25 \\ (0.10) \\ 0.25 \\ (0.10) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \\ (0.52) \\ 3.47 \\ (0.70) \\ 3.47 \\ (0.77) \\ 3.61 \\ (0.76) \\ 3.31 \\ (0.51) \\ \textbf{1.87} \\ (0.63) \end{array}$                                                                   | $\begin{array}{c} l_{.975} \\ \hline 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \\ (0.10) \\ 0.54 \\ (0.29) \\ 2.16 \\ (0.29) \\ 2.16 \\ (0.07) \\ 0.95 \\ (0.44) \\ 2.22 \\ (0.14) \\ 0.27 \\ (0.22) \end{array}$             | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 115\\ (5.19)\\ 17.7\\ (0.80) \end{array}$                                                                                                                                 | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \\ (0.26) \\ 1.95 \\ (0.85) \\ 1.25 \\ (0.05) \\ 1.55 \\ (0.05) \\ 1.50 \\ (0.71) \\ 1.68 \\ (0.07) \\ 0.40 \\ (0.26) \end{array}$                                                        | $\begin{array}{c} l_{.5} \\ \hline \\ 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \\ 6.92 \\ (1.03) \\ 4.77 \\ (0.84) \\ 6.17 \\ (1.11) \\ 6.16 \\ (1.05) \\ 6.59 \\ (0.97) \\ 5.04 \\ (0.70) \\ \textbf{2.75} \\ (0.78) \end{array}$                                                       | $\begin{array}{c} l{975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \\ (0.12) \\ 1.02 \\ (0.45) \\ 2.75 \\ (0.10) \\ 2.24 \\ (0.53) \\ 3.45 \\ (0.20) \\ \textbf{0.44} \\ (0.33) \end{array}$                                              | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 116\\ (6.10)\\ 40.1\\ (1.05)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>LLEra<br>LLEre<br>LLEtr<br>INLA<br>APP <sub>NAI</sub><br>APP <sub>NYS</sub>                         | $\begin{array}{c} l{025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.32 \\ (0.10) \\ 0.18 \\ (0.05) \\ 0.24 \\ (0.09) \\ 0.44 \\ (0.09) \\ 0.44 \\ (0.01) \\ 0.22 \\ (0.07) \\ 0.45 \\ (0.03) \\ 0.15 \\ (0.06) \\ 0.15 \end{array}$                                        | $\begin{array}{c} l_{.5} \\ \hline l_{.6} \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \\ (0.39) \\ 1.68 \\ (0.40) \\ 1.68 \\ (0.40) \\ 1.69 \\ (0.39) \\ 1.73 \\ (0.30) \\ 1.06 \\ (0.32) \\ 1.08 \end{array}$                                                           | $\begin{array}{c} l{975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.28 \\ (0.05) \\ 1.74 \\ (0.05) \\ 0.31 \\ (0.11) \\ 1.34 \\ (0.13) \\ 0.17 \\ (0.09) \\ 0.18 \end{array}$                   | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.06\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 112\\ (6.01)\\ 10.1\\ (0.52)\\ 1.02\\ \end{array}$                                                                                                         | $\begin{array}{c} l.025\\ \hline 0.60\\ (0.32)\\ 0.40\\ (0.20)\\ 0.78\\ (0.42)\\ 0.39\\ (0.42)\\ 0.39\\ (0.13)\\ 1.19\\ (0.60)\\ 0.38\\ (0.20)\\ 0.74\\ (0.34)\\ 0.83\\ (0.03)\\ 0.59\\ (0.27)\\ 0.96\\ (0.06)\\ 0.25\\ (0.10)\\ 0.25\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \\ (0.52) \\ 3.47 \\ (0.70) \\ 3.47 \\ (0.77) \\ 3.61 \\ (0.76) \\ 3.31 \\ (0.76) \\ 3.31 \\ (0.51) \\ 1.87 \\ (0.63) \\ 1.88 \end{array}$                                                  | $\begin{array}{c} l_{.975} \\ \hline 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \\ (0.10) \\ 0.54 \\ (0.29) \\ 2.16 \\ (0.07) \\ 0.95 \\ (0.44) \\ 2.22 \\ (0.14) \\ 0.27 \\ (0.22) \\ 0.27 \end{array}$                       | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 115\\ (5.19)\\ 117.7\\ (0.80)\\ 2.72\\ \end{array}$                                                                                                                       | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \\ (0.26) \\ 1.95 \\ (0.85) \\ 1.25 \\ (0.05) \\ 1.50 \\ (0.71) \\ 1.68 \\ (0.07) \\ 0.40 \\ (0.26) \\ 0.39 \end{array}$                                                                  | $\begin{array}{c} l_{.5} \\ \hline \\ 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \\ 6.92 \\ (1.03) \\ 4.77 \\ (0.84) \\ 6.17 \\ (1.11) \\ 6.16 \\ (1.05) \\ 6.59 \\ (0.97) \\ 5.04 \\ (0.70) \\ \textbf{2.75} \\ (0.78) \\ \textbf{2.79} \end{array}$                                      | $\begin{array}{c} l{975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \\ (0.12) \\ 1.02 \\ (0.45) \\ 2.75 \\ (0.10) \\ 2.24 \\ (0.53) \\ 3.45 \\ (0.20) \\ \textbf{0.44} \\ (0.33) \\ \textbf{0.44} \end{array}$                             | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 116\\ (6.10)\\ 40.1\\ (1.05)\\ 3.15\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>LLEra<br>LLEre<br>LLEtr<br>INLA<br>APP <sub>NAI</sub>                        | $\begin{array}{c} l{025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.32 \\ (0.10) \\ 0.18 \\ (0.05) \\ 0.24 \\ (0.09) \\ 0.44 \\ (0.01) \\ 0.22 \\ (0.07) \\ 0.45 \\ (0.03) \\ 0.15 \\ (0.06) \\ 0.15 \\ (0.05) \\ 0.14 \end{array}$                      | $\begin{array}{c} l_{.5} \\ \hline l_{.6} \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \\ (0.39) \\ 1.68 \\ (0.40) \\ 1.68 \\ (0.40) \\ 1.68 \\ (0.30) \\ 1.73 \\ (0.30) \\ 1.06 \\ (0.32) \\ 1.08 \\ (0.31) \end{array}$                                                 | $\begin{array}{c} l{975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.28 \\ (0.05) \\ 1.74 \\ (0.05) \\ 0.31 \\ (0.11) \\ 1.34 \\ (0.13) \\ 0.17 \\ (0.09) \\ 0.18 \\ (0.09) \end{array}$                           | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 112\\ (6.01)\\ 112\\ (6.01)\\ 10.1\\ (0.52)\\ 1.02\\ (0.09) \end{array}$                                                                                   | $\begin{array}{c} l.025\\ \hline 0.60\\ (0.32)\\ 0.40\\ (0.20)\\ 0.78\\ (0.42)\\ 0.39\\ (0.13)\\ 1.19\\ (0.60)\\ 0.38\\ (0.20)\\ 0.74\\ (0.34)\\ 0.83\\ (0.20)\\ 0.74\\ (0.34)\\ 0.83\\ (0.03)\\ 0.59\\ (0.27)\\ 0.96\\ (0.06)\\ 0.25\\ (0.10)\\ 0.25\\ (0.10)\\ 0.22\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \\ (0.52) \\ 3.47 \\ (0.60) \\ 3.47 \\ (0.77) \\ 3.61 \\ (0.76) \\ 3.31 \\ (0.76) \\ 3.31 \\ (0.51) \\ 1.87 \\ (0.63) \\ 1.88 \\ (0.62) \\ 1.76 \end{array}$                                | $\begin{array}{c} l_{.975} \\ \hline 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \\ (0.10) \\ 0.54 \\ (0.29) \\ 2.16 \\ (0.07) \\ 0.95 \\ (0.44) \\ 2.22 \\ (0.14) \\ 0.27 \\ (0.22) \\ 0.27 \\ (0.22) \end{array}$             | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 115\\ (5.19)\\ 117.7\\ (0.80)\\ 2.72\\ (0.19) \end{array}$                                                                                                                | $\begin{array}{c} l_{.025} \\ 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \\ (0.26) \\ 1.95 \\ (0.85) \\ 1.25 \\ (0.65) \\ 1.25 \\ (0.05) \\ 1.25 \\ (0.05) \\ 1.25 \\ (0.05) \\ 1.50 \\ (0.71) \\ 1.68 \\ (0.07) \\ 0.40 \\ (0.26) \\ 0.39 \\ (0.27) \\ 0.36 \end{array}$ | $\begin{array}{c} l_{.5} \\ \hline \\ 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \\ 6.92 \\ (1.03) \\ 4.77 \\ (0.84) \\ 6.17 \\ (1.11) \\ 6.16 \\ (1.05) \\ 6.59 \\ (0.97) \\ 5.04 \\ (0.70) \\ \textbf{2.75} \\ (0.78) \\ \textbf{2.79} \\ (0.78) \\ \textbf{2.53} \end{array}$           | $\begin{array}{c} l{975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \\ (0.12) \\ 1.02 \\ (0.45) \\ 2.75 \\ (0.10) \\ 2.24 \\ (0.53) \\ 3.45 \\ (0.20) \\ 0.44 \\ (0.33) \\ 0.44 \\ (0.33) \end{array}$                                     | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 10.08\\ (0.00)\\ 116\\ (6.10)\\ 40.1\\ (1.05)\\ 3.15\\ (0.35)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>LLEra<br>LLEre<br>ILLEtr<br>INLA<br>APP <sub>NAI</sub><br>APP <sub>NYS</sub> | $\begin{array}{c} l{025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.32 \\ (0.10) \\ 0.32 \\ (0.10) \\ 0.32 \\ (0.04) \\ 0.32 \\ (0.07) \\ 0.44 \\ (0.01) \\ 0.22 \\ (0.07) \\ 0.45 \\ (0.03) \\ 0.15 \\ (0.05) \\ 0.15 \\ (0.05) \\ 0.14 \\ \overline{(0.07)} \end{array}$ | $\begin{array}{c} l_{.5} \\ \hline l_{.6} \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \\ (0.39) \\ 1.68 \\ (0.40) \\ 1.68 \\ (0.40) \\ 1.69 \\ (0.39) \\ 1.73 \\ (0.30) \\ 1.06 \\ (0.32) \\ 1.08 \\ (0.31) \\ \underline{0.99} \\ (0.33) \end{array}$ | $\begin{array}{c} l{975} \\ 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.24 \\ (0.10) \\ 0.28 \\ (0.05) \\ 1.74 \\ (0.05) \\ 0.31 \\ (0.11) \\ 1.34 \\ (0.13) \\ 0.17 \\ (0.09) \\ 0.18 \\ (0.09) \\ 0.17 \end{array}$ | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 112\\ (6.01)\\ 10.1\\ (0.52)\\ 1.02\\ (0.09)\\ 2.40\\ (0.17)\\ \end{array}$                                                                                | $\begin{array}{c} l.025\\ \hline 0.60\\ (0.32)\\ 0.40\\ (0.20)\\ 0.78\\ (0.42)\\ 0.39\\ (0.13)\\ 1.19\\ (0.60)\\ 0.38\\ (0.20)\\ 0.74\\ (0.34)\\ 0.83\\ (0.20)\\ 0.74\\ (0.34)\\ 0.83\\ (0.03)\\ 0.59\\ (0.27)\\ 0.96\\ (0.06)\\ 0.25\\ (0.10)\\ 0.25\\ (0.10)\\ 0.22\\ \hline (0$ | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \\ (0.52) \\ 3.47 \\ (0.70) \\ 3.47 \\ (0.60) \\ 3.47 \\ (0.76) \\ 3.47 \\ (0.76) \\ 3.47 \\ (0.76) \\ 3.47 \\ (0.63) \\ 1.87 \\ (0.63) \\ 1.88 \\ (0.62) \\ 1.76 \\ (0.60) \\ \end{array}$ | $\begin{array}{c} l{975} \\ \hline 0.53 \\ (0.21) \\ 0.65 \\ (0.50) \\ 0.75 \\ (0.30) \\ 1.29 \\ (0.43) \\ 0.48 \\ (0.14) \\ 0.40 \\ (0.10) \\ 0.54 \\ (0.29) \\ 2.16 \\ (0.07) \\ 0.95 \\ (0.44) \\ 2.22 \\ (0.14) \\ 0.27 \\ (0.22) \\ 0.27 \\ (0.22) \\ 0.26 \end{array}$       | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 115\\ (5.19)\\ 17.7\\ (0.80)\\ 2.72\\ (0.19)\\ 2.57\\ (0.07)\\ \end{array}$                                                               | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \\ (0.26) \\ 1.95 \\ (0.85) \\ 1.25 \\ (0.05) \\ 1.25 \\ (0.05) \\ 1.25 \\ (0.05) \\ 1.25 \\ (0.07) \\ 0.40 \\ (0.26) \\ 0.39 \\ (0.27) \end{array}$                                      | $\begin{array}{c} l_{.5} \\ \hline \\ 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \\ 6.92 \\ (1.03) \\ 4.77 \\ (0.84) \\ 6.17 \\ (1.11) \\ 6.16 \\ (1.05) \\ 6.59 \\ (0.97) \\ 5.04 \\ (0.70) \\ \textbf{2.75} \\ (0.78) \\ \textbf{2.79} \\ (0.78) \\ \textbf{2.53} \\ (0.75) \end{array}$ | $\begin{array}{c} l{975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \\ (0.12) \\ 1.02 \\ (0.45) \\ 2.75 \\ (0.10) \\ 2.24 \\ (0.45) \\ 2.75 \\ (0.10) \\ 2.24 \\ (0.33) \\ 0.44 \\ (0.33) \\ 0.44 \\ (0.33) \\ 0.40 \\ (0.34) \end{array}$ | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 116\\ (6.10)\\ 40.1\\ (1.05)\\ 3.15\\ (0.35)\\ 2.78\\ (0.05)\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| KIEra <sub>SI</sub><br>KIEra <sub>SJ</sub><br>KIEre <sub>SJ</sub><br>KIEtr <sub>SJ</sub><br>LLEra<br>LLEre<br>LLEtr<br>INLA<br>APP <sub>NAI</sub><br>APP <sub>NYS</sub>                         | $\begin{array}{c} l{025} \\ 0.21 \\ (0.06) \\ 0.21 \\ (0.06) \\ 0.25 \\ (0.09) \\ 0.25 \\ (0.09) \\ 0.21 \\ (0.04) \\ 0.32 \\ (0.10) \\ 0.32 \\ (0.10) \\ 0.18 \\ (0.05) \\ 0.24 \\ (0.09) \\ 0.44 \\ (0.01) \\ 0.22 \\ (0.07) \\ 0.45 \\ (0.03) \\ 0.15 \\ (0.06) \\ 0.15 \\ (0.05) \\ 0.14 \end{array}$                      | $\begin{array}{c} l_{.5} \\ \hline l_{.6} \\ (0.35) \\ 1.73 \\ (0.34) \\ 1.79 \\ (0.35) \\ 1.78 \\ (0.32) \\ 1.79 \\ (0.32) \\ 1.79 \\ (0.41) \\ 1.47 \\ (0.35) \\ 1.67 \\ (0.39) \\ 1.68 \\ (0.40) \\ 1.68 \\ (0.40) \\ 1.68 \\ (0.40) \\ 1.69 \\ (0.39) \\ 1.73 \\ (0.30) \\ 1.06 \\ (0.32) \\ 1.08 \\ (0.31) \\ 0.99 \end{array}$     | $\begin{array}{c} l{975} \\ \hline 0.31 \\ (0.15) \\ 0.37 \\ (0.30) \\ 0.38 \\ (0.18) \\ 0.60 \\ (0.26) \\ 0.26 \\ (0.10) \\ 0.26 \\ (0.10) \\ 0.28 \\ (0.05) \\ 1.74 \\ (0.05) \\ 0.31 \\ (0.11) \\ 1.34 \\ (0.13) \\ 0.17 \\ (0.09) \\ 0.18 \\ (0.09) \\ 0.17 \\ (0.13) \end{array}$  | $\begin{array}{c} cpu\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.05\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 0.07\\ (0.00)\\ 112\\ (6.01)\\ 112\\ (6.01)\\ 10.1\\ (0.52)\\ 1.02\\ (0.09)\\ 2.40\\ \end{array}$                                                                          | $\begin{array}{c} l.025\\ \hline 0.60\\ (0.32)\\ 0.40\\ (0.20)\\ 0.78\\ (0.42)\\ 0.39\\ (0.13)\\ 1.19\\ (0.60)\\ 0.38\\ (0.20)\\ 0.74\\ (0.34)\\ 0.83\\ (0.20)\\ 0.74\\ (0.34)\\ 0.83\\ (0.03)\\ 0.59\\ (0.27)\\ 0.96\\ (0.06)\\ 0.25\\ (0.10)\\ 0.25\\ (0.10)\\ 0.22\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} l_{.5} \\ \hline 3.44 \\ (0.63) \\ 3.17 \\ (0.61) \\ 3.82 \\ (0.65) \\ 3.41 \\ (0.55) \\ 3.74 \\ (0.70) \\ 2.76 \\ (0.52) \\ 3.47 \\ (0.60) \\ 3.47 \\ (0.77) \\ 3.61 \\ (0.76) \\ 3.31 \\ (0.76) \\ 3.31 \\ (0.51) \\ 1.87 \\ (0.63) \\ 1.88 \\ (0.62) \\ 1.76 \end{array}$                                | $\begin{array}{c} l.975\\ \hline 0.53\\ (0.21)\\ 0.65\\ (0.50)\\ 0.75\\ (0.30)\\ 1.29\\ (0.43)\\ 0.48\\ (0.14)\\ 0.40\\ (0.10)\\ 0.54\\ (0.29)\\ 2.16\\ (0.07)\\ 0.95\\ (0.44)\\ 2.22\\ (0.14)\\ 0.27\\ (0.22)\\ 0.27\\ (0.22)\\ 0.27\\ (0.22)\\ 0.26\\ \hline (0.24) \end{array}$ | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 115\\ (5.19)\\ 117.7\\ (0.80)\\ 2.72\\ (0.19)\\ 2.57\\ \end{array}$                                                                                                       | $\begin{array}{c} l_{.025} \\ \hline 2.25 \\ (0.74) \\ 0.66 \\ (0.24) \\ 2.70 \\ (0.92) \\ 0.65 \\ (0.21) \\ 3.80 \\ (1.04) \\ 0.83 \\ (0.26) \\ 1.95 \\ (0.85) \\ 1.25 \\ (0.05) \\ 1.25 \\ (0.05) \\ 1.50 \\ (0.71) \\ 1.68 \\ (0.07) \\ 0.40 \\ (0.26) \\ 0.39 \\ (0.27) \\ \hline 0.36 \\ (0.27) \\ \hline \end{array}$   | $\begin{array}{c} l_{.5} \\ \hline \\ 6.41 \\ (1.12) \\ 4.94 \\ (0.81) \\ 7.01 \\ (1.11) \\ 5.55 \\ (0.79) \\ 6.92 \\ (1.03) \\ 4.77 \\ (0.84) \\ 6.17 \\ (1.11) \\ 6.16 \\ (1.05) \\ 6.59 \\ (0.97) \\ 5.04 \\ (0.70) \\ \textbf{2.75} \\ (0.78) \\ \textbf{2.79} \\ (0.78) \\ \textbf{2.53} \end{array}$           | $\begin{array}{c} l{975} \\ 0.83 \\ (0.26) \\ 0.90 \\ (0.58) \\ 1.24 \\ (0.33) \\ 2.21 \\ (0.47) \\ 0.77 \\ (0.18) \\ 0.64 \\ (0.12) \\ 1.02 \\ (0.45) \\ 2.75 \\ (0.10) \\ 2.24 \\ (0.45) \\ 3.45 \\ (0.20) \\ 0.44 \\ (0.33) \\ 0.44 \\ (0.33) \\ 0.40 \end{array}$                             | $\begin{array}{c} cpu\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.06\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 0.08\\ (0.00)\\ 10.08\\ (0.00)\\ 116\\ (6.10)\\ 40.1\\ (1.05)\\ 3.15\\ (0.35)\\ 2.78\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|                     |                   | copper              |        |                     | bei                |        | clmfires            |                     |        |  |
|---------------------|-------------------|---------------------|--------|---------------------|--------------------|--------|---------------------|---------------------|--------|--|
|                     | $l_{\text{test}}$ | $cl_{\text{test}}$  | cpu    | $l_{\text{test}}$   | $cl_{\text{test}}$ | cpu    | $l_{\text{test}}$   | $cl_{\text{test}}$  | cpu    |  |
| KIErası             | 5.65              | 1.64                | 0.32   | 2.92                | 1.31               | 0.26   | 2.39                | 1.30                | 0.24   |  |
| KILIASI             | (0.37)            | (0.09)              | (0.01) | (0.00)              | (0.07)             | (0.00) | (0.00)              | (0.08)              | (0.01) |  |
| KIErası             | 5.65              | 1.64                | 0.33   | 2.92                | 1.31               | 0.25   | 2.39                | 1.30                | 0.24   |  |
| NIElasj             | (0.38)            | (0.09)              | (0.01) | (0.00)              | (0.07)             | (0.00) | (0.00)              | (0.08)              | (0.01) |  |
| KIEre <sub>SI</sub> | 5.65              | 1.64                | 0.33   | 2.92                | 1.31               | 0.25   | 2.40                | 1.38                | 0.24   |  |
| KIElesi             | (0.37)            | (0.09)              | (0.01) | (0.00)              | (0.07)             | (0.00) | (0.00)              | (0.08)              | (0.01) |  |
| KIEresi             | 5.65              | 1.64                | 0.34   | 2.92                | 1.31               | 0.25   | 2.40                | 1.38                | 0.24   |  |
| KIElesj             | (0.38)            | (0.09)              | (0.02) | (0.00)              | (0.07)             | (0.01) | (0.00)              | (0.08)              | (0.00) |  |
| INLA                | 5.64              | 1.66                | 82.9   | 2.90                | 1.13               | 131    | 2.39                | 1.18                | 129    |  |
| INLA                | (0.34)            | (0.10)              | (3.00) | (0.01)              | (0.06)             | (3.37) | (0.01)              | (0.06)              | (4.61) |  |
| APP <sub>NAI</sub>  | 5.65              | 1.64                | 8.21   | 2.96                | 1.51               | 200    | 2.42                | 1.38                | 304    |  |
| APPNAI              | (0.37)            | (0.09)              | (0.50) | (0.03)              | (0.29)             | (4.67) | (0.03)              | (0.10)              | (8.97) |  |
| APP <sub>NYS</sub>  | 5.65              | 1.64                | 0.60   | 2.87                | 1.01               | 15.6   | 2.36                | 1.15                | 17.9   |  |
| APP <sub>NYS</sub>  | (0.37)            | $(\overline{0.09})$ | (0.06) | $(\overline{0.01})$ | (0.05)             | (0.41) | $(\overline{0.01})$ | $(\overline{0.07})$ | (1.06) |  |
|                     | 5.65              | 1.64                | 2.12   | 2.88                | 1.02               | 4.64   | 2.36                | 1.16                | 4.28   |  |
| APP <sub>RFM</sub>  | (0.37)            | (0.09)              | (0.10) | (0.01)              | (0.05)             | (0.21) | (0.01)              | (0.07)              | (0.22) |  |

Table S2: Results on real-world data across 10 trials. Notations follow Table S1.

#### S5.4 Full Results

Table S1 and Table S2 display the predictive performances of all compared methods on synthetic and real-world data, respectively.

## S6 Experiment on Larger Synthetic Data Set

We created data sets according to the scenario  $\lambda_1(t) = g_1(d_R(t)) = \alpha \exp(5 - 3d_R(t))$  (see Section 4.1), in which the size of each data sets was controlled by the coefficient  $\alpha$  from  $\alpha = 0.5$  to  $\alpha = 50$ , resulting in the training data sets containing from 589 to 23,653 data points on average. The computational complexity of INLA depends not on the data size but on the size of domain discretization, and thus we compared APP<sub>RFM</sub> with INLAs of  $10 \times 10$  (INLA<sub>10</sub>),  $50 \times 50$  (INLA<sub>50</sub>),  $100 \times 100$  (INLA<sub>100</sub>), and  $150 \times 150$  (INLA<sub>150</sub>) domain discretization.

Table S3 and Figure S1 display the predictive performances and the CPU times as function of the data size, showing that our APP<sub>RFM</sub> achieved better predictive performances than INLAs, while APP<sub>RFM</sub> was performed substantially faster than INLAs for at least up to tens of thousands of data points. The performance gaps were not marginal (e.g., the improvements of the integrated absolute error  $l_{.5}$  were 18% ~ 38%). Figure S3 displays the predictive performances multiplied by the CPU times (the lower, the better), which represent the predictive performances penalized by its execution times, that is, the ratios of predictive performance to speed. Figure S3 also shows that our APP<sub>RFM</sub> is beneficial against INLAs.

## S7 Experiment on Synthetic Data of 2D Covariate

We created 2D data sets with 2D covariate  $(\mathcal{T} \subset \mathbb{R}^2, \mathcal{Y} \subset \mathbb{R}^2)$  generated from the following intensity function:  $\lambda(t) = 0.01 \alpha \exp(5 - 3d_R(t)) * \exp(5 - 4d_Z(t)^2)$ , which has 20 trial sequences. Here  $d_R(t)$  and  $d_Z(t)$  denote the shortest distances from a given location t to the sets of lines arranged in the shapes of the letters "R" and "Z", respectively. The covariate map is given as  $\mathbf{y}(t) = (d_R(t), d_Z(t))$ . The coefficient  $\alpha$  was set as 0.5 and 1.0. The predictive performance was evaluated based on the integrated  $\rho$ -quantile loss [7], defined as  $l_{\rho} \triangleq \int_{\mathcal{Y}} 2(g(y) - \hat{g}(y)) (\rho I_{g(y) > \hat{g}(y)} - (1-\rho) I_{g(y) \le \hat{g}(y)}) dy$ , where I,  $\hat{g}(y)$ , and g(y) denote the indicator, the predicted  $\rho$ -quantile of the intensity function on covariate domain, and the true one, respectively. Here, we adopted  $l_{.025}$ ,  $l_{.5}$  (integrated absolute error) and  $l_{.975}$ . Table S4 shows the result.

| is the er o times in second, and it is the average data size for each data set. |            |                 |            |        |            |                   |            |        |                                     |          |            |        |
|---------------------------------------------------------------------------------|------------|-----------------|------------|--------|------------|-------------------|------------|--------|-------------------------------------|----------|------------|--------|
|                                                                                 | $(\alpha$  | $(\tilde{N}) =$ | (0.5, 589) | 9)     | $(\alpha,$ | $\tilde{N}$ ) = ( | 1.0, 116   | 9)     | $(\alpha, \tilde{N}) = (5.0, 5921)$ |          |            |        |
|                                                                                 | $l_{.025}$ | $l_{.5}$        | $l_{.975}$ | cpu    | $l_{.025}$ | $l_{.5}$          | $l_{.975}$ | cpu    | $l_{.025}$                          | $l_{.5}$ | $l_{.975}$ | cpu    |
| INLA <sub>10</sub>                                                              | 0.41       | 4.25            | 0.76       | 80.3   | 0.66       | 6.33              | 1.15       | 84.1   | 5.84                                | 30.8     | 11.5       | 88.9   |
|                                                                                 | (0.11)     | (0.72)          | (0.18)     | (6.32) | (0.14)     | (1.11)            | (0.30)     | (8.61) | (1.22)                              | (2.70)   | (2.38)     | (11.1) |
| INLA <sub>50</sub>                                                              | 0.48       | 2.66            | 0.91       | 87.9   | 0.81       | 3.96              | 1.25       | 90.4   | 2.39                                | 10.5     | 3.34       | 95.8   |
|                                                                                 | (0.06)     | (0.58)          | (0.13)     | (10.9) | (0.07)     | (0.83)            | (0.12)     | (7.36) | (0.16)                              | (2.16)   | (0.23)     | (12.0) |
| INLA <sub>100</sub>                                                             | 0.52       | 2.68            | 1.05       | 114    | 0.89       | 3.79              | 1.42       | 118    | 2.76                                | 10.8     | 3.92       | 114    |
|                                                                                 | (0.06)     | (0.64)          | (0.15)     | (9.53) | (0.07)     | (0.95)            | (0.14)     | (9.10) | (0.18)                              | (1.88)   | (0.33)     | (11.0) |
| INLA <sub>150</sub>                                                             | 0.53       | 2.64            | 1.06       | 165    | 0.91       | 3.85              | 1.49       | 166    | 2.85                                | 10.4     | 4.02       | 151    |
|                                                                                 | (0.06)     | (0.60)          | (0.15)     | (14.0) | (0.07)     | (0.99)            | (0.18)     | (12.3) | (0.18)                              | (1.77)   | (0.33)     | (11.6) |
| APP <sub>RFM</sub>                                                              | 0.24       | 2.16            | 0.36       | 2.43   | 0.36       | 2.60              | 0.45       | 2.58   | 1.10                                | 6.60     | 1.20       | 4.58   |
|                                                                                 | (0.06)     | (0.61)          | (0.32)     | (0.08) | (0.17)     | (0.81)            | (0.41)     | (0.04) | (0.83)                              | (2.06)   | (0.74)     | (0.24) |

Table S3: Results on larger synthetic data sets across 20 trials with standard errors in brackets. cpu is the CPU times in second, and  $\tilde{N}$  is the average data size for each data set.

|                     | $(\alpha,$ | $\tilde{N}$ ) = ( | 10,1180    | )8)    | $(\alpha, \tilde{N}) = (20, 23653)$ |          |            |        |  |
|---------------------|------------|-------------------|------------|--------|-------------------------------------|----------|------------|--------|--|
|                     | $l_{.025}$ | $l_{.5}$          | $l_{.975}$ | cpu    | $l_{.025}$                          | $l_{.5}$ | $l_{.975}$ | cpu    |  |
| INLA <sub>10</sub>  | 17.1       | 59.4              | 27.9       | 97.9   | 50.8                                | 119      | 64.0       | 97.5   |  |
|                     | (3.07)     | (4.65)            | (4.85)     | (13.5) | (5.88)                              | (6.56)   | (9.01)     | (13.5) |  |
| INLA <sub>50</sub>  | 3.89       | 17.6              | 4.99       | 102    | 6.20                                | 28.9     | 7.81       | 101    |  |
|                     | (0.26)     | (2.49)            | (0.36)     | (10.9) | (0.32)                              | (4.47)   | (0.58)     | (12.0) |  |
| INLA <sub>100</sub> | 4.54       | 16.8              | 5.88       | 124    | 7.48                                | 28.5     | 9.38       | 121    |  |
|                     | (0.28)     | (2.04)            | (0.40)     | (12.7) | (0.35)                              | (3.78)   | (0.74)     | (12.2) |  |
| INLA <sub>150</sub> | 4.72       | 17.2              | 6.17       | 160    | 7.73                                | 27.4     | 9.81       | 153    |  |
|                     | (0.31)     | (2.89)            | (0.43)     | (13.0) | (0.30)                              | (4.83)   | (0.75)     | (11.6) |  |
| APP <sub>RFM</sub>  | 1.21       | 10.6              | 2.13       | 8.73   | 4.98                                | 20.6     | 4.89       | 18.4   |  |
|                     | (0.35)     | (2.65)            | (1.47)     | (1.01) | (5.46)                              | (10.0)   | (5.25)     | (2.67) |  |



Figure S1: Results on larger synthetic data sets across 20 trials. The predictive performances and the CPU times as function of the data size: the lower, the better.

## **S8** Potential Negative Societal Impacts

Although our model itself does not contain either any ethical problems or negative societal impacts, it could predict fine spatio-temporal patterns of people's behaviors, which might harm their privacy in some cases, and thus great care should be taken to protect personal information.



Figure S2: Results on larger synthetic data sets across 20 trials. The predictive performances penalized by the CPU times as function of the data size: the lower, the better.

Table S4: Results on synthetic data with 2D covariate across 20 trials. *cpu* is the CPU time in second, and the underlines represent the best predictive performances on each metric. Notations follow Table S1.

| (a)                        |             | $\alpha =$  | 0.5         |        | $\alpha = 1.0$ |             |             |        |  |  |
|----------------------------|-------------|-------------|-------------|--------|----------------|-------------|-------------|--------|--|--|
| $\lambda_1(y)$             | $l_{.025}$  | $l_{.5}$    | $l_{.975}$  | cpu    | $l_{.025}$     | $l_{.5}$    | $l_{.975}$  | cpu    |  |  |
| KIErası                    | 19.7        | 11.0        | 2.31        | 0.17   | 40.4           | 22.6        | 4.73        | 0.18   |  |  |
| KIEIasi                    | (2.42)      | (1.20)      | (0.29)      | (0.01) | (3.43)         | (1.68)      | (0.37)      | (0.01) |  |  |
| KIEra <sub>SJ</sub>        | 19.7        | 11.0        | 2.31        | 0.16   | 40.4           | 22.6        | 4.73        | 0.19   |  |  |
|                            | (2.41)      | (1.20)      | (0.29)      | (0.01) | (3.43)         | (1.68)      | (0.37)      | (0.02) |  |  |
| <b>VIE</b> ma              | 2.60        | <u>3.57</u> | 4.54        | 0.17   | 5.22           | 7.01        | 8.80        | 0.19   |  |  |
| KIEre <sub>SI</sub>        | (0.83)      | (0.17)      | (0.61)      | (0.01) | (1.23)         | (0.30)      | (0.82)      | (0.01) |  |  |
| <b>KIEre</b> <sub>SI</sub> | 2.60        | 3.57        | 4.54        | 0.16   | 5.22           | 7.01        | 8.80        | 0.18   |  |  |
| KIElesj                    | (0.83)      | (0.17)      | (0.61)      | (0.01) | (1.22)         | (0.30)      | (0.82)      | (0.01) |  |  |
| INLA                       | 0.78        | 4.13        | 7.75        | 143    | 1.59           | 7.44        | 9.81        | 145    |  |  |
| INLA                       | (0.06)      | (0.86)      | (1.60)      | (4.63) | (0.28)         | (1.76)      | (1.22)      | (6.50) |  |  |
| APP <sub>NYS</sub>         | 0.39        | 3.64        | <u>0.87</u> | 7.19   | 0.63           | <u>5.94</u> | <u>1.49</u> | 8.87   |  |  |
| AFFNYS                     | (0.08)      | (0.71)      | (0.15)      | (0.68) | (0.11)         | (1.04)      | (0.21)      | (0.58) |  |  |
| APP <sub>RFM</sub>         | <u>0.38</u> | 4.70        | 1.79        | 2.46   | <u>0.59</u>    | 7.69        | 3.04        | 2.95   |  |  |
| AL T RFM                   | (0.09)      | (0.86)      | (0.26)      | (0.12) | (0.08)         | (1.32)      | (0.44)      | (0.26) |  |  |

## References

- [1] Adrian Baddeley and Rolf Turner. Spatstat: an R package for analyzing spatial point patterns. *Journal of Statistical Software*, 12:1–42, 2005.
- [2] Sture Holm. A simple sequentially rejective multiple test procedure. *Scandinavian Journal of Statistics*, pages 65–70, 1979.
- [3] Hideaki Kim. Fast Bayesian inference for Gaussian Cox processes via path integral formulation. In Advances in Neural Information Processing Systems 34, 2021.
- [4] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
- [5] James Mercer. Functions of positive and negative type, and their connection with the theory of integral equations. *Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character*, 209:415–446, 1909.



Figure S3: A schema for APP. Univariate covariate  $(\mathcal{Y} \subset \mathbb{R})$  and two-dimensional observation domain  $(\mathcal{T} \subset \mathbb{R}^2)$  are considered in this example.

- [6] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in Neural Information Processing Systems 20, 2007.
- [7] Matthias Seeger, David Salinas, and Valentin Flunkert. Bayesian intermittent demand forecasting for large inventories. In *Advances in Neural Information Processing Systems* 29, 2016.
- [8] Christopher Williams and Matthias Seeger. The effect of the input density distribution on kernelbased classifiers. In *International Conference on Machine Learning*, pages 1159–1166. Citeseer, 2000.
- [9] Christopher Williams and Matthias Seeger. Using the Nyström method to speed up kernel machines. In Advances in Neural Information Processing Systems 13, 2000.