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Abstract

We study the problem of Federated Learning (FL) under client subsampling and data
heterogeneity with an objective function that has potentially unbounded smooth-
ness. This problem is motivated by empirical evidence that the class of relaxed
smooth functions, where the Lipschitz constant of the gradient scales linearly with
the gradient norm, closely resembles the loss functions of certain neural networks
such as recurrent neural networks (RNNs) with possibly exploding gradient. We
introduce EPISODE++, the first algorithm to solve this problem. It maintains
historical statistics for each client to construct control variates and decide clipping
behavior for sampled clients in the current round. We prove that EPISODE++
achieves linear speedup in the number of participating clients, reduced communi-
cation rounds, and resilience to data heterogeneity. Our upper bound proof relies
on novel techniques of recursively bounding the client updates under unbounded
smoothness and client subsampling, together with a refined high probability anal-
ysis. In addition, we prove a lower bound showing that the convergence rate of
a special case of clipped minibatch SGD (without randomness in the stochastic
gradient and with randomness in client subsampling) suffers from an explicit
dependence on the maximum gradient norm of the objective in a sublevel set,
which may be large. This effectively demonstrates that applying gradient clipping
to minibatch SGD in our setting does not eliminate the problem of exploding
gradients. Our lower bound is based on new constructions of hard instances tai-
lored to client subsampling and a novel analysis of the trajectory of the algorithm
in the presence of clipping. Lastly, we provide an experimental evaluation of
EPISODE++ when training RNNs on federated text classification tasks, demon-
strating that EPISODE++ outperforms strong baselines in FL. The code is available
at https://github.com/MingruiLiu-ML-Lab/episode_plusplus.
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Table 1: Best complexity to find an ϵ-stationary point for various methods and settings. The setting
column describes the features of the setting in which the algorithm can solve the problem: (Re)
denotes relaxed smoothness, (H) heterogeneous data, and (S) client subsampling. σ: stochastic
gradient noise, κ: client heterogeneity, ∆: objective gap at the initial solution, I: local steps,
R: communication rounds, T = RI: iteration complexity, N : number of clients, S: number of
subsampled clients. † denotes a high probability guarantee. Õ(·) and Ω̃(·) omit logarithmic terms.

Method Communication Complexity (R) Best Iteration
Complexity

Largest I to guarantee
linear speedup Setting

Local SGD [48] O
(

∆Lσ2

NIϵ4 + ∆Lκ2NI
σ2ϵ2 + ∆LN

ϵ2

)
O
(

Lσ2

Nϵ4

)
O
(

σ2

κNϵ

)
(H)

SCAFFOLD [24] O
(

∆Lσ2

SIϵ4 + ∆L
ϵ2

)
O
(

∆Lσ2

Sϵ4

)
O
(

σ2

Nϵ2

)
(H), (S)

CELGC [32] O
(

∆L0σ
2

NIϵ4

)
O
(

∆L0σ
2

Nϵ4

)
O
(

σ
Nϵ

)
(Re)

EPISODE [9] O
(

∆L0σ
2

NIϵ4 + ∆(L0+L1(κ+σ))
ϵ2

(
1 + σ

ϵ

))
O
(

∆L0σ
2

Nϵ4

)
O

(
L0σ

2

(L0+L1(κ+σ)(1+σ
ϵ ))Nϵ2

)
(Re), (H)

EPISODE++
(Theorem 1)† Õ

(
∆L0σ

2

SIϵ4 + ∆(L0+L1(κ+ρσ))
Iϵ3

L0

L1ρ

)
Õ
(

∆L0σ
2

Sϵ4

)
Õ

(
L0σ

2

(L0+L1(κ+ρσ))
(
σ+

L0
L1ρ

)
Sϵ

)
(Re), (H), (S)

Clipped Minibatch
SGD (Theorem 2) Ω̃

(
∆L1M

ϵ2

)
Ω̃
(
∆L1MI

ϵ2

)
- (Re), (H), (S)

1 Introduction

Federated Learning (FL) [33, 23] is a distributed learning paradigm in which many clients collabora-
tively train a machine learning model while communicating over a network, which preserves privacy
and leverages parallelism across many clients. Minimizing communication cost, accounting for data
heterogeneity across clients, and allowing for partial client participation are core principles of FL.
Interest in FL has grown in recent years, especially with user-facing applications such as next word
prediction on smartphones [19].

Optimization is a central part of FL algorithms, and most work on non-convex optimization assumes
a smooth objective in both the single machine setting [15, 16, 1] and the FL setting [41, 48, 24, 26].
However, recent work [52, 8] has shown empirical evidence that certain neural networks (LSTMs
[21], and Transformers [42]) do not satisfy this assumption, but do satisfy a weaker condition known
as relaxed smoothness [52]. Under relaxed smoothness, techniques such as gradient clipping [37] are
essential for avoiding exploding gradients. To avoid the negative effects of exploding gradients, GD
without gradient clipping requires a step size inversely proportional to the maximum gradient norm of
the objective in a sublevel set (denoted as M ), resulting in very slow convergence. The usefulness of
gradient clipping under relaxed smoothness matches observations of training these neural networks
in practice, for example on natural language tasks, which are common in FL [23].

However, little work yet exists for FL in the relaxed smoothness setting. Liu et al. [32] introduced
a communication-efficient gradient clipping algorithm for FL under relaxed smoothness, with the
additional assumption of homogeneous client data and a distributional assumption on the noise of
stochastic gradients. The EPISODE algorithm [9] was subsequently introduced to handle hetero-
geneous client data in this setting, but requires full client participation, that is, that every client
participates in every communication round. This significantly decreases the practical applicability of
EPISODE, since full client participation is rarely achievable with large-scale FL in practice [23].

In this work, we introduce EPISODE++, the first algorithm for FL under relaxed smoothness, client
heterogeneity, and client subsampling. EPISODE++ maintains statistics of the history of gradients
for each client, and uses these statistics to (1) correct each local update step to approximate an update
on the global loss and (2) determine at which steps the clipping operation should be performed. We
prove that EPISODE++ achieves linear speedup in the number of participating clients, has reduced
communication cost, and enjoys convergence rate independent of client heterogeneity.

A previous line of work in the non-convex smooth stochastic setting [45, 47, 27] compares FL
algorithms against a classical baseline: minibatch SGD [40]. Despite the impressive results of newer
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algorithms in practice, only a few works have proven that some FL algorithms have a theoretical
advantage over minibatch SGD [24, 27]. It is therefore natural to ask what is the analogue of minibatch
SGD in the relaxed smooth setting, and whether it is possible to improve upon this analogue. In
this work we consider clipped minibatch SGD, which is obtained by applying gradient clipping to
each update of minibatch SGD. We demonstrate a surprising negative result for clipped minibatch
SGD: under client subsampling, relaxed smoothness, and client heterogeneity, the convergence rate
of clipped minibatch SGD still depends on M . This implies that gradient clipping does not help
minibatch SGD in this setting.

Our contributions can be summarized as follows:

• We introduce EPISODE++, the first algorithm for FL under relaxed smoothness, client
heterogeneity, and client subsampling. We prove that EPISODE++ achieves linear speedup
in the number of participating clients, reduced communication cost, and has convergence rate
independent of client heterogeneity. Table 1 shows a detailed comparison of the complexity
of various algorithms. To achieve this result, we introduce novel techniques of recursively
bounding the client updates in the presence of unbounded smoothness and client data
heterogeneity, together with a refined high probability analysis.

• We demonstrate a lower bound for clipped minibatch SGD in which the convergence rate
depends on M (the maximum gradient norm of the objective function in a sublevel set).
This shows that, in our setting, clipped minibatch SGD is susceptible to exploding gradients,
and avoiding them requires a very small learning rate, which slows down convergence. Our
lower bound is based on new constructions of hard instances tailored to client subsampling
and a novel analysis of the trajectory of the algorithm in the presence of clipping.

• We empirically evaluate EPISODE++ against strong baselines when training RNNs on fed-
erated text classification tasks. The results show that EPISODE++ consistently outperforms
baselines across various client participation ratios and is resilient to heterogeneous client
data, which is consistent with our theory.

2 Related Work

Federated Learning FL was proposed by [33], where the authors designed the FedAvg algorithm,
which is also referred to as local SGD in the literature [41, 31, 48]. The local SGD algorithm has been
analyzed in various settings, including convex smooth setting [41, 11, 28, 24, 45, 47, 26, 49, 17, 25],
convex composite setting [50, 2, 35], and nonconvex smooth setting [22, 43, 31, 18, 48, 28, 24,
38, 53, 26]. There is a line of work which specially considered client partial participation in
FL [6, 13, 24, 29, 44, 7] under convex or nonconvex smooth settings. Recently, Liu et al. [32] and
Crawshaw et al. [9] considered FL with nonconvex and relaxed smooth functions for homogeneous
and heterogeneous data respectively. However, they assume full client participation and neither of
them are applicable to the case of client subsampling.

Relaxed Smoothness Relaxed smoothness was proposed by [52] as a relaxation of the standard
smoothness condition, which is used to model the exploding gradient problem in training deep neural
networks such as recurrent neural networks [36, 37] and long-short term memory networks [52], lan-
guage models [14, 34] and transformers [8]. Zhang et al. [52] proved that gradient clipping converges
faster than any fixed step size gradient descent for relaxed smooth functions. The complexity bound
in [52] was further improved by [51]. Recently, there is a line of work which considered different
algorithms and various analyses under relaxed smoothness [8, 39, 12]. However, all of them focused
on single machine setting and may not be applicable to FL setting.

Lower bounds in Federated Learning There are several lower bound results for FL algorithms.
Woodworth et al. [45, 47] compared minibatch SGD and local SGD in the regime of federated
stochastic convex optimization setting for homogeneous and heterogeneous data and established
lower bounds for local SGD. Woodworth et al. [46] proved a min-max complexity of distributed
stochastic convex optimization for any intermittent communication algorithm. Glasgow et al. [17]
established improved lower bounds of local SGD in convex optimization setting for both homogeneous
and heterogeneous data. However, all of these lower bounds are not applicable to our setting where
the problem instance is relaxed smooth with heterogeneous data and client subsampling.
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3 Problem Setup

We consider federated learning with heterogeneous and stochastic objectives, where the goal is to
minimize the average loss function across N clients. For i ∈ [N ], let fi(x) = Eξ∼Di

[Fi(x; ξ)] be
the objective of the i-th client, where Di is the underlying data distribution of the i-th client. Then
the global objective is

min
x∈Rd

{
f(x) :=

1

N

N∑
i=1

fi(x)

}
. (1)

Since each fi is not necessarily convex, we consider the problem of finding an ϵ-stationary point, that
is, a point x ∈ Rd such that ∥∇f(x)∥ ≤ ϵ.

Most works on non-convex optimization [15, 16, 1] consider the case where each fi is L-smooth,
so that ∥∇2fi(x)∥ ≤ L for every x ∈ Rd. However, several works [52, 8] have shown empirical
evidence that objective functions corresponding to some types of neural networks (such as LSTMs
[21] and Transformers [42]) do not satisfy this condition, but do satisfy a strictly weaker condition
known as (L0, L1)-smoothness, or relaxed smoothness. A second-order differentiable function
g : Rd → R is called (L0, L1)-smooth if ∥∇2g(x)∥ ≤ L0 + L1∥∇g(x)∥ for all x ∈ Rd. Notice
that any L-smooth function is (L, 0)-smooth.

In this work we consider the problem described in (1) under the following assumptions.

Assumption 1. (i) Denoting by x0 the initial iterate, there exists some ∆ > 0 such that f(x0) −
minx∈Rd f(x) ≤ ∆. (ii) Each fi and f is (L0, L1)-smooth. (iii) There exist κ ≥ 0, ρ ≥ 1 such that
∥∇fi(x)∥ ≤ κ+ ρ∥∇f(x)∥ for all x ∈ Rd. (iv) There exists σ ≥ 0 such that Eξ∼Di

[∇Fi(x; ξ)] =
∇fi(x) and ∥∇Fi(x; ξ)−∇fi(x)∥ ≤ σ almost surely for ξ ∼ Di.

Assumption (i) is standard in non-convex optimization [15, 16]. Assumption (ii) is typically used
in the FL literature [32, 9]. Assumption (iii) is used in heterogeneous federated learning [24] and
describes the heterogeneity between client objectives: if κ = 0 and ρ = 1, then all client objectives
fi are equal. Assumption (iv) is common in the relaxed smoothness setting [52, 51, 32, 8, 9].

In addition, we consider the case of partial client participation in federated learning, also known
as client subsampling. With partial participation, only S out of N clients will participate in each
communication round, which exacerbates the issue of client heterogeneity.

4 Algorithm and Convergence Analysis

4.1 Main Challenges and Algorithm Design

We first illustrate why existing algorithms such as SCAFFOLD [24] and EPISODE [9] are not able to
handle heterogeneous data, relaxed smoothness and client subsampling simultaneously. The analysis
of SCAFFOLD crucially requires the function to be L-smooth to recursively bound (1) the lag error
from client subsampling and (2) client drift from local updates, but this argument is not applicable for
relaxed smooth functions whose gradient information changes quickly. EPISODE has convergence
guarantees for relaxed smooth functions and heterogeneous data, but only with full client participation.
A naive variant of EPISODE in the client subsampling case does not work: the indicator of gradient
clipping is based only on information from clients participating in the current round and ignores
information from unsampled clients, which introduces non-negligible bias from client heterogeneity.

To address these challenges, we design a new algorithm named EPISODE++, which is presented
in Algorithm 1. Similar to EPISODE [9], our algorithm utilizes episodic gradient clipping, which
determines whether a clipping operation will be performed depending on the size of the average
control variate Gr. This means that during each round, either (1) all clients perform a normalized
update for all steps, or (2) all clients will perform an unnormalized update for all steps. However,
different from EPISODE, our algorithm corrects local updates with control variates Gi

r computed
as the averaged stochastic gradient over the previous round in which client i participated, as in
SCAFFOLD. As we will show in our proof, the episodic gradient clipping together with the update
correction strategy allows the algorithm to progress in a stable manner: and it will sufficiently
decrease the objective value and also avoid the negative effect of possibly exploding gradients.
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Algorithm 1 EPISODE++

1: Initialize x̄0, Gi
0 ← ∇Fi(x̄0, ξ̃i), G0 ← 1

N

∑N
i=1 G

i
0

2: for r = 0, 1, . . . , R− 1 do
3: Sample Sr ⊂ [N ] uniformly at random such that |Sr| = S
4: for i ∈ Sr do
5: xi

r,0 ← x̄r

6: for k = 0, . . . , I − 1 do
7: Sample∇Fi(x

i
r,k; ξ

i
r,k), where ξir,k ∼ Di

8: gi
r,k ← ∇Fi(x

i
r,k; ξ

i
r,k)−Gi

r +Gr

9: xi
r,k+1 ← xi

r,k − ηgi
r,k1∥Gr∥≤γ/η − γ

gi
r,k

∥gi
r,k∥

1∥Gr∥≥γ/η

10: end for
11: Gi

r+1 ← 1
I

∑I−1
k=0∇Fi(x

i
r,k; ξ

i
r,k)

12: ∆Gi
r ← Gi

r+1 −Gi
r

13: end for
14: Update x̄r+1 ← 1

S

∑
i∈Sr

xi
r,I

15: Update Gr+1 ← Gr +
1
N

∑
i∈Sr

∆Gi
r

16: Denote Gi
r+1 ← Gi

r for all i /∈ Sr 3

17: end for

4.2 Convergence Result

The following result proves that EPISODE++ converges to an ϵ-stationary point with high probability.

Theorem 1. Let ϵ ≤ AL0

16BL1ρ
and δ ∈ (0, 1). Denote K =

⌈
log(RN/δ)

log(N/(N−S))

⌉
, Γ1 := AL0 +BL1κ+

4BL1ρ
(
2σ + γ

η

)
and Γ2 := 64

(
κ+ 5ρ

(
2σ + γ

η

))2 (
1
S −

1
N

)
. If

η ≤ min

 1

90(K + 1)Γ1I
,

ϵ

32Γ1I
(
74σ + AL0

BL1ρ

) , Sϵ2

216AL0σ2 log 1
δ

,
∆

log 1
δ

min

{
1

12σ2
,

1

Γ2I

} ,

(2)
and γ =

(
72σ + AL0

BL1ρ

)
η, then Algorithm 1 satisfies 1

R

∑R−1
r=0 ∥∇f(x̄r)∥ ≤ 35ϵ with probability at

least 1− 15δ, as long as R ≥ 8∆
ϵ2ηI .

The above result holds for a wide range of η and I , and for any noise level σ. The corollary
below summarizes the best possible iteration complexity and communication complexity implied by
Theorem 1. The full proofs of Theorem 1 and Corollary 1 can be found in Appendix A.5 and A.6.

Corollary 1. Suppose σ > 0. If, under the setting of Theorem 1, we additionally choose ϵ ≤

min

{
AL0

16BL1ρ
,
16

(
74σ+

AL0
BL1ρ

)
45(K+1) ,

√
18∆AL0

S ,
32∆Γ1

(
74σ+

AL0
BL1ρ

)
Γ2 log 1

δ

}
, η as large as possible under (2),

and I ≤ 27AL0σ
2 log 1

δ

4ϵΓ1S
(
74σ+

AL0
BL1ρ

) , then Algorithm 1 has iteration complexity RI = O
(

∆L0σ
2 log 1

δ

Sϵ4

)
. If

additionally I = Θ

(
L0σ

2 log 1
δ

ϵS(L0+L1(κ+ρσ))
(
σ+

L0
L1ρ

)), then Algorithm 1 has communication complexity

R = O

(
∆(L0+L1(κ+ρσ))

(
σ+

L0
L1ρ

)
ϵ3

)
.

3Although it appears that this operation must be performed by unsampled clients, this is just an artifact of the
notation: unsampled clients do not have to execute any operations.

5



4.3 Proof Sketch

In this section we provide a sketch for the proof of Theorem 1. We wish to establish the descent
inequality for the global objective function in each round by applying Lemma A.3 in [51]:

f(x̄r+1) ≤ f(x̄r) + ⟨∇f(x̄r), x̄r+1 − x̄r⟩+
AL0 +BL1∥∇f(x̄r)∥

2
∥x̄r+1 − x̄r∥2, (3)

where A = 1 + eC − eC−1
C , B = eC−1

C and C > 0 is an absolute constant. However, using this
descent inequality requires ∥x̄r+1 − x̄r∥ ≤ C/L1. Achieving a universal bound on the distance over
two consecutive rounds is nontrivial in the presence of client subsampling, data heterogeneity and
relaxed smoothness, which requires a new analysis.

Compared with SCAFFOLD [24] and EPISODE [9], the main difficulty of analyzing EPISODE++
lies in controlling the distance between local weights xi

r,k and the synchronization point x̄r under
relaxed smoothness and client subsampling. In EPISODE, the magnitude of gi

r,k can be bounded in
terms of ∥∇fi(xi

r,k)−∇fi(x̄r)∥ and ∥Gr∥, since Gi
r is evaluated at the synchronization point x̄r.

Then the distance can be bounded recursively when clipping does not happen (i.e., ∥Gr∥ ≤ γ/η).
However, EPISODE++ utilizes historical gradients to construct the indicator Gr, which means the
increment also depends on the lag error ∥Gi

r −∇fi(x̄r)∥. Due to relaxed smoothness, we cannot
bound the lag error as in SCAFFOLD [24] because we do not know the distance between x̄r and
where Gi

r is evaluated. In the extreme case that client i has never been sampled before round r, we
have Gi

r = ∇Fi(x̄0; ξ̃i), so the lag error can be unbounded when r is large.

To address the issue mentioned above, we analyze the convergence of EPISODE++ in a high-
probability framework. Let yi

r,k denote the local model of client i at step k during the most recent
round in which client i participated (before round r), and let qir denote the index of this round. Since
client subsampling independent across rounds, P(qir − r ≥ K) = (1 − S/N)K . Therefore, we
introduce the event E :=

{
max0≤r≤R−1,1≤i≤N r − qir ≤ K

}
, where K is a logarithmic factor such

that P(E) ≥ 1− δ. Under E , we obtain the following lemma to bound the distance of local updates.

Lemma 1. Suppose that (9) holds. Then for any r ≥ 0 we have

1E ·max
k∈[I]

∥xi
r,k − x̄r∥ ≤ 2I(2ση + γ), for any i ∈ Sr, (4)

1E ·max
k∈[I]

∥yi
r,k − x̄r∥ ≤ 2(K + 1)I (2ση + γ) , for any i ∈ [N ]. (5)

The proof of Lemma 1 is deferred to Appendix A.3, which relies on a jump start analysis. If
∥Gr∥ > γ/η, then (4) trivially holds due to the clipping operation. When ∥Gr∥ ≤ γ/η, a recursive
argument shows that the discrepancy ∥xi

r,k − x̄r∥ depends on the magnitude of the increment at the
starting point, that is the lag error ∥E[Gi

r]−∇fi(x̄r)∥ and ∥Gr∥ after removing noise. According
to the construction of Gi

r, we know E[Gi
r] =

1
I

∑I
k=1∇fi(yi

r,k) =
1
I

∑I
k=1∇fi(xi

qir,k
). Therefore,

under the event E , the lag error at the r-th round can be bounded by the discrepancies of previous
K + 1 rounds at most, which is the bound (5). In summary, the discrepancy at any round can be
controlled recursively if the discrepancy at the initial round is small. This insight motivates the
initialization Gi

0 = ∇Fi(x̄0, ξ̃i) in Algorithm 1, which enjoys zero initial lag error.

Finally, Lemma 1 shows that the condition of (3) can be satisfied by choosing η, γ, I , which establishes
descent of the global objective from x̄r to x̄r+1. Summing from r = 0, . . . , R − 1 and applying
concentration bounds over martingale difference sequences to yield high probability bounds for error
terms coming from stochastic gradient noise and client subsampling yields

f(x̄R)− f(x̄0) ≤
R−1∑
r=0

[1Ār
U(x̄r) + 1ArV (x̄r)] +

(
12σ2 + Γ2I

)
η log

1

δ
, (6)

where Ar = {∥Gr∥ ≤ γ/η} denotes the clipping indicator, and U(x), V (x) are defined in the proof
of Theorem 1. According to the choice of η, γ, the dominant term of U(x̄r) is −γI∥∇f(x̄r)∥ and
that of V (x̄r) is −ηI∥∇f(x̄r)∥2. Plugging into (6) and rearranging proves Theorem 1.

6



5 Lower Bound for Clipped Minibatch SGD

Clipped minibatch SGD is a natural extension of minibatch SGD [40, 45] to the relaxed smooth
setting (see pseudocode in Algorithm 2, Appendix B). Clipped minibatch SGD is nearly identical to
minibatch SGD: with the addition of gradient clipping to each round’s update. In the similar spirit
of [45], we are interested in this algorithm because it has the same computation and communication
structure as EPISODE++ and it is important to understand whether EPISODE++ has any advantage
over clipped minibatch SGD. In fact, we will show that clipped minibatch SGD is significantly
hindered by the combination of relaxed smoothness, client heterogeneity, and client subsampling.
Assumption 2. There exists M > 0 such that ∥∇f(x)∥ ≤M for all x with f(x) ≤ f(x0).

A line of work on relaxed smoothness in the single-machine setting [52, 8] has shown that the number
of iterations required to find an ϵ-stationary point by gradient descent (GD) under relaxed smoothness
is Ω̃

(
∆L1M

ϵ2

)
, while that of GD with gradient clipping is O

(
∆L0

ϵ2

)
. In this way, gradient clipping

can remove the dependence on M , which can be large, and significantly speed up optimization.

Theorem 2 shows a surprising result: under some conditions on the participation ratio, number of
clients, and heterogeneity parameter ρ, clipped minibatch SGD requires Ω̃

(
∆L1M

ϵ2

)
rounds, showing

that applying gradient clipping to minibatch SGD does not eliminate dependence on M .

Theorem 2. Fix ϵ > 0, 0 < δ < 1, L0 > 0, L1 > 0, κ > 0, ρ > 2+log(2−δ)
log(2−δ) , M > max(L0

L1
, ϵ), N ≥

(ρ+1)(1+log(2−δ))
(ρ−1) log(2−δ)−2 . Define Q =

⌊
κ+(ρ−1)M
κ+(ρ+1)MN

⌋
. Let F(L0, L1,M, κ, ρ,N) denote the set of problem

instances {fi}Ni=1 satisfying Assumptions 1(ii)-(iv) and 2 with σ = 0. For any fixed choice of parame-
ters γ, η based on the knowledge of above constants, there exists {fi}Ni=1 ∈ F(L0, L1,M, κ, ρ,N)

such that clipped minibatch SGD initialized at x0 with 1 ≤ S ≤ log(2−δ)(Q+1)
N−Q+log(2−δ) will satisfy

P (∥∇f(xr)∥ < ϵ for some 0 ≤ r ≤ R− 1) > 1− δ only if

R ≥
L1M

(
f(x0)− f∗ − 15ϵ2

16L0

)
2ϵ2
(
1 + log L1M

L0

) .

The proof is included in Appendix B. This result shows that clipped minibatch SGD in our setting
suffers the same problem as GD in the single-machine setting: divergence can only be avoided with a
very small step size, leading to slow convergence. In contrast, the convergence rate of EPISODE++
in the same setting is independent of M .

The proof of Theorem 2 analyzes clipped minibatch SGD for three different problem instances. The
first contains linear local objectives with high heterogeneity: if the clipping threshold is sufficiently
small (γη ≤ M ), then clipped minibatch SGD will never converge with probability δ. The second
instance contains homogeneous, exponential local objectives: the learning rate must be sufficiently
small η < O

(
1

L1M

)
to avoid divergence due to the exponentially increasing gradient magnitude.

However, with a large clipping threshold and small learning rate, the convergence of clipped minibatch
SGD will depend on M for the third problem instance, which has homogeneous linear objectives.
Note that our lower bound is different from previous lower bounds in [52, 51] which are in the settings
of single machine [52] or almost sure bounded noise [51], since our lower bound is considering noise
from client subsampling and client data heterogeneity which is not almost surely bounded.

6 Experiments

To validate our theory, we evaluate EPISODE++ and baselines in the training of RNNs for two
text classification tasks. We compare EPISODE++ to CELGC [32], clipped minibatch SGD, and
NaiveParallelClip [32], which is a naive parallel implementation of SGD with gradient clipping that
requires communication at every iteration. As an ablation study, we also evaluate two algorithms
closely related to EPISODE++. The first is a naive extension of EPISODE [9] for client subsampling,
where each participating client’s control variate Gi

r is resampled at the beginning of each round,
and Gr = 1

S

∑
i∈Sr

Gi
r. The second is an algorithm which we refer to as SCAFFOLDClip [9],

which applies gradient clipping to each local step of SCAFFOLD [24]. We evaluate these six
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(a) Training loss and testing accuracy for SNLI dataset.
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(b) Training loss and testing accuracy for Sentiment140 dataset.

Figure 1: Final training loss and testing accuracy for all algorithms, as participation ratio and data
similarity varies. (a) and (b) show results for SNLI and Sentiment140, respectively.

algorithms on natural language inference with the SNLI dataset [4] and sentiment classification with
the Sentiment140 dataset [5]. More experimental results can be found in Appendix C.

6.1 Setup

All experiments use uniform client sampling, a batch size of 64 (on each client) and the multi-class
hinge loss. See Appendix C.1 for full details on hyperparameters. All experiments were implemented
in PyTorch and ran on eight NVIDIA V100 GPUs.

SNLI SNLI [4] is a 3-way text classification task, in which the logical relationship of a pair of
sentences must be classified as either entailment, neutral, or contradictory. The dataset contains 570k
pairs of sentences. Because SNLI is a centralized dataset, we follow the heterogeneity protocol in
[24] to divide the dataset into clients according to a similarity parameter s between 0% and 100%.
According to this protocol, s% of each client’s local dataset is allocated from a randomly shuffled set
of examples, while the remaining (100− s)% is allocated from a set of examples which is sorted by
label. In this way, the similarity of the label distributions of client datasets grows with s. The network
consists of a one-layer bidirectional RNN encoder followed by a three-layer fully connected classifier.
We train for R = 5375 communication rounds with I = 4 for all algorithms except NaiveParallelClip,
which uses R = 21500 and I = 1, so that every algorithm runs the same number of training steps.

Sentiment140 Sentiment140 [5] is a sentiment prediction task designed for FL. The dataset is
comprised of tweets, each labeled as either positive or negative. We follow the data processing steps
of [28] to discard users with small datasets and to split into training and testing sets. In order to
control the data heterogeneity between clients, we follow a similar protocol as described for SNLI to
form client datasets by combining the datasets of original users in the Sentiment140 dataset. The
process is nearly identical to that of SNLI, but here we allocate users to each local dataset instead of
examples. s% of each client’s local dataset is allocated from a randomly shuffled set of users, while
the remaining (100− s)% is allocated from a set of users sorted by the proportion of positive samples.
We train for R = 2000 communication rounds with I = 4 for all algorithms except NaiveParallelClip,
which uses R = 8000 and I = 1. We use the same network architecture as SNLI.
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Figure 2: Learning curves for SNLI and Sentiment140 under the setting S = 4, s = 30% (SNLI) and
S = 4, s = 10% (Sentiment140). For NaiveParallelClip, we show the first 5375 (SNLI) and 2000
(Sentiment140) rounds to compare all algorithms with a fixed number of communication rounds.

SNLI Sent140
Method Train Loss Test Accuracy Train Loss Test Accuracy

EPISODE++ 0.317± 0.001 83.89± 0.07 0.258± 0.004 77.97± 0.16
CELGC 0.529± 0.005 77.45± 0.37 0.493± 0.005 76.36± 0.18

NaiveParallelClip 0.377± 0.001 81.74± 0.09 0.365± 0.004 77.73± 0.07
Clipped MinibatchSGD 0.642± 0.008 72.74± 0.20 0.549± 0.004 75.10± 0.27

SCAFFOLDClip 0.424± 0.002 81.11± 0.06 0.431± 0.001 77.38± 0.16
EPISODE 0.455± 0.005 80.24± 0.13 0.466± 0.003 76.89± 0.17

Table 2: Average results for three trials under S = 4, s = 30% (SNLI) or S = 4, s = 10% (Sent140).
The error is the distance from the average to the max/min across three runs.

We study the effect of client subsampling and data heterogeneity by varying each of these values in
a controlled way. We first fix the heterogeneity s = 30% and vary S ∈ {2, 4, 6, 8}, then we fix the
number of participating clients S = 4 and vary s ∈ {10%, 30%, 50%}. It should be noted that in the
experiments with varying S, we always train for a fixed number of iterations RI . This means that
separate training runs with different S will have the same per-client computation cost (number of
gradient computations), but the total computation cost of a training run scales with S. For this setting,
we use N = 8 clients.

To simulate large-scale federated learning, we also include results with a larger number of clients
N = 128. For this setting, we use S = 16 participating clients in each round, and data heterogeneity
of s = 30% (SNLI) and s = 10% (Sentiment140).

6.2 Results

Figure 1 contains the final training loss and testing accuracy for the variety of settings of client
participation and data heterogeneity. For a single setting of participation and heterogeneity, Figure 2
and Table 2 show learning curves and average results over three trials, respectively. More learning
curves are given in Appendix C.2. Learning curves for large-scale experiments are shown in Figure 3.
EPISODE++ achieves the minimum training loss and maximum testing accuracy of all algorithms
in nearly every setting. Only with full participation S = 8 does NaiveParallelClip achieve a
lower training loss than EPISODE++, but EPISODE++ maintains a higher testing accuracy. Also,
NaiveParallelClip requires a much larger communication cost than EPISODE++ to perform the same
number of training iterations: when the number of communication rounds is fixed, EPISODE++
significantly outperforms NaiveParallelClip.

Effect of Subsampling The first two plots of Figures 1(a) and 1(b) show the performance of each
algorithm as the number of participating clients S varies over {2, 4, 6, 8}with fixed data similarity s =
30%. Clipped minibatch SGD, NaiveParallelClip, and EPISODE all exhibit degraded performance
as S decreases, whereas EPISODE++, SCAFFOLDClip, and CELGC maintain relatively constant
performance as S decreases. Despite the constant performance of CELGC and SCAFFOLDClip
under client sampling, both algorithms are significantly outperformed by EPISODE++.
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Figure 3: Learning curves for large-scale training with N = 128, S = 16, and s = 30% (SNLI) or
s = 10% (Sentiment140). We compare all algorithms with a fixed number of communication rounds.

Effect of Heterogeneity The last two plots of each row in Figure 1 show each algorithm’s per-
formance as the data similarity s varies over {50%, 30%, 10%} for SNLI and {20%, 10%, 0%} for
Sentiment140, with fixed S = 4. For both datasets, decreasing data similarity negatively impacts
the performance of clipped minibatch SGD, CELGC, and NaiveParallelClip. EPISODE++, SCAF-
FOLDClip, and EPISODE are able to maintain performance as data similarity decreases, though
EPISODE++ maintains a significantly better performance than SCAFFOLDClip and EPISODE.

Large-Scale Experiments With a larger number of clients (N = 128, S = 16), the relative
performance of each algorithm is similar to the N = 8 setting, as shown in Figure 3. Here, the
proportion of participating clients S/N = 1/8 is smaller than that of the N = 8 experiments, where
S/N ≥ 1/4. This suggests that the effect of partial client participation may be stronger in the
large-scale experiments. EPISODE++ still outperforms all other algorithms in the large-scale setting,
while maintaining about the same test accuracy as the N = 8 setting, demonstrating the effectiveness
of EPISODE++ for large-scale federated learning.

Comparison with Ablations By comparing EPISODE++ against the closely related EPISODE
and SCAFFOLDClip, we can see that the use of information from previous rounds and episodic
gradient clipping are both critical for the superior performance of EPISODE++. EPISODE only
utilizes information from the currently participating clients, ignoring information from clients that
participated in previous rounds. As a result, the performance of EPISODE degrades as S decreases.
On the other hand, SCAFFOLDClip determines whether to perform clipping individually for each
local step, as opposed to the episodic gradient clipping of EPISODE++ and EPISODE. Although
SCAFFOLDClip maintains performance under changes in the participation ratio and data similarity,
the level it maintains is significantly lower than that of EPISODE++.

Communication Cost NaiveParallelClip suffers a large communication cost for the same number
of training iterations compared with other algorithms, due to the cost of synchronizing clients at every
iteration. As shown in Figure 2 and Figure 3, EPISODE++ outperforms all other algorithms by a
wide margin when the number of communication rounds is fixed. Also, EPISODE requires twice
the number of communication operations per training round, which doubles the time required for
communication per round compared to all other algorithms.

7 Conclusion

We have presented EPISODE++, the first algorithm for FL with heterogeneous data and client
subsampling under relaxed smoothness. We proved that EPISODE++ finds an ϵ-stationary point with
high probability, and its convergence rate satisfies linear speedup and resilience to heterogeneity while
enjoying reduced communication. We also presented a lower bound showing that the convergence
rate of a special case of clipped minibatch SGD in our setting suffers a dependence on M (the
maximum gradient norm of the objective in a sublevel set), implying that applying gradient clipping
to minibatch SGD does not alleviate the problem of exploding gradients. Our experimental results
for RNN training on text classification tasks demonstrate the superior performance of EPISODE++
compared to baselines. One limitation of our current work is that our lower bound assumes σ = 0,
and we plan to get a better lower bound in the future for σ > 0.
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A Deferred Proofs of the Upper Bound

A.1 Notation and Preliminaries

Let qi0 = 0, yi
0,k = x̄0, and define

qir :=

{
r − 1 i ∈ Sr−1

qir−1 otherwise
(7)

and

yi
r,k :=

{
xi
r−1,k i ∈ Sr−1

yi
r−1,k otherwise

(8)

The intermediate variable qir is the most recent round before (not including) round r in which client
i participated. Similarly, yi

r,k is the local model at step k during the most recent round before (not
including) round r in which client i participated. Then we know that yi

r,k = xi
qir,k

. Therefore

Gi
r = 1

I

∑I−1
k=0∇Fi(y

i
r,k; ξ

i
qir,k

). Also, we will initialize Gi
0 = ∇Fi(x̄

i
0; ξ̃

i) for all clients.

Denote by Ar = {∥Gr∥ ≤ γ
η }. Our analysis is simplified by taking the following conditions

throughout the proof:

(K + 1)ηI

(
AL0 +BL1κ+ 4BL1ρ

(
2σ +

γ

η

))
≤ 1

60

2(K + 1)I (2ση + γ) ≤ C

L1
,

(9)

where C > 0 is a constant, A and B are defined in terms of C (see Lemma 2), and K is defined in
Lemma 8. Usage of these conditions will be explicitly stated when used.

Through out this section, we denote the filtration

Fr = σ
(
{ξ̃i}i∈[N ], {ξiq,k : q ≤ r, k ∈ [I]}i∈[N ]

)
.

We use Er[·] = E[· | Fr] and Pr(·) to denote the conditional expectation and probability given the
filtration Fr. Notice that, given Fr, the global weight x̄r is fixed but the subsampling set Sr is still
random and is independent of Fr.

A.2 Auxiliary Lemmas

Lemma 2 (Corollary A.4 in [51]). Let f : Rd → R be (L0, L1)-smooth and C > 0. For any
x,y ∈ Rd with ∥x− y∥ ≤ C

L1
,

∥∇f(x)−∇f(y)∥ ≤ (AL0 +BL1∥∇f(x)∥)∥x− y∥,

where A = 1 + eC − eC−1
C and B = eC−1

C .

Lemma 3 (Lemma A.3 in [51]). Let f : Rd → R be (L0, L1)-smooth and C > 0. For any x,y ∈ Rd

with ∥x− y∥ ≤ C
L1

,

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ AL0 +BL1∥∇f(x)∥
2

∥x− y∥2,

where A = 1 + eC − eC−1
C and B = eC−1

C .

Lemma 4 (Lemma B.1 in [51]). For any µ ≥ 0 and x,y ∈ Rd,

−
〈
x,

y

∥y∥

〉
≤ −µ∥x∥ − (1− µ)∥y∥+ (1 + µ)∥y − x∥.

Lemma 5 (Lemma 1 in [30]). Assume that Z1, . . . , ZT is a martingale difference sequence with
respect to the filtration Ft and Et[exp(Z

2
t /σ

2
t )] ≤ exp(1) for all t, where σ1, . . . , σT is a sequence

of random variables such that σt ∈ Ft. Then for any fixed λ > 0 and δ ∈ (0, 1), with probability at
least 1− δ,

T∑
t=1

Zt ≤
3

4
λ

T∑
t=1

σ2
t +

1

λ
log

1

δ
.
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Lemma 6 (Improved Serfling’s inequality, Proposition 2.3 in [3]). Let X = (x1, . . . , xN ) be a finite
population of N real numbers and X1, . . . , Xn denote a random sample without replacement from
X . Let µX = 1

N

∑N
i=1 xi, σ2

X = 1
N

∑N
i=1(xi − µ)2, and µ̂n = 1

n

∑n
i=1 Xi. If maxi∈[N ] |xi| ≤ b,

then for any λ > 0,

E[exp(λ(µ̂n − µX ))] ≤ exp

(
b2λ2

2

n+ 1

n2

(
1− n

N

))
.

Lemma 7 (Lemma 12 in [10]). Suppose X1, . . . , XT is a martingale difference sequence in a Hilbert
space such that ∥Xt∥ ≤ b almost surely for some constant b. Further, assume Et−1[∥Xt∥2] ≤ σ2

t
with probability 1 for some constants σt. Then with probability at least 1− 3δ, for all k:∥∥∥∥∥

k∑
t=1

Xt

∥∥∥∥∥ ≤ 3bmax

(
1, log

1

δ

)
+ 3

√√√√ k∑
t=1

σ2
t max

(
1, log

1

δ

)

A.3 Proof of Lemma 1

Define

Ξr :=
1

NI

N∑
i=1

I−1∑
k=0

∥x̄r − yi
r,k∥.

Ξr is the average “lag" (over clients) of the correction Gi
r behind ∇f(x̄r) due to client sampling,

since each Gi
r is set according to stochastic gradients at yi

r,k.

For any δ ∈ (0, 1), define

K =


⌈

log(RN
δ )

log( N
N−S )

⌉
S < N

1 S = N

and

E =

{
max

0≤r≤R−1,1≤i≤N
r − qir ≤ K

}
. (10)

The event E occurs when every round in which a client is sampled occurs after no more than K
rounds following the previous round in which that client was sampled. This means that under E , the
correction Gi

r was computed within K rounds of round r. The next lemma shows that E occurs with
probability 1− δ.

Lemma 8. For any δ with 0 < δ < 1, P(E) ≥ 1− δ.

Proof. If S = N , then r − qir = 1, and we are done. Otherwise, since each round’s participating
clients are sampled uniformly without replacement and independently at each round,

P(r − qir ≤ k) =

k∑
i=1

P(r − qir = i)

=

{∑k
i=1

S
N

(
1− S

N

)i−1
k < r

1 otherwise

≥ S

N

k∑
i=1

(
1− S

N

)i−1

=
S

N

1−
(
1− S

N

)k
1−

(
1− S

N

)
= 1−

(
1− S

N

)k

.
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Also by the choice of K: K ≥ log(RN
δ )

log( N
N−S )

, we can show that
(
1− S

N

)K ≤ δ
RN . So P(r − qir ≤

K) ≥ 1− δ
RN . Therefore

P(E) = P
(
r − qir ≤ K,∀0 ≤ r ≤ R− 1, 1 ≤ i ≤ N

)
≥ 1−

R−1∑
r=0

N∑
i=1

P(r − qir > K) ≤ 1− δ.

Lemma 9. Let r ≥ 0. If ∥x̄r−yi
r,k∥ ≤ C

L1
for all i ∈ [N ] and k ∈ {0, . . . , I−1}, and BL1ρΞr < 1,

then

∥∇f(x̄r)∥ ≤
σ + ∥Gr∥+ (AL0 +BL1κ)Ξr

1−BL1ρΞr
.

Proof. Due to the assumption ∥x̄r − yi
r,k∥ ≤ C

L1
, we have

∥∇f(x̄r)∥ ≤ ∥∇f(x̄r)−Gr∥+ ∥Gr∥

≤ 1

N

N∑
i=1

∥∇fi(x̄r)−Gi
r∥+ ∥Gr∥

≤ 1

NI

N∑
i=1

I−1∑
k=0

∥∇fi(x̄r)−∇Fi(y
i
r,k; ξ

i
qir,k

)∥+ ∥Gr∥

≤ 1

NI

N∑
i=1

I−1∑
k=0

∥∇fi(x̄r)−∇fi(yi
r,k)∥+

1

NI

N∑
i=1

I−1∑
k=0

∥∇fi(yi
r,k)−∇Fi(y

i
r,k; ξ

i
qir,k

)∥+ ∥Gr∥

(i)

≤ 1

NI

N∑
i=1

I−1∑
k=0

(AL0 +BL1∥∇fi(x̄r)∥)∥x̄r − yi
r,k∥+ σ + ∥Gr∥

(ii)

≤ (AL0 +BL1(κ+ ρ∥∇f(x̄r)∥))
1

NI

N∑
i=1

I−1∑
k=0

∥x̄r − yi
r,k∥+ σ + ∥Gr∥

≤ (AL0 +BL1(κ+ ρ∥∇f(x̄r)∥))Ξr + σ + ∥Gr∥,

where we used Lemma 2 in (i) and Assumption 1(iv) in (ii). Rearranging to isolate ∥∇f(x̄r)∥ gives
the result.

Lemma 10. Suppose that Equation 9 holds, then for any i ∈ [N ] and k ∈ [I],

∥xi
0,k − x̄0∥ ≤ 2I (2ση + γ) . (11)

Proof. Notice that, due to the clipping operation,

1Ā0

∥∥xi
0,k − x̄0

∥∥ = kγ ≤ 2k(2ση + γ). (12)

holds for any k ≤ I . Next we verify Equation 11 under the event A0. To see this, we first consider
the case k = 1,

1A0
∥xi

0,1 − x̄0∥ = 1A0
· η∥∇Fi(x̄0; ξ

i
0,0)−Gi

0 +G0∥
≤ 1A0

(η∥∇Fi(x̄0; ξ
i
0,0)−∇fi(x̄0)∥+ η∥Gi

0 −∇fi(x̄0)∥+ η∥G0∥)
≤ 2ση + γ,

where we used the initialization Gi
0 = ∇Fi(x̄0; ξ̃

i) and ∥G0∥ ≤ γ
η under the event A0. This

indicates that Equation 11 holds with k = 1.
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Now suppose that Equation 11 holds for some k with 1 ≤ k < I . Then we have

1A0
∥xi

0,k+1 − x̄0∥ = 1A0
∥xi

0,k − η(∇Fi(x
i
0,k; ξ

i
0,k)−Gi

0 +G0)− x̄0∥
≤ 1A0

(
∥xi

0,k − x̄0∥+ η∥∇Fi(x
i
0,k; ξ

i
0,k)−Gi

0 +G0∥
)

(i)

≤ 1A0

(
∥xi

0,k − x̄0∥+ η∥∇Fi(x
i
0,k; ξ

i
0,k)−∇fi(xi

0,k)∥+ η∥Gi
0 −∇fi(x̄0)∥

+ η∥∇fi(xi
0,k)−∇fi(x̄0)∥+ η∥G0∥

)
(ii)

≤ 1A0

(
∥xi

0,k − x̄0∥+ 2ση + γ + η∥∇fi(xi
0,k)−∇fi(x̄0)∥

)
(iii)

≤ 1A0

(
∥xi

0,k − x̄0∥+ 2ση + γ + η(AL0 +BL1∥∇fi(x̄0)∥)∥xi
0,k − x̄0∥

)
≤ 1A0

(
∥xi

0,k − x̄0∥+ 2ση + γ + η(AL0 +BL1(κ+ ρ∥∇f(x̄0)∥))∥xi
0,k − x̄0∥

)
.

where (i) holds due to the initialization G0 = ∇Fi(x̄0; ξ̃
i); (ii) follows from ∥G0∥ ≤ γ

η ; and (iii)

follows from Lemma 2. Note that the conditions of Lemma 2 are satisfied here by the inductive
hypothesis together with Equation 9.

Notice that Ξ0 = 0, so by Lemma 9, we have

1A0
∥∇f(x̄0)∥ ≤ ∥G0 −∇f(x̄0)∥+ 1A0

∥G0∥ ≤
1

N

N∑
i=1

∥∥∥∇Fi(x̄0; ξ̃
i)−∇fi(x̄0)

∥∥∥+ γ

η
≤ σ +

γ

η
.

Therefore

1A0∥xi
0,k+1 − x̄0∥ ≤ ∥xi

0,k − x̄0∥+ 2ση + γ + η

(
AL0 +BL1κ+BL1ρ

(
σ +

γ

η

))
∥xi

0,k − x̄0∥

(i)

≤ ∥xi
0,k − x̄0∥+ 2ση + γ +

1

4I
∥xi

0,k − x̄0∥

(ii)

≤ 2ση + γ +

(
1 +

1

4I

)
2k(2ση + γ)

= 2

(
k +

k

4I
+

1

2

)
(2ση + γ)

≤ 2(k + 1)(2ση + γ),

where (i) holds due to Equation 9 and (ii) holds because of the inductive hypothesis that Equa-
tion 11 holds for k. This completes the induction over k under the event A0. This fact together
with Equation 12 proves that Equation 11 holds for all k = 1, . . . , I .

Lemma 11. Suppose that Equation 9 holds. If maxk∈[I] ∥xi
q,k − x̄q∥ ≤ 2I(2ση + γ) holds for any

q ≤ r − 1, then we have

1E max
k∈[I]

∥xi
r,k − x̄r∥ ≤ 2I(2ση + γ), for any i ∈ Sr, (13)

1E max
k∈[I]

∥yi
r,k − x̄r∥ ≤ 2(K + 1)I (2ση + γ) , for any i ∈ [N ], . (14)
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Proof. Under Ār, Equation 13 trivially holds due to clipping. Next we verify Equation 13 under Ar.
First consider the case k = 1.

1Ar
∥xi

r,1 − x̄r∥
= 1Ar

· η∥∇Fi(x̄r; ξ
i
r,0)−Gi

r +Gr∥

≤ η

∥∥∥∥∥∇Fi(x̄r; ξ
i
r,0)−

1

I

I−1∑
k=0

∇Fi(y
i
r,k; ξ

i
qir,k

)

∥∥∥∥∥+ η1Ar
∥Gr∥

≤ η∥∇Fi(x̄r; ξ
i
r,0)−∇fi(x̄r)∥+

η

I

I−1∑
k=0

∥∇Fi(y
i
r,k)−∇Fi(y

i
r,k; ξ

i
qir,k

)∥+

η

I

I−1∑
k=0

∥∇fi(x̄r)−∇fi(yi
r,k)∥+ η1Ar∥Gr∥

≤ 2ση + γ +
η

I

I−1∑
k=0

∥∇fi(x̄r)−∇fi(yi
r,k)∥. (15)

Recall that yi
r,k = xi

qir,k
from the definitions Equation 7 and Equation 8, so

∥x̄r − yi
r,k∥ ≤ ∥x̄r − x̄qir

∥+ ∥x̄qir
− xqir,k

∥ ≤
r−1∑
q=qir

∥x̄q+1 − x̄q∥+ ∥x̄qir
− xi

qir,k
∥

(i)

≤ (r − qir)2I (2ση + γ) + 2k(2ση + γ)

(ii)

≤ 2(K + 1)I (2ση + γ)

(iii)

≤ C

L1
, (16)

where (i) holds due to inductive hypothesis for rounds q ∈ {0, . . . , r− 1}; (ii) holds due to the event
E such that r− qir ≤ K; and (iii) follows from Equation 9. The above bound on ∥x̄r−yi

r,k∥ verifies
Equation 14 and shows that the condition of Lemma 2 is satisfied. Then applying it to Equation 15
yields

∥xi
r,1 − x̄r∥1Ar

≤ 2ση + γ + η1Ar
(AL0 +BL1∥∇fi(x̄r)∥)

1

I

I−1∑
k=0

∥x̄r − yi
r,k∥

≤ 2ση + γ + 2(K + 1)η1ArI(AL0 +BL1κ+BL1ρ∥∇f(x̄r)∥)(2ση + γ)

≤ (1 + 2(K + 1)ηI(AL0 +BL1κ+BL1ρ1Ar∥∇f(x̄r)∥)) (2ση + γ), (17)
where we used Equation 16 and Assumption 1 (iii) and (iv). Invoking Equation 9 and Equation 16
gives

BL1ρΞr = BL1ρ
1

NI

N∑
i=1

I−1∑
k=0

∥x̄r − yi
r,k∥ ≤ 2(K + 1)BL1ρI(2ση + γ) ≤ 1

2
.

Therefore the conditions of Lemma 9 are satisfied, and we can bound ∥∇f(x̄r)∥ as follows:

∥∇f(x̄r)∥1Ar
≤

σ + γ
η + (AL0 +BL1κ)Ξr

1−BL1ρΞr

≤ 2

(
σ +

γ

η
+ (AL0 +BL1κ)Ξr

)
≤ 2

(
σ +

γ

η
+ 2(K + 1)I(AL0 +BL1κ)(2ση + γ)

)
≤ 2

(
2σ +

γ

η

)
(1 + 2(K + 1)ηI(AL0 +BL1κ))

≤ 4

(
2σ +

γ

η

)
, (18)
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where we used Equation 9. Finally, plugging back into Equation 17 yields

∥xi
r,1 − x̄r∥1Ar

≤
(
1 + 2(K + 1)ηI

(
AL0 +BL1κ+ 4BL1ρ

(
2σ +

γ

η

)))
(2ση + γ)

≤ 2(2ση + γ),

where we used Equation 9 again. This proves Equation 13 for the base case k = 1.

Now suppose that Equation 13 holds for some k with 1 ≤ k < I . Then

∥xi
r,k+1 − x̄r∥1Ar

= 1Ar
∥xi

r,k − η(∇Fi(x
i
r,k; ξ

i
r,k)−Gi

r +Gr)− x̄r∥
≤ 1Ar

(∥xi
r,k − x̄r∥+ η∥∇Fi(x

i
r,k; ξ

i
r,k)−Gi

r +Gr∥)
≤ 1Ar

(∥xi
r,k − x̄r∥+ η∥∇Fi(x

i
r,k; ξ

i
r,k)−∇fi(xi

r,k)∥)

+ 1Ar

η

I

I−1∑
j=0

∥∇Fj(y
i
r,j ; ξ

i
qir;j

)−∇fi(yi
r,j)∥

+ 1Ar

η

I

I−1∑
j=0

∥∇fi(xi
r,k)−∇fi(yi

r,j)∥+ η1Ar∥Gr∥

≤ 1Ar∥xi
r,k − x̄r∥+ 2ση + γ + η1Ar∥∇fi(xi

r,k)−∇fi(x̄r)∥

+ 1Ar

η

I

I−1∑
j=0

∥∇fi(x̄r)−∇fi(yi
r,j)∥, (19)

where we used ∥Gr∥ ≤ γ
η under the event Ar and Assumption 1 (iii). We can individually bound

each of the two terms 1Ar∥∇fi(xi
r,k)−∇fi(x̄r)∥ and 1Ar∥∇fi(x̄r)−∇fi(yi

r,j)∥. By the inductive
hypothesis over k, together with Equation 9: ∥xi

r,k − x̄r∥ ≤ 2I(2ση + γ) ≤ C
L1

. So we can apply
Lemma 2 and obtain:

∥∇fi(xi
r,k)−∇fi(x̄r)∥1Ar ≤ 1Ar (AL0 +BL1∥∇fi(x̄r)∥)∥xi

r,k − x̄r∥
≤ 1Ar (AL0 +BL1κ+BL1ρ∥∇f(x̄r)∥)∥xi

r,k − x̄r∥

≤ 1Ar

(
AL0 +BL1κ+ 4BL1ρ

(
2σ +

γ

η

))
∥xi

r,k − x̄r∥

≤ 1

4ηI
∥xi

r,k − x̄r∥, (20)

where we used Assumption 1 (iii) and (iv), Equation 18, and Equation 9. Similarly, by the inductive
hypothesis over r,

∥x̄r − yi
r,j∥ ≤ ∥x̄r − x̄qir

∥+ ∥x̄qir
− xi

qir,j
∥ ≤ 2(K + 1)I(2ση + γ) ≤ C

L1
.

So we can apply Lemma 2:

∥∇fi(x̄r)−∇fi(yi
r,j)∥ ≤ (AL0 +BL1∥∇fi(x̄r)∥)∥x̄r − yi

r,j∥

≤
(
AL0 +BL1κ+ 4BL1ρ

(
2σ +

γ

η

))
∥x̄r − yi

r,j∥

≤ 1

4(K + 1)ηI
∥x̄r − yi

r,j∥ (21)

where the last inequality follows from the assumption Equation 9.
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Finally, plugging Equation 20 and Equation 21 into Equation 19 gives

1Ar
∥xi

r,k+1 − x̄r∥ ≤ 2ση + γ +

(
1 +

1

4I

)
∥xi

r,k − x̄r∥+
1

4(K + 1)I2

I−1∑
j=0

∥x̄r − yi
r,j∥

≤ 2ση + γ + 2k

(
1 +

1

4I

)
(2ση + γ) +

1

4(K + 1)I2

I−1∑
j=0

2(K + 1)I(2ση + γ)

≤ 2

(
1

2
+ k +

k

4I
+

1

4

)
(2ση + γ)

≤ 2(k + 1)(2ση + γ),

where we used the inductive hypothesis over k and the inductive hypothesis over r. This fact together
with 1Ār

∥xi
r,k+1 − x̄r∥ ≤ 2(k + 1)(2ση + γ) (which trivially holds due to the clipping operator),

we prove that Equation 13 holds for k + 1, completing the induction over k. Therefore Equation 13
holds for all k ∈ [I].

Lemma 1 restated. Suppose that Equation 9 holds. Then for any r ≥ 0 we have

1E max
k∈[I]

∥xi
r,k − x̄r∥ ≤ 2I(2ση + γ), for any i ∈ Sr, (22)

1E max
k∈[I]

∥yi
r,k − x̄r∥ ≤ 2(K + 1)I (2ση + γ) , for any i ∈ [N ]. (23)

Proof. We will use induction to prove Equation 22 by a induction over r. And Equation 23 holds
as a consequence of the inductive assumption due to Lemma 11. Invoking Lemma 10, we can
verify the base case of the induction over r. Now we assume maxk∈[I],i∈[N ] ∥xi

q,k − x̄q∥ ≤
2(K + 1)I (2ση + γ) holds for any q ≤ r − 1. Then according to Lemma 11, we can prove
Equation 22 and Equation 23 immediately. It also completes the induction of Equation 22 over r.

Corollary 2. Suppose that Equation 9 holds. Then for any r ≥ 0 and i ∈ [N ],

1EΞr ≤ 2(K + 1)ηI

(
σ +

γ

η

)
(24)

1E∩Ar∥∇f(x̄r)∥ ≤ 4

(
2σ +

γ

η

)
(25)

1E∩Ar∥∇fi(x̄r)−Gi
r∥ ≤ 2σ +

γ

30η
(26)

1E∩Ar
∥∇f(x̄r)−Gr∥ ≤ 2σ +

γ

30η
. (27)

Proof. All proofs of this corollary are under the event E . Equation 24 follows directly from Equa-
tion 14 and the definition Ξr = 1

NI

∑N
i=1

∑I
k=1 ∥yi

r,k − x̄r∥. Equation 25 is exactly Equation 18.

Due to Lemma 1, we can apply Lemma 2 such that

1E∥∇fi(x̄r)−Gi
r∥ ≤ 1E

(
1

I

I−1∑
k=0

∥∇fi(x̄r)−∇fi(yi
r,k)∥+

1

I

I−1∑
k=0

∥∇fi(yi
r,k)−∇Fi(y

i
r,k; ξ

i
qir,k

)∥

)

≤ 1E

(
1

I

I−1∑
k=0

(AL0 +BL1∥∇fi(x̄r)∥)∥x̄r − yi
r,k∥+ σ

)
≤ (AL0 +BL1κ+BL1ρ1E∥∇f(x̄r)∥)Ξr + σ.
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So, using Equation 24 and Equation 25,

1E∩Ar
∥∇fi(x̄r)−Gi

r∥ ≤ 2(K + 1)ηI

(
2σ +

γ

η

)(
AL0 +BL1κ+ 4BL1ρ

(
2σ +

γ

η

))
+ σ

≤ 1

30

(
2σ +

γ

η

)
+ σ

≤ 2σ +
γ

30η
,

where we used Equation 9. Equation 27 follows immediately from Equation 26 by

1E∩Ar
∥∇f(x̄r)−Gr∥ ≤

1

N

N∑
i=1

1E∩Ar
∥∇fi(x̄r)−Gi

r∥ ≤ 2σ +
γ

30η
.

A.4 Proof of descent inequality

Lemma 12. Suppose Equation 9 holds. Then with probability 1− 15δ, Algorithm 1 satisfies

f(x̄R)− f(x̄0)

≤
R−1∑
r=0

1Ar

[
− 1

8
ηI∥∇f(x̄r)∥2 +

(
2Γ1η

2I2
(
2σ +

γ

η

)
+

216BL1σ
2η2I log 1

δ

S

)
∥∇f(x̄r)∥

+ 96Γ3
1η

4I4
(
2σ +

γ

η

)2

+
108AL0σ

2η2I log 1
δ

S

]

+

R−1∑
r=0

1Ār

[
− γI

(
3

4
− 2BL1ργI −

1

2
BL1γI

)
∥∇f(x̄r)∥

− γI

(
1

8

γ

η
− 6σ − 2AL0γI −

5

2
BL1κγI

)]

+ η

(
12σ2 + 64I

(
κ+ 5ρ

(
2σ +

γ

η

))2(
1

S
− 1

N

))
log

1

δ
,

where Γ1 = AL0 +BL1κ+ 4BL1ρ
(
2σ + γ

η

)
.

Proof. By Lemma 8, P(E) ≥ 1− δ. The remainder of the proof will suppose the event E happens,
and the results will hold with probability 1− δ. By Lemma 1 and Equation 9, ∥x̄r+1 − x̄r∥ ≤ C

L1
.

Denote Ar = {∥Gr∥ ≤ γ/η}. Therefore we may apply Lemma 3 to obtain

f(x̄r+1)− f(x̄r)

≤ ⟨∇f(x̄r), x̄r+1 − x̄r⟩+
AL0 +BL1∥∇f(x̄r)∥

2
∥x̄r+1 − x̄r∥2

≤ −1Ar
η

〈
∇f(x̄r),

1

S

∑
i∈Sr

I−1∑
k=0

gi
r,k

〉
− 1Ār

γ

〈
∇f(x̄r),

1

S

∑
i∈Sr

I−1∑
k=0

gi
r,k

∥gi
r,k∥

〉
+

1Ar

AL0 +BL1∥∇f(x̄r)∥
2

∥x̄r+1 − x̄r∥2 + 1Ār

AL0 +BL1∥∇f(x̄r)∥
2

∥x̄r+1 − x̄r∥2.
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Summing over r = 0, . . . , R− 1 yields

f(x̄R)− f(x̄0) ≤ −η
R−1∑
r=0

1Ar

〈
∇f(x̄r),

1

S

∑
i∈Sr

I−1∑
k=0

gi
r,k

〉
︸ ︷︷ ︸

A1

−γ
R−1∑
r=0

1Ār

〈
∇f(x̄r),

1

S

∑
i∈Sr

I−1∑
k=0

gi
r,k

∥gi
r,k∥

〉
︸ ︷︷ ︸

A2

+

R−1∑
r=0

1Ar

AL0 +BL1∥∇f(x̄r)∥
2

∥x̄r+1 − x̄r∥2︸ ︷︷ ︸
A3

+

R−1∑
r=0

1Ār

AL0 +BL1∥∇f(x̄r)∥
2

∥x̄r+1 − x̄r∥2︸ ︷︷ ︸
A4

. (28)

We proceed by bounding each of the four terms in Equation 28.

Bounding A1. Denote

ϵir,k = ∇Fi(x
i
r,k; ξ

i
r,k)−∇fi(xi

r,k),

ϵ(1)r =
1

S

∑
i∈Sr

Gi
r −Gr,

ϵ(2)r =
1

S

∑
i∈Sr

∇fi(x̄r)−∇f(x̄r).

Then we can write

1

S

∑
i∈Sr

gi
r,k =

1

S

∑
i∈Sr

∇Fi(x
i
r,k; ξ

i
r,k)−

1

S

∑
i∈Sr

Gi
r +Gr

=
1

S

∑
i∈Sr

∇fi(xi
r,k) +

1

S

∑
i∈Sr

ϵir,k − ϵ(1)r

=
1

S

∑
i∈Sr

∇fi(x̄r) +
1

S

∑
i∈Sr

(∇fi(xi
r,k)−∇fi(x̄r)) +

1

S

∑
i∈Sr

ϵir,k − ϵ(1)r

= ∇f(x̄r)− ϵ(1)r + ϵ(2)r +
1

S

∑
i∈Sr

(∇fi(xi
r,k)−∇fi(x̄r)) +

1

S

∑
i∈Sr

ϵir,k.
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It follows that

A1 = −η
R−1∑
r=0

1Ar

I−1∑
k=0

〈
∇f(x̄r),

1

S

∑
i∈Sr

gi
r,k

〉

= −ηI
R−1∑
r=0

1Ar
∥∇f(x̄r)∥2 − η

R−1∑
r=0

1Ar

〈
∇f(x̄r),

1

S

∑
i∈Sr

I−1∑
k=0

∇fi(xi
r,k)−∇fi(x̄r)

〉

− η

R−1∑
r=0

1Ar

I−1∑
k=0

〈
∇f(x̄r),

1

S

∑
i∈Sr

ϵir,k

〉
+ ηI

R−1∑
r=0

1Ar

〈
∇f(x̄r), ϵ

(1)
r − ϵ(2)r

〉

≤ −ηI
R−1∑
r=0

1Ar
∥∇f(x̄r)∥2 − η

R−1∑
r=0

1Ar

〈
∇f(x̄r),

1

S

∑
i∈Sr

I−1∑
k=0

∇fi(xi
r,k)−∇fi(x̄r)

〉

+ η

∣∣∣∣∣
R−1∑
r=0

1Ar

I−1∑
k=0

〈
∇f(x̄r),

1

S

∑
i∈Sr

ϵir,k

〉∣∣∣∣∣+ ηI

∣∣∣∣∣
R−1∑
r=0

1Ar

〈
∇f(x̄r), ϵ

(1)
r

〉∣∣∣∣∣
+ ηI

∣∣∣∣∣
R−1∑
r=0

1Ar

〈
∇f(x̄r), ϵ

(2)
r

〉∣∣∣∣∣ . (29)

Since ∥xi
r,k − x̄r∥ ≤ C/L1 due to Equation 13, we can apply Lemma 2 such that

− η

R−1∑
r=0

1Ar

〈
∇f(x̄r),

1

S

∑
i∈Sr

I−1∑
k=0

∇fi(xi
r,k)−∇fi(x̄r)

〉

≤ η

R−1∑
r=0

1Ar
∥∇f(x̄r)∥

∥∥∥∥∥ 1S ∑
i∈Sr

I−1∑
k=0

∇fi(xi
r,k)−∇fi(x̄r)

∥∥∥∥∥
≤ η

R−1∑
r=0

1Ar∥∇f(x̄r)∥ ·
1

S

∑
i∈Sr

I−1∑
k=0

∥∥∇fi(xi
r,k)−∇fi(x̄r)

∥∥
≤ η

R−1∑
r=0

1Ar∥∇f(x̄r)∥ ·
1

S

∑
i∈Sr

(AL0 +BL1∥∇fi(x̄r)∥)
I−1∑
k=0

∥∥xi
r,k − x̄r

∥∥
(i)

≤ 2η2I2
(
2σ +

γ

η

)R−1∑
r=0

1Ar∥∇f(x̄r)∥(AL0 +BL1κ+BL1ρ∥∇f(x̄r)∥)

(ii)

≤ 2η2I2(AL0 +BL1κ)

(
2σ +

γ

η

)R−1∑
r=0

1Ar
∥∇f(x̄r)∥

+ 2η2I2BL1ρ

(
2σ +

γ

η

)R−1∑
r=0

1Ar
∥∇f(x̄r)∥2

(iii)

≤ 2η2I2(AL0 +BL1κ)

(
2σ +

γ

η

)R−1∑
r=0

1Ar∥∇f(x̄r)∥+
1

8
ηI

R−1∑
r=0

1Ar∥∇f(x̄r)∥2,
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where (i) holds due to Equation 13; (ii) follows from Assumption 1(iv); and (iii) follows from
Equation 9. Plugging into Equation 29,

A1 ≤ −
7

8
ηI

R−1∑
r=0

1Ar∥∇f(x̄r)∥2 + 2η2I2(AL0 +BL1κ)

(
2σ +

γ

η

)R−1∑
r=0

1Ar∥∇f(x̄r)∥

+ η

∣∣∣∣∣
R−1∑
r=0

1Ar

I−1∑
k=0

〈
∇f(x̄r),

1

S

∑
i∈Sr

ϵir,k

〉∣∣∣∣∣︸ ︷︷ ︸
B1

+ ηI

∣∣∣∣∣
R−1∑
r=0

1Ar

〈
∇f(x̄r), ϵ

(1)
r

〉∣∣∣∣∣︸ ︷︷ ︸
B2

+ ηI

∣∣∣∣∣
R−1∑
r=0

1Ar

〈
∇f(x̄r), ϵ

(2)
r

〉∣∣∣∣∣︸ ︷︷ ︸
B3

. (30)

Denote each of the three last terms (those involving ϵir,k, ϵ(1)r , and ϵ
(2)
r , respectively) as B1, B2, B3.

B1 can be bounded using the martingale concentration bound in Lemma 5.

Denoting Gr,k = σ(Fr,Sr, {ξir,ℓ : i ∈ Sr, ℓ ≤ k}), we have

E

[
1Ar

〈
∇f(x̄r),

1

S

∑
i∈Sr

ϵir,k

〉
| Gr,k−1

]
= 0

so that
{
1Ar

〈
∇f(x̄r),

1
S

∑
i∈Sr

ϵir,k

〉}
r,k

is a martingale difference sequence with respect to Gr,k.

Since 1Ar
∈ Fr ∈ Gr,k for any 0 ≤ k ≤ I , we have

E

exp
1Ar

〈
∇f(x̄r),

1
S

∑
i∈Sr

ϵir,k

〉2
1Ar
∥∇f(x̄r)∥2σ2

 | Gr,k−1


≤ E

[
exp

(
1
S

∑
i∈Sr
∥ϵir,k∥2

σ2

)
| Gr,k−1

]
≤ exp(1),

where we used Cauchy-Schwarz, Jensen’s inequality, and ∥ϵir,k∥ ≤ σ. Therefore we can apply
Lemma 5 to obtain

B1 ≤
3

4
ησ2Iλ1

R−1∑
r=0

1Ar
∥∇f(x̄r)∥2 +

η

λ1
log

1

δ
, (31)

with probability 1− δ for any λ1 > 0.

The concentration bounds for B2 and B3 will rely on the concentration bound for sampling without
replacement in Lemma 6. We start with B2. Notice that

1Ar
⟨∇f(x̄r), ϵ

(1)
r ⟩ =

1

S

∑
i∈Sr

1Ar
⟨∇f(x̄r),G

i
r⟩ −

1

N

N∑
i=1

1Ar
⟨∇f(x̄r),G

i
r⟩, (32)
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so we must upper bound 1Ar |⟨∇f(x̄r),G
i
r⟩| to apply Lemma 6. Under Ar,

∥Gi
r∥ ≤ ∥∇fi(x̄r)∥+ ∥∇fi(x̄r)−Gi

r∥
≤ κ+ ρ∥∇f(x̄r)∥+ ∥∇fi(x̄r)−Gi

r∥
(i)

≤ κ+ 4ρ

(
2σ +

γ

η

)
+

(
2σ +

γ

η

)
≤ κ+ (4ρ+ 1)

(
2σ +

γ

η

)
(ii)

≤ κ+ 5ρ

(
2σ +

γ

η

)
. (33)

where (i) holds due to Equation 25 and Equation 26; and (ii) holds since ρ ≥ 1. Therefore

1Ar
|⟨∇f(x̄r),G

i
r⟩| ≤

(
κ+ 5ρ

(
2σ +

γ

η

))
1Ar
∥∇f(x̄r)∥,

and the condition of Lemma 6 is satisfied. Notice that 1Ar
∈ Fr because Gr is constructed by the

history gradients before round r. Therefore, applying Lemma 6 to Equation 32 gives4

Er[exp(λ21Ar
⟨∇f(x̄r), ϵ

(1)
r ⟩)]

≤ exp

{
1

2
λ2
2

(
κ+ 5ρ

(
2σ +

γ

η

))2
S + 1

S2

(
1− S

N

)
1Ar
∥∇f(x̄r)∥2

}

≤ exp

{
λ2
2

(
κ+ 5ρ

(
2σ +

γ

η

))2(
1

S
− 1

N

)
1Ar
∥∇f(x̄r)∥2

}
=: exp

{
λ2
2Mr

}
(34)

Let

Yr = exp

{
r∑

q=0

λ2

(
1Aq ⟨∇f(x̄q), ϵ

(1)
q ⟩ − λ2Mr

)}
= Yr−1 exp

{
λ21Ar ⟨∇f(x̄r), ϵ

(1)
r ⟩ − λ2

2Mr

}
.

Then we know Er[Yr] ≤ Yr−1 by Equation 34, which implies

E[YR−1] = E[ER−1[YR−1]] ≤ E[YR−2] ≤ . . . ≤ E[Y0] ≤ 1.

Therefore for any λ2 > 0, we have

P

(
R−1∑
r=0

1Ar ⟨∇f(x̄r), ϵ
(1)
r ⟩ ≥ λ2

R−1∑
r=0

Mr +
1

λ2
log

1

δ

)

= P

(
λ2

R−1∑
r=0

1Ar
⟨∇f(x̄r), ϵ

(1)
r ⟩ ≥ λ2

2

R−1∑
r=0

Mr + log
1

δ

)

= P

(
exp

{
R−1∑
r=0

λ2

(
1Ar ⟨∇f(x̄r), ϵ

(1)
r ⟩ − λ2Mr

)}
≥ 1

δ

)

= P
(
YR−1 ≥

1

δ

)
≤ δ,

where the last line uses Markov’s inequality. Repeating this argument for −1Ar
⟨∇f(x̄r), ϵ

(1)
r ⟩, we

can obtain

P

(∣∣∣∣∣
R−1∑
r=0

1Ar
⟨∇f(x̄r), ϵ

(1)
r ⟩

∣∣∣∣∣ ≥ λ2

R−1∑
r=0

Mr +
1

λ2
log

1

δ

)
≥ 1− 2δ,

4Here Er[·] takes expectation over the randomness of subsampling, that is Sr .
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which means that

B2 ≤ ηIλ2

(
κ+ 5ρ

(
2σ +

γ

η

))2(
1

S
− 1

N

)R−1∑
r=0

1Ar
∥∇f(x̄r)∥2 +

ηI

λ2
log

1

δ
, (35)

holds with probability 1− 2δ.

The same argument can be applied to B3. Notice that

1Ar ⟨∇f(x̄r), ϵ
(2)
r ⟩ =

1

S

∑
i∈Sr

1Ar ⟨∇f(x̄r),∇fi(x̄r)⟩ −
1

N

N∑
i=1

1Ar ⟨∇f(x̄r),∇fi(x̄r)⟩,

so we must upper bound 1Ar |⟨∇f(x̄r),∇fi(x̄r)⟩| to apply Lemma 6. Using Equation 25 in Corollary
2, we have

1Ar
∥∇fi(x̄r)∥ ≤ κ+ ρ1Ar

∥∇f(x̄r)∥ ≤ κ+ 4ρ

(
2σ +

γ

η

)
≤ κ+ 5ρ

(
2σ +

γ

η

)
.

This matches the corresponding upper bound in Equation 33 from the bound of B2. We may therefore
apply an identical argument as in the case of B2 and obtain

B3 ≤ ηIλ2

(
κ+ 5ρ

(
2σ +

γ

η

))2(
1

S
− 1

N

)R−1∑
r=0

1Ar
∥∇f(x̄r)∥2 +

ηI

λ2
log

2

δ
, (36)

with probability 1− 2δ.

Combining Equation 31, Equation 35, and Equation 36 into Equation 30, yields that, with probability
1− 5δ,

A1 ≤ −ηI

(
7

8
− 3

4
σ2λ1 − 2λ2

(
κ+ 5ρ

(
2σ +

γ

η

))2(
1

S
− 1

N

))R−1∑
r=0

1Ar
∥∇f(x̄r)∥2+

2η2I2(AL0 +BL1κ)

(
2σ +

γ

η

)R−1∑
r=0

1Ar
∥∇f(x̄r)∥+ η

(
1

λ1
+

2I

λ2

)
log

1

δ

≤ −3

4
ηI

R−1∑
r=0

1Ar
∥∇f(x̄r)∥2 + 2η2I2(AL0 +BL1κ)

(
2σ +

γ

η

)R−1∑
r=0

1Ar
∥∇f(x̄r)∥+

η

(
12σ2 + 64I

(
κ+ 5ρ

(
2σ +

γ

η

))2(
1

S
− 1

N

))
log

1

δ
, (37)

where we chose

λ1 =
1

12σ2
,

λ2 =
1

32
(
κ+ 5ρ

(
2σ + γ

η

))2 (
1
S −

1
N

) .
Bounding A2. From Lemma 4,

−

〈
∇f(x̄r),

gi
r,k

∥gi
r,k∥

〉
≤ −µ∥∇f(x̄r)∥ − (1− µ)∥gi

r,k∥+ (1 + µ)∥gi
r,k −∇f(x̄r)∥

for any µ ≥ 0. Also,
1Ār
∥gi

r,k∥ = 1Ār

∥∥∇Fi(x
i
r,k; ξ

i
r,k)−Gi

r +Gr

∥∥
≥ 1Ār

(
∥Gr∥ −

∥∥∇Fi(x
i
r,k; ξ

i
r,k)−Gi

r

∥∥)
≥ 1Ār

(
γ

η
−
∥∥∇Fi(x

i
r,k; ξ

i
r,k)−∇fi(xi

r,k)
∥∥− ∥∥∇fi(xi

r,k)−∇fi(x̄r)
∥∥− ∥∥∇fi(x̄r)−Gi

r

∥∥)
≥ 1Ār

(
γ

η
− σ − (AL0 +BL1∥∇fi(x̄r)∥)

∥∥xi
r,k − x̄r

∥∥− ∥∥∇fi(x̄r)−Gi
r

∥∥)
≥ 1Ār

(
γ

η
− σ − γI(AL0 +BL1κ+BL1ρ∥∇f(x̄r)∥)−

∥∥∇fi(x̄r)−Gi
r

∥∥) ,
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and

1Ār
∥gi

r,k −∇f(x̄r)∥ = 1Ār

∥∥∇Fi(x
i
r,k; ξ

i
r,k)−Gi

r +Gr −∇f(x̄r)
∥∥

≤ 1Ār

(∥∥∇Fi(x
i
r,k; ξ

i
r,k)−Gi

r

∥∥+ ∥Gr −∇f(x̄r)∥
)

≤ 1Ār

(∥∥∇Fi(x
i
r,k; ξ

i
r,k)−∇fi(xi

r,k)
∥∥+ ∥∥∇fi(xi

r,k)−∇fi(x̄r)
∥∥

+
∥∥∇fi(x̄r)−Gi

r

∥∥+ 1

N

N∑
j=1

∥∥Gj
r −∇Fj(x̄r)

∥∥)

≤ 1Ār

(
σ + (AL0 +BL1∥∇fi(x̄r)∥)

∥∥xi
r,k − x̄r

∥∥
+
∥∥∇fi(x̄r)−Gi

r

∥∥+ 1

N

N∑
j=1

∥∥Gj
r −∇Fj(x̄r)

∥∥)

≤ 1Ār

(
σ + γI(AL0 +BL1κ+BL1ρ∥∇f(x̄r)∥)

+
∥∥∇fi(x̄r)−Gi

r

∥∥+ 1

N

N∑
j=1

∥∥Gj
r −∇Fj(x̄r)

∥∥).
Therefore

− 1Ār

〈
∇f(x̄r),

gi
r,k

∥gi
r,k∥

〉

≤ 1Ār

(
− µ∥∇f(x̄r)∥ − (1− µ)

γ

η
+ 2σ + 2γI(AL0 +BL1κ+BL1ρ∥∇f(x̄r)∥)

+ 2∥∇fi(x̄r)−Gi
r∥+

1 + µ

N

N∑
j=1

∥Gj
r −∇Fj(x̄r)∥

)
,

and

− 1Ār

1

S

∑
i∈Sr

〈
∇f(x̄r),

gi
r,k

∥gi
r,k∥

〉

≤ 1Ār

(
−µ∥∇f(x̄r)∥ − (1− µ)

γ

η
+ 2σ + 2γI(AL0 +BL1κ+BL1ρ∥∇f(x̄r)∥) + (3 + µ)

(
2σ +

γ

30η

))
≤ 1Ār

(
− (µ− 2BL1ργI) ∥∇f(x̄r)∥+

(
− 9

10
+

31

30
µ

)
γ

η
+ (5 + µ)σ + 2γI(AL0 +BL1κ)

)
,

where we used Equation 26. Finally

A2 = −γ
R−1∑
r=0

1Ār

〈
∇f(x̄r),

1

S

∑
i∈Sr

I−1∑
k=0

gi
r,k

∥gi
r,k∥

〉

≤
R−1∑
r=0

1Ār

[
− γI (µ− 2BL1ργI) ∥∇f(x̄r)∥+

(
− 9

10
+

31

30
µ

)
γ2I

η
+ (5 + µ)σγI + 2γ2I2(AL0 +BL1κ)

]

≤
R−1∑
r=0

1Ār

[
−γI

(
3

4
− 2BL1ργI

)
∥∇f(x̄r)∥ − γI

(
1

8

γ

η
− 6σ − 2γI(AL0 +BL1κ)

)]
,

where we used the choice µ = 3
4 .
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Bounding A3. To bound A3, we begin by bounding 1Ar∥x̄r+1 − x̄r∥2.

1Ar∥x̄r+1 − x̄r∥2

= 1Ar
η2

∥∥∥∥∥ 1S ∑
i∈Sr

I−1∑
k=0

gi
r,k

∥∥∥∥∥
2

= 1Ar
η2

∥∥∥∥∥ 1S ∑
i∈Sr

I−1∑
k=0

∇Fi(x
i
r,k; ξ

i
r,k)−Gi

r +Gr

∥∥∥∥∥
2

= 1Arη
2

∥∥∥∥∥ 1S ∑
i∈Sr

I−1∑
k=0

(∇fi(xi
r,k)−∇fi(x̄r)) + (∇fi(x̄r)−Gi

r) + (Gr −∇f(x̄r)) +∇f(x̄r)

∥∥∥∥∥
2

≤ 4η2I21Ar
∥∇f(x̄r)∥2 + 4η21Ar

∥∥∥∥∥ 1S ∑
i∈Sr

I−1∑
k=0

∇Fi(x
i
r,k; ξ

i
r,k)−∇fi(x̄r)

∥∥∥∥∥
2

+ 4η2I21Ar

∥∥∥∥∥ 1S ∑
i∈Sr

∇fi(x̄r)−Gi
r

∥∥∥∥∥
2

+ 4η2I21Ar
∥Gr −∇f(x̄r)∥2

≤ 4η2I21Ar∥∇f(x̄r)∥2 + 8η21Ar

∥∥∥∥∥ 1S ∑
i∈Sr

I−1∑
k=0

∇fi(xi
r,k)−∇fi(x̄r)

∥∥∥∥∥
2

+ 8η2I21Ar

∥∥∥∥∥ 1

SI

∑
i∈Sr

I−1∑
k=0

∇fi(x̄r)−∇fi(yi
r,k)

∥∥∥∥∥
2

+ 8η2I21Ar

∥∥∥∥∥ 1

NI

N∑
i=1

I−1∑
k=0

∇fi(yi
r,k)−∇fi(x̄r)

∥∥∥∥∥
2

+ 8η21Ar

∥∥∥∥∥ 1S ∑
i∈Sr

I−1∑
k=0

ϵir,k

∥∥∥∥∥
2

+ 8η21Ar

∥∥∥∥∥ 1S ∑
i∈Sr

I−1∑
k=0

ϵ̃ir,k

∥∥∥∥∥
2

+ 8η21Ar

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

ϵ̃ir,k

∥∥∥∥∥
2

,

(38)

where we denoted ϵ̃ir,k = ϵiqir,k
= ∇Fi(y

i
r,k; ξ

i
qir,k

)−∇fi(yi
r,k). The first three terms on the RHS of

Equation 38 can be bounded with similar arguments as those used previously:

1Ar

∥∥∥∥∥ 1S ∑
i∈Sr

I−1∑
k=0

∇fi(xi
r,k)−∇fi(x̄r)

∥∥∥∥∥
2

≤ I1Ar

1

S

∑
i∈Sr

I−1∑
k=0

∥∥∇fi(xi
r,k)−∇fi(x̄r)

∥∥2
≤ I1Ar

1

S

∑
i∈Sr

(AL0 +BL1∥∇fi(x̄r)∥)2
I−1∑
k=0

∥∥xi
r,k − x̄r

∥∥2
(i)

≤ 41Arη
2I4(AL0 +BL1κ+BL1ρ∥∇f(x̄r)∥)2

(
2σ +

γ

η

)2

≤ 8η2I4B2L2
1ρ

2

(
2σ +

γ

η

)2

1Ar
∥∇f(x̄r)∥2 + 81Ar

η2I4(AL0 +BL1κ)
2

(
2σ +

γ

η

)2

(ii)

≤ 1

32
I21Ar

∥∇f(x̄r)∥2 + 1Ar
8Γ2

1η
2I4

(
2σ +

γ

η

)2

,
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where (i) holds due to Equation 13 and Assumption 1(iv); and (ii) follows from the condition on η
in Equation 9. Due to Lemma 1, we can use the same argument to get

1Ar

∥∥∥∥∥ 1

SI

∑
i∈Sr

I−1∑
k=0

∇fi(x̄r)−∇fi(yi
r,k)

∥∥∥∥∥
2

≤ 1

32
1Ar
∥∇f(x̄r)∥2 + 1Ar

8Γ2
1η

2I2
(
2σ +

γ

η

)2

,

and

1Ar

∥∥∥∥∥ 1

NI

N∑
i=1

I−1∑
k=0

∇fi(x̄r)−∇fi(yi
r,k)

∥∥∥∥∥
2

≤ 1

32
1Ar
∥∇f(x̄r)∥2 + 1Ar

8Γ2
1η

2I2
(
2σ +

γ

η

)2

.

Plugging back into Equation 38,

1Ar
∥x̄r+1 − x̄r∥2 ≤ 5η2I21Ar

∥∇f(x̄r)∥2 + 1Ar
192Γ2

1η
4I4
(
2σ +

γ

η

)2

+ 8η21Ar

∥∥∥∥∥ 1S ∑
i∈Sr

I−1∑
k=0

ϵir,k

∥∥∥∥∥
2

+ 8η21Ar

∥∥∥∥∥ 1S ∑
i∈Sr

I−1∑
k=0

ϵ̃ir,k

∥∥∥∥∥
2

+ 8η21Ar

∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

ϵ̃ir,k

∥∥∥∥∥
2

. (39)

We can bound the remaining terms using the concentration inequality from Lemma 7. We write the
index of Sr as {i1, ..., iS} For k = 0, ..., I − 1 and for j ∈ [S], let XkS+j = ε

ij
r,k and HkS+j =

σ
(
Fr,Sr, {ξir,ℓ}0≤ℓ≤k−1,i∈Sr , {ξ

im
r,k}m≤j

)
for k ≥ 1, where {ξir,ℓ}0≤ℓ≤−1,i∈Sr = ∅. For any

t = kS + j, it holds that

E [Xt | Ht−1] = E
[
ε
ij
r,k | HkS+j−1

]
= E

[
ε
ij
r,k | Fr, {ξ

ij
r,ℓ}ℓ≤k−1

]
= 0,

where the second inequality holds due to the independence between different clients given Fr. Then
{Xt}t≤IS is a martingale difference sequence with respect to {Ht}t≤IS . Also, ∥Xt∥ ≤ σ almost
surely for all t ∈ [IS] and Et−1[∥Xt∥] ≤ σ2. Therefore, by Lemma 7, with probability 5 at least
1− δ, ∥∥∥∥∥ 1S ∑

i∈Sr

I−1∑
k=0

ϵir,k

∥∥∥∥∥
2

≤ 1

S2

(
3σ log

1

δ
+ 3

√
SIσ2 log

1

δ

)2

≤
9σ2 log2 1

δ

S2
+

9Iσ2 log 1
δ

S

≤
9σ2I log 1

δ

S

(
log 1

δ

SI
+ 1

)
≤

18σ2I log2 1
δ

S
.

Without loss of generality, we assume log(1/δ) ≥ 1. We can apply the exact same argument to bound
the remaining noise terms: ∥∥∥∥∥ 1S ∑

i∈Sr

I−1∑
k=0

ϵ̃ir,k

∥∥∥∥∥
2

≤
18σ2I log 1

δ

S
,

and ∥∥∥∥∥ 1

N

N∑
i=1

I−1∑
k=0

ϵ̃ir,k

∥∥∥∥∥
2

≤
18σ2I log 1

δ

N
≤

18σ2I log 1
δ

S
,

5In fact, we first verify that the bound holds with probability at least 1− δ given Fr and Sr . Since the upper
bound does not depend on Fr and Sr , we can conclude the bound holds with the same unconditional probability.
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each with probability 1− 3δ. Plugging back into Equation 39,

1Ar
∥x̄r+1 − x̄r∥2 ≤ 1Ar

(
5η2I2∥∇f(x̄r)∥2 + 192Γ2

1η
4I4
(
2σ +

γ

η

)2

+
432σ2η2I log 1

δ

S

)
,

with probability 1− 9δ. Also, using Equation 25,

1Ar
(AL0 +BL1∥∇f(x̄r)∥) ≤ 1Ar

(
AL0 + 4BL1

(
2σ +

γ

η

))
≤ 1Ar

Γ1.

Finally,

A3 =
1

2

R−1∑
r=0

1Ar
(AL0 +BL1∥∇f(x̄r)∥)∥x̄r+1 − x̄r∥2

≤
R−1∑
r=0

1Ar

(
5

2
Γ1η

2I2∥∇f(x̄r)∥2 + 96Γ3
1η

4I4
(
2σ +

γ

η

)2

+ 216(AL0 +BL1∥∇f(x̄r)∥)
σ2η2I log 1

δ

S

)

≤
R−1∑
r=0

1Ar

[
5

8
ηI∥∇f(x̄r)∥2 +

216BL1σ
2η2I log 1

δ

S
∥∇f(x̄r)∥

+ 96Γ3
1η

4I4
(
2σ +

γ

η

)2

+
216AL0σ

2η2I log 1
δ

S

]
,

with probability 1− 9δ.

Bounding A4: Due to normalization of the update gi
r,k under Ār, we have

A4 = γ2
R−1∑
r=0

1Ār

AL0 +BL1∥∇f(x̄r)∥
2

∥∥∥∥∥ 1S ∑
i∈Sr

I−1∑
k=0

gi
r,k

∥gi
r,k∥

∥∥∥∥∥
2

≤ γ2I2
R−1∑
r=0

1Ār

AL0 +BL1∥∇f(x̄r)∥
2

.

Combining the respective bounds for A1, A2, A3, A4 into Equation 28,
f(x̄R)− f(x̄0)

≤
R−1∑
r=0

1Ar

[
− 1

8
ηI∥∇f(x̄r)∥2 +

(
2Γ1η

2I2
(
2σ +

γ

η

)
+

216BL1σ
2η2I log 1

δ

S

)
∥∇f(x̄r)∥

+ 96Γ3
1η

4I4
(
2σ +

γ

η

)2

+
216AL0σ

2η2I log 1
δ

S

]

+

R−1∑
r=0

1Ār

[
−γI

(
3

4
− 2BL1ργI −

1

2
BL1γI

)
∥∇f(x̄r)∥ − γI

(
1

8

γ

η
− 6σ − 2AL0γI −

5

2
BL1κγI

)]

+ η

(
12σ2 + 64I

(
κ+ 5ρ

(
2σ +

γ

η

))2(
1

S
− 1

N

))
log

1

δ
,

which is the desired result. Note that the bound on A1 holds with probability 1− 5δ and the bound on
A2 holds with probability 1− 9δ, and we initially supposed the event E , which holds with probability
1− δ. So the overall result holds with probability at least 1− 15δ.

A.5 Proof of Theorem 1

Theorem 1 restated. Let ϵ ≤ AL0

16BL1ρ
and δ ∈ (0, 1). Denote K =

⌈
log(RN/δ)

log(N/(N−S))

⌉
, Γ1 :=

AL0 +BL1κ+ 4BL1ρ
(
2σ + γ

η

)
and Γ2 := 64

(
κ+ 5ρ

(
2σ + γ

η

))2 (
1
S −

1
N

)
. If

η ≤ min

 1

90(K + 1)Γ1I
,

ϵ

32Γ1I
(
74σ + AL0

BL1ρ

) , Sϵ2

216AL0σ2 log 1
δ

,
∆

log 1
δ

min

{
1

12σ2
,

1

Γ2I

} ,
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and γ =
(
72σ + AL0

BL1ρ

)
η, then Algorithm 1 satisfies 1

R

∑R−1
r=0 ∥∇f(x̄r)∥ ≤ 35ϵ with probability

at least 1− 15δ, as long as R ≥ 8∆
ϵ2ηI .

Proof. First, under our choice of η and γ,

(K + 1)Γ1ηI ≤
1

60
,

and

2(K+1)ηI

(
2σ +

γ

η

)
≤

(
2σ + γ

η

)
30Γ1

=

(
2σ + γ

η

)
30(AL0 +BL1κ+ 4BL1ρ

(
2σ + γ

η

) ≤ 1

120BL1ρ
≤ 1

120L1
,

where the last line follows from B, ρ ≥ 1. Therefore Equation 9 holds under our choice of η and γ,
so the condition of Lemma 12 is satisfied. Denoting

U(x) = −γI
(
3

4
− 2BL1ργI −

1

2
BL1γI

)
∥∇f(x)∥ − γI

(
1

8

γ

η
− 6σ − 2AL0γI −

5

2
BL1κγI

)
,

and

V (x) = −1

8
ηI∥∇f(x)∥2 +

(
2Γ1η

2I2
(
2σ +

γ

η

)
+

216BL1σ
2η2I log 1

δ

S

)
∥∇f(x)∥+

96Γ3
1η

4I4
(
2σ +

γ

η

)2

+
216AL0σ

2η2I log 1
δ

S
,

Lemma 12 gives us

f(x̄R)− f(x̄0) ≤
R−1∑
r=0

[
1Ār

U(x̄r) + 1Ar
V (x̄r)

]
+ 12ησ2 log

1

δ
+ Γ2ηI log

1

δ
. (40)

We will bound each of 1Ār
U(x̄r) and 1Ar

V (x̄r) under our choices of γ and η.

To bound U(x̄r), notice

−3

4
+ 2BL1ργI +

1

2
BL1γI ≤ −

3

4
+

5

2
BL1ργI

≤ −3

4
+

5

2
ηIBL1ρ

γ

η

= −3

4
+

5

2
ηIBL1ρ

(
72σ +

AL0

BL1ρ

)
= −3

4
+

5

2
ηI (72BL1ρσ +AL0)

= −3

4
+ 45Γ1ηI

≤ −3

4
+

1

2

≤ −1

4
,

and

−1

8

γ

η
+ 6σ + 2AL0γI +

5

2
BL1κγI = −1

8

γ

η
+ 6σ + ηI

γ

η

(
2AL0 +

5

2
BL1κ

)
≤ −1

8

γ

η
+ 6σ + 2Γ1ηI

γ

η

≤
(
−1

8
+

1

30

)
γ

η
+ 6σ

≤ − 1

12

(
72σ +

AL0

BL1ρ

)
+ 6σ

≤ 0.
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So

U(x̄r) = −
1

4
γI∥∇f(x̄r)∥ ≤ −

1

4
ϵηI∥∇f(x̄r)∥,

where the last inequality holds due to the fact ϵ ≤ AL0

16BL1ρ
≤ 72σ + AL0

BL1ρ
= γ

η . To bound V (x̄r),
notice

2Γ1η
2I2
(
2σ +

γ

η

)
≤ 1

16
ϵηI,

since η ≤ ϵ

32Γ1I
(
74σ+

AL0
BL1ρ

) = ϵ

32Γ1I(2σ+ γ
η )

, and

216BL1σ
2η2I log 1

δ

S
=

BL1

AL0
ηI

216AL0σ
2η log 1

δ

S

≤ BL1

AL0
ϵ2ηI

≤ 1

16
ϵηI,

where the last line uses ϵ ≤ AL0

16BL1ρ
≤ AL0

16BL1
. Lastly,

96Γ3
1η

4I4
(
2σ +

γ

η

)2

+
216AL0σ

2η2I log 1
δ

S

≤ ηI

(
96Γ3

1η
3I3
(
2σ +

γ

η

)2

+
216AL0σ

2η log 1
δ

S

)

≤ ηI

(
8

5
ϵ2 + ϵ2

)
≤ 3ϵ2ηI.

So

V (x̄r) = −
1

8
ηI∥∇f(x̄r)∥2 +

1

8
ϵηI∥∇f(x̄r)∥+ 3ϵ2ηI

≤ −1

8
ϵηI∥∇f(x̄r)∥+ 4ϵ2ηI,

where the last line came from the inequality x2 ≥ 2ax + a2 with x = ∥∇f(x̄r)∥ and a = ϵ.
Combining the bounds of U(x̄r) and V (x̄r),

max{U(x̄r), V (x̄r)} ≤ −
1

8
ϵηI∥∇f(x̄r)∥+ 4ϵ2ηI.

Plugging this into Equation 40 yields

f(x̄R)− f(x̄0) ≤ −
1

8
ϵηI

R−1∑
r=0

∥∇f(x̄r)∥+ 4ϵ2ηRI + 12ησ2 log
1

δ
+ Γ2ηI log

1

δ
,

and by rearranging we have

1

R

R−1∑
r=0

∥∇f(x̄r)∥ ≤
8(f(x̄0)− f(x̄R))

ϵηRI
+ 32ϵ+

96σ2 log 1
δ

ϵRI
+

8Γ2 log
1
δ

ϵR

≤ 8∆

ϵηRI
+ 32ϵ+

96σ2 log 1
δ

ϵRI
+

8Γ2 log
1
δ

ϵR

≤ 33ϵ+
96σ2 log 1

δ

ϵRI
+

8Γ2 log
1
δ

ϵR
, (41)
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where the last line comes from R ≥ 8∆
ϵ2ηI . Finally, η ≤ ∆

log 1
δ

min
{

1
12σ2 ,

1
Γ2I

}
implies

R ≥ 8∆

ϵ2ηI
≥

96σ2 log 1
δ

ϵ2I
,

and

R ≥ 8∆

ϵ2ηI
≥

8Γ2 log
1
δ

ϵ2
,

so

96σ2 log 1
δ

ϵRI
+

8Γ2 log
1
δ

ϵR
≤ 2ϵ.

Plugging into Equation 41 gives the result.

A.6 Proof of Corollary 1

Corollary 1 restated. If, under the setting of Theorem 1, we additionally choose

η = min

 1

90(K + 1)Γ1I
,

ϵ

32Γ1I
(
74σ + AL0

BL1ρ

) , Sϵ2

216AL0σ2 log 1
δ

,
∆

log 1
δ

min

{
1

12σ2
,

1

Γ2I

} ,

and

I ≤
27AL0σ

2 log 1
δ

4ϵΓ1S
(
74σ + AL0

BL1ρ

) ,
with

ϵ ≤ min

16
(
74σ + AL0

BL1ρ

)
45(K + 1)

,

√
18∆AL0

S
,
32∆Γ1

(
74σ + AL0

BL1ρ

)
Γ2 log

1
δ

 ,

then with probability 1− 14δ, Algorithm 1 will reach an ϵ-stationary point with iteration complexity

RI = O

(
∆L0σ

2 log 1
δ

Sϵ4

)
.

Proof. From the condition on ϵ,

ϵ ≤
16
(
74σ + AL0

BL1ρ

)
45(K + 1)

ϵ

32Γ1I
(
74σ + AL0

BL1ρ

) ≤ 1

90(K + 1)Γ1I
.

From the condition on I ,

ϵ

32Γ1I
(
74σ + AL0

BL1ρ

) ≥ ϵ

32Γ1

(
74σ + AL0

BL1ρ

) 4ϵΓ1S
(
74σ + AL0

BL1ρ

)
27AL0σ2 log 1

δ

=
Sϵ2

216AL0σ2 log 1
δ

Also
Sϵ2

216AL0σ2 log 1
δ

≤ S

216AL0σ2 log 1
δ

18∆AL0

S
=

∆

12σ2 log 1
δ

,

and

Sϵ2

216AL0σ2 log 1
δ

≤ S

216AL0σ2 log 1
δ

32∆Γ1

(
74σ + AL0

BL1ρ

)
Γ2 log

1
δ

27AL0σ
2 log 1

δ

4Γ1IS
(
74σ + AL0

BL1ρ

)
≤ ∆

Γ2I log
1
δ

.
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Therefore η = Sϵ2

216AL0σ2 log 1
δ

. Choosing R = 8∆
ϵ2ηI ,

RI =
8∆

ϵ2η
=

1296A∆L0σ
2 log 1

δ

Sϵ4
= O

(
∆L0σ

2 log 1
δ

Sϵ4

)
.

B Deferred Proofs of the Lower Bound

Algorithm 2 Clipped Minibatch SGD

1: Initialize x0

2: for r = 0, 1, . . . , R− 1 do
3: Sample Sr ⊂ [N ] uniformly at random such that |Sr| = S

4: gr = 1
SI

∑
i∈Sr

∑I−1
k=0∇Fi(xr, ξ

i
r,k)

5: Update xr+1 ← xr −min
(
η, γ

∥gr∥

)
gr

6: end for

Our proof of Theorem 2 analyzes three separate functions satisfying Assumption 1, and concludes
that, in order for clipped minibatch SGD to avoid divergence on the first two functions, one must
choose parameters γ, η such that convergence on the third function is slow. These three functions are
separately analyzed in Lemmas 13, 15, and 16. Each lemma assumes a particular value of the initial
point x0: this assumption can be made without loss of generality, since for the initialization x0 we
may always translate each function to simulate the assumed initialization.

Lemma 13. Let δ ∈ (0, 1) and denote Q =
⌊
κ+(ρ−1)M
κ+(ρ+1)MN

⌋
. Suppose

ρ >
2 + log(2− δ)

log(2− δ)
, N ≥ (ρ+ 1)(1 + log(2− δ))

(ρ− 1) log(2− δ)− 2
, 1 ≤ S ≤ log(2− δ)(Q+ 1)

N −Q+ log(2− δ)
, (42)

and γ
η ≤M . For any 0 < ϵ < M , there exists a problem instance {fi}Ni=1 ∈ F(L0, L1,M, κ, ρ,N)

such that, with probability at least δ, clipped minibatch SGD with parameters γ, η, S will generate
iterates {xr}Rr=0 with ∥∇f(xr)∥ > ϵ for all r.

The proof of Lemma 13 will require the following lemma.
Lemma 14 (Lemma 5.3 in [20]). Let {Xt}∞t=1 be a Markov chain over states {i}∞i=0, such that 0 is
an absorbing state, and the transition distribution elsewhere is as follows:

Xt+1|{Xt = i} =
{
i− 1 w.p. p

i+ 1 w.p. 1− p

Define the absorb probabilities αi := P(∃t > 0 : Xt = 0 | X0 = i), then:

αi =

(
p

1− p

)i

, ∀i ≥ 1

Proof of Lemma 13. Define

ϕ =
Q

N
, b =

1 + ϕ

1− ϕ
M,

and
v =

3b

2L0
, g(x) = − 1

8v3
x4 +

3

4v
x2.

Also, define

ℓ1(x) =


M(x+ v)−Mg(v) x ≤ −v
−Mg(x) x ∈ (−v, v)
−M(x− v)−Mg(v) x ≥ v
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and

ℓ2(x) =


−b(x+ v) + bg(v) x ≤ −v
bg(x) x ∈ (−v, v)
b(x− v) + bg(v) x ≥ v

Consider the problem instance defined by

fi(x) =

{
ℓ1(x) 1 ≤ i ≤ Q

ℓ2(x) Q+ 1 ≤ i ≤ N

with global objective

f(x) = ϕℓ1(x) + (1− ϕ)ℓ2(x) =


−M(x+ v) +Mg(v) x ≤ −v
Mg(x) x ∈ (−v, v)
M(x− v) +Mg(v) x ≥ v

Note that b > M . For this problem instance, we define the stochastic objective as Fi(x; ξ) = fi(x),
so that the true gradient of each local objective is returned by each gradient query of the algorithm.

By construction, each local objective fi and the global objective f is twice continuously differentiable,
with gradient bounded by M . Also, each objective is (L0, L1)-smooth (in fact, they are L0-smooth),
since for |x| ≤ v,

|g′′(x)| =
∣∣∣∣− 3

2v3
x2 +

3

2v

∣∣∣∣
=

3

2v

∣∣∣∣1− x2

v2

∣∣∣∣
≤ 3

2v
=

L0

b
,

and for |x| ≥ v, |f ′′
i (x)| = 0. Finally, the collection of objectives satisfies the heterogeneity condition.

For i ≤ Q,
|f ′

i(x)| = |f ′(x)| ≤ κ+ ρ|f ′(x)|,
and for i ≥ Q+ 1,

|f ′
i(x)| = b

|f ′(x)|
M

≤ 1 + ϕ

1− ϕ
M
|f ′(x)|
M

≤ (κ+ ρM)
|f ′(x)|
M

≤ κ+ ρ|f ′(x)|,

where we used

1 + ϕ

1− ϕ
≤

1 + κ+(ρ−1)M
κ+(ρ+1)M

1− κ+(ρ−1)M
κ+(ρ+1)M

=
2κ+ 2ρM

κ+ (ρ+ 1)M

κ+ (ρ+ 1)M

2M
=

κ+ ρM

M
,

together with the fact ϕ ≤ κ+(ρ−1)M
κ+(ρ+1)M . Therefore {fi}Ni=1 ∈ F(L0, L1,M, κ, ρ,N).

Now, we analyze the behavior of clipped minibatch SGD on the instance {fi}Ni=1 with initialization
x0 = v + 1. Let r0 be the index of the first round (if one exists) in which xr < v. For each round r,
define the event Br = {Sr ⊂ [Q]}. To compute P(Br), first notice

N −Q

Q− S + 1
≤ log(2− δ)

S
.

Therefore,

P(Br) =

S−1∏
i=0

Q− i

N − i
≥
(
Q− S + 1

N − S + 1

)S

=
1(

1 + N−Q
Q−S+1

)S ≥ 1(
1 + log(2−δ)

S

)S ≥ 1

elog(2−δ)
=

1

2− δ
,

where we used the inequality
(
1 + a

x

)x ≤ ea.
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Now define the auxiliary sequence {yr}Rr=0 as follows:
y0 = x0

yr+1 =

{
yr + γ if Br

yr − γ otherwise

We claim that yr ≤ xr for all r ≤ r0. For any r < r0, if Br occurs then yr+1 − yr = xr+1 − xr,
since in this case gr = −M and xr+1 − xr = γ, due to the fact that γ

η ≤M . If Br does not occur,
then xr+1 − xr ≥ −γ, due to the clipping operation, so that yr+1 − yr ≤ xr+1 − xr. Therefore for
all r ≤ r0,

yr = y0 +

r−1∑
q=0

yq+1 − yq ≤ x0 +

r−1∑
q=0

xq+1 − xq = xr,

which proves our claim. Denoting D = {|f ′(xr)| ≥M for all r ≥ 1},
P(D) ≥ P(xr ≥ −1 for all r ≥ 1)

≥ P(yr ≥ −1 for all r ≥ 1)

(i)

≥ 1−
(
1− P(Br)

P(Br)

)⌈ x0−v
γ ⌉

(ii)

≥ 1− 1− P(Br)

P(Br)

=
2P(Br)− 1

P(Br)

≥
(

2

2− δ
− 1

)
(2− δ)

= δ,

where (i) comes from applying Lemma 14 to the sequence yr and (ii) uses ⌈x0−v
γ ⌉ ≥ 1 and

1−P(Br)
P(Br)

≤ 1− δ.

The following Lemma uses the same function as in the first half of the proof of Theorem 2 in
[8]. However, the sequence of iterates computed by clipped minibatch SGD (our setting) evolves
differently than that of GD (their setting).

Lemma 15. Suppose γ
η > M , M > L0

L1
, and η ≥ 2

L1M

(
1 + log L1M

L0

)
. For any 0 < ϵ < M , there

exists a problem instance {fi}Ni=1 ∈ F(L0, L1,M, κ, ρ,N) such that clipped minibatch SGD with
parameters γ, η, and any S will generate iterates {xr}Rr=0 with ∥∇f(xr)∥ > ϵ for all r.

Proof. Consider the following function,

f(x) =


L0

L2
1
exp (−L1x− 1) x < − 1

L1

L0

2 x2 + L0

2L2
1

x ∈
[
− 1

L1
, 1
L1

]
L0

L2
1
exp (L1x− 1) x > 1

L1

and the problem instance fi = f for all i ∈ [N ], with the initialization x0 = 1
L1

(
1 + log ML1

L0

)
. We

define the stochastic objective for this problem instance as Fi(x; ξ) = fi(x), so that the true gradient
of each local objective is returned by each gradient query of the algorithm.

Note that f is bounded from below and (L0, L1)-smooth. Also, since all clients have the same
objective and gradients are computed deterministically, this problem instance satisfies Assumption 1.
Also, our setting of x0 is consistent with the definition of M , since

|f ′(x0)| =
L0

L1
exp (L1x0 − 1)

=
L0

L1

ML1

L0
= M.
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First, define w := 1
L1

(
1 + log

(
γ
η
L1

L0

))
. By the condition γ

η > M , we know w > x0, and by
construction f ′(w) = γ

η . Since f ′ is increasing on [0,∞), and decreasing on (−∞, 0], we know
|f ′(w)| ≥ γ

η if and only if |x| ≥ w. This means that the clipping operation will be performed when
|x| ≥ w, and will not be performed for |x| < w.

Now we analyze the behavior of clipped minibatch SGD on this problem instance. Suppose that
|x0| ≤ |xr| ≤ w for some r ≥ 0. Then

η ≥ 2L1x0

L0 exp(L1x0 − 1)
≥ 2L1|xr|

L0 exp(L1|xr| − 1)
,

where the first inequality comes from the definition of x0 and the condition η ≥ 2
L1M

(
1 + log L1M

L0

)
,

and the second inequality comes from the fact that ϕ(x) := 2L1x
L0 exp(L1x−1) is decreasing on

[
1
L1

,∞
)
.

Therefore
η|f ′(xr)| = η

L0

L1
exp(L1|xr| − 1) ≥ 2|xr|. (43)

Since sign(f ′(xr)) ̸= sign(xr), this implies |xr+1| = |xr − ηf ′(xr)| ≥ 2|xr| − |xr| = |xr|. This
shows that the sequence of iterates {xr} is non-decreasing in absolute value until (if ever) the absolute
value exceeds w. If |xr| ≤ w for all r, then we are done, since in this case we have |xr| ≥ |x0| and
therefore |∇f(xr)| ≥ |∇f(x0)| = M > ϵ for all r.

Otherwise, let r̄ be the first index r for which |xr| > w. Without loss of generality, assume xr̄ > 0
(for xr̄ < 0, the same argument applies with signs reversed). Since |xr̄−1| ≤ w,

xr̄ = xr̄−1 − ηf ′(xr̄−1) ≤ −w − ηf ′(−w) = γ − w.

So
xr̄+1 = xr̄ − γ ≤ (γ − w)− γ = −w.

Therefore |f ′(xr̄+1)| ≥ |f ′(−w)| = |f ′(w)| = γ
η , and so xr̄+2 = xr̄+1+γ = xr̄. We can then show

by induction that xr̄+2n = xr̄ and xr̄+2n+1 = xr̄+1 for all n ≥ 0. Since |f ′(xr̄)|, |f ′(xr̄+1)| ≥
|f ′(w)| > |f ′(x0)| > ϵ, we have |f ′(xr)| > ϵ for all r.

The following lemma is nearly identical to the second half of the proof of Theorem 2 in [8]. We
include it here for the sake of completeness.

Lemma 16. Suppose γ
η > M and η < 2

L1M

(
1 + log L1M

L0

)
. For any 0 < ϵ < M , there ex-

ists a problem instance {fi}Ni=1 ∈ F(L0, L1,M, κ, ρ,N) such that clipped minibatch SGD with
parameters γ, η, and any S requires at least

L1M
(
f(x0)− f∗ − 15ϵ2

16L0

)
2ϵ2
(
1 + log L1M

L0

)
rounds in order to find an ϵ-stationary point.

Proof. Consider the following function,

f(x) =


−ϵx x < − 3ϵ

2L0

− L3
0

27ϵ2x
4 + L0

2 x2 + 9ϵ2

16L0
x ∈

[
− 3ϵ

2L0
, 3ϵ
2L0

]
ϵx x > 3ϵ

2L0

and the problem instance fi = f for all i ∈ [N ], with the initialization x0 = 3ϵ
2L0

+ d. We define the
stochastic objective for this problem instance as Fi(x, ξ) = fi(x), so that the true gradient of each
local objective is returned by each gradient query of the algorithm.

Note that f is bounded from below and (L0, L1)-smooth. Also, since all clients have the same
objective and gradients are computed deterministically, this problem instance satisfies Assumption 1.
Also, our setting of x0 is consistent with the definition of M , since |f ′(x0)| = ϵ < M .
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Now we analyze the behavior of clipped minibatch SGD on this problem instance. Since this problem
instance is homogeneous with deterministic gradients, we have ∥gr∥ ≤ ϵ < M < γ

η , so clipped
minibatch SGD will always perform unnormalized updates. Therefore, for xr ≥ 3ϵ

2L0
,

xr+1 = xr − ηgr = xr − ηϵ > xr −
2ϵ

L1M

(
1 + log

L1M

L0

)
.

Therefore

xr > x0 −
2ϵr

L1M

(
1 + log

L1M

L0

)
=

3ϵ

2L0
+ d− 2ϵr

L1M

(
1 + log

L1M

L0

)
as long as 2ϵr

L1M

(
1 + log L1M

L0

)
≤ d, or r ≥ dL1M

2ϵ
(
1+log

L1M
L0

) . Notice that

f(x0) =
3ϵ2

2L0
+ dϵ,

so

d =
1

ϵ

(
f(x0)−

3ϵ2

2L0

)
=

1

ϵ

(
f(x0)− f∗ − 15ϵ2

16L0

)
.

Plugging into the above bound on r tells us that xr > x0 as long as r ≥
L1M

(
f(x0)−f∗− 15ϵ2

16L0

)
2ϵ2

(
1+log

L1M
L0

) . The

result follows from the fact that |f ′(xr)| = ϵ for all xr > x0.

We can now combine Lemmas 13, 15, and 16 to prove Theorem 2.

Proof of Theorem 2. Let γ, η > 0 be given. We will prove the requirement on R for three cases of
γ, η. In the case γ

η ≤M , then Lemma 13 demonstrates that clipped minibatch SGD cannot guarantee
to find an ϵ-stationary point with probability greater than 1− δ for any R. Second, if γ

η > M and

η ≥ 2
L1M

(
1 + log L1M

L0

)
, then Lemma 15 demonstrates that clipped minibatch SGD can fail to find

an ϵ-stationary point for any R. In the remaining case, i.e. γ
η > M and η < 2

L1M

(
1 + log L1M

L0

)
,

Lemma 16 demonstrates that for finding an ϵ-stationary point, the number of iterations clipped
minibatch SGD requires is at least

R ≥
L1M

(
f(x0)− f∗ − 15ϵ2

16L0

)
2ϵ2
(
1 + log L1M

L0

) .

C Additional Experimental Results

C.1 Hyperparameter Information

Learning Rate and Clipping Threshold For each dataset, we tune the hyperparameters γ and
η with separate grid searches. Specifically, we first tune the clipping threshold γ

η with grid search,
then we tune the learning rate η with grid search. During the grid search for η, γ is chosen so that
the clipping threshold γ

η is equal to the tuned value from the search for γ
η . Due to computational

constraints, we do not perform this search for every algorithm in every setting. Instead, we follow the
tuning process of [9]: we use the above procedure to tune η and γ for CELGC [32] separately for
each S ∈ {2, 4, 6, 8}, while fixing s = 30% (SNLI) or s = 10% (Sent140). We then reuse the tuned
values of γ and η for all other algorithms and settings sharing the same dataset and S. Our theory
suggests that the best learning rate η depends on the number of participating clients S, and we follow
this guidance by tuning the parameters separately for each value of S. The search ranges and tuned
values for each dataset are shown in Table 3.
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Table 3: Hyperparameter tuning information for each dataset.

Parameter Search range Tuned value

SNLI γ
η {0.01, 0.03, 0.1, 0.3, 1.0, 3.0}

S = 2: 1.0
S = 4: 1.0
S = 6: 1.0
S = 8: 1.0

η {0.003, 0.01, 0.03, 0.1}
S = 2: 0.03
S = 4: 0.03
S = 6: 0.03
S = 8: 0.03

Sent140 γ
η {0.01, 0.03, 0.1, 0.3, 1.0, 3.0}

S = 2: 0.3
S = 4: 0.3
S = 6: 0.3
S = 8: 0.3

η {0.003, 0.01, 0.03, 0.1}
S = 2: 0.03
S = 4: 0.03
S = 6: 0.03
S = 8: 0.03

Network Architecture For both datasets, the network is composed of a one-layer bidirectional
RNN encoder followed by a three-layer fully connected classifier. The encoder has hidden size 2048
and max pooling, and the decoder has hidden size 512 with tanh activations. Input sentences are
encoded as sequences of GloVe vectors. For SNLI, where each input is a pair of sentences, each
sentence is passed through the encoder separately, and the resulting representations are concatenated
and used as input for the encoder.

C.2 Learning Curves

Figures 4 and 5 contain learning curves (by communication rounds) of training loss and testing
accuracy for all settings, for SNLI and Sentiment140 respectively. The experiments show that our
proposed algorithm EPISODE++ significantly outperform all other baselines in various settings on
these two datasets, including different client participation ratio and different heterogeneity level.

C.3 Training with Homogeneous Data

Here we include learning curves for an additional experiment that uses homogeneous data across
clients, i.e. s = 0%. In this setting, we use N = 8 and S = 4, and all other settings are the same as
described in Section 6. We compare the six algorithms described in Section 6. Results are shown in
Figure 6. The results are consistent with the experiments that use heterogeneous data: EPISODE++
outperforms all other algorithms in terms of training loss and testing accuracy.
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Figure 4: Learning curves for SNLI under all settings. For NaiveParallelClip, we show the first 5375
rounds to compare all algorithms with a fixed number of communication rounds.
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Figure 5: Learning curves for Sentiment140 under all settings. For NaiveParallelClip, we show the
first 2000 rounds to compare all algorithms with a fixed number of communication rounds.
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Figure 6: Learning curves for SNLI and Sentiment140 with N = 8, S = 4, using homogeneous data,
i.e. s = 100%. We compare all algorithms with a fixed number of communication rounds.

42


	Introduction
	Related Work
	Problem Setup
	Algorithm and Convergence Analysis
	Main Challenges and Algorithm Design
	Convergence Result
	Proof Sketch

	Lower Bound for Clipped Minibatch SGD
	Experiments
	Setup
	Results

	Conclusion
	Deferred Proofs of the Upper Bound
	Notation and Preliminaries
	Auxiliary Lemmas
	Proof of Lemma 1
	Proof of descent inequality
	Proof of Theorem 1
	Proof of Corollary 1

	Deferred Proofs of the Lower Bound
	Additional Experimental Results
	Hyperparameter Information
	Learning Curves
	Training with Homogeneous Data


