
Rapid Model Architecture Adaption for
Meta-Learning

Yiren Zhao∗
Imperial College London
a.zhao@imperial.ac.uk

Xitong Gao∗
Shenzhen Institute of Advanced Technology, CAS

xt.gao@siat.ac.cn

Ilia Shumailov
University of Oxford

ilia.shumailov@chch.ox.ac.uk

Nicolo Fusi
Microsoft Research

fusi@microsoft.com

Robert D Mullins
University of Cambridge

robert.mullins@cl.cam.ac.uk

Abstract

Network Architecture Search (NAS) methods have recently gathered much atten-
tion. They design networks with better performance and use a much shorter search
time compared to traditional manual tuning. Despite their efficiency in model
deployments, most NAS algorithms target a single task on a fixed hardware system.
However, real-life few-shot learning environments often cover a great number of
tasks (T) and deployments on a wide variety of hardware platforms (H).
The combinatorial search complexity T × H creates a fundamental search effi-
ciency challenge if one naively applies existing NAS methods to these scenarios.
To overcome this issue, we show, for the first time, how to rapidly adapt model ar-
chitectures to new tasks in a many-task many-hardware few-shot learning setup by
integrating Model Agnostic Meta Learning (MAML) into the NAS flow. The pro-
posed NAS method (H-Meta-NAS) is hardware-aware and performs optimisation
in the MAML framework. H-Meta-NAS shows a Pareto dominance compared to a
variety of NAS and manual baselines in popular few-shot learning benchmarks with
various hardware platforms and constraints. In particular, on the 5-way 1-shot Mini-
ImageNet classification task, the proposed method outperforms the best manual
baseline by a large margin (5.21% in accuracy) using 60% less computation.

1 Introduction

Existing Network Architecture Search (NAS) methods show promising performance on image [Zoph
and Le, 2016, Liu et al., 2018], language [Guo et al., 2019, So et al., 2019] and graph data [Zhao
et al., 2020b]. The automation not only reduces the human effort required for architecture tuning but
also produces architectures with state-of-the-art performance in domains like image classification
[Zoph and Le, 2016] and language modeling [So et al., 2019]. Most NAS methods today focus on a
single task with a fixed hardware system, yet real-life model deployments covering multiple tasks
and various hardware platforms will significantly prolong this process. As illustrated in Figure 1, a
common design flow is to re-engineer the architecture and train for the different task(T)-hardware(H)
pairs with different constraints (C). The architectural engineering phase can be accomplished whether

∗Correspondence to: Yiren Zhao and Xitong Gao.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Task 1

+

Hardware 1
Architectural Engineering

& Train from scratch or Re-train

Task T

+

Hardware H

...

+

Constraint 1

+

Constraint C

ASIC

Figure 1: Deploying networks in a many-task many-device few-shot learning setup. This implies a
large search complexity O(THC).

manually or by using an established NAS procedure. The challenge is designing an efficient method
to overcome the quickly scaling O(THC) search complexity described in Figure 1.

Few-shot learning systems follow exactly this many-task many-device setup, when considering
deployments on different user devices on key applications such as facial [Guo et al., 2020] and
speech recognition [Hsu et al., 2020]. A task in few-shot learning normally takes an N -way K-shot
formulation, where it contains N classes with K support samples and Q query samples in each
class. Model-Agnostic Meta-Learning (MAML), incorporating the idea of learning to learn, builds
a meta-model using a great number of training tasks, and then adapts the meta-model to unseen
test tasks using only a very small number of gradient updates [Finn et al., 2017]. MAML then
becomes a powerful and elegant approach for few-shot learning – its ability to quickly adapt to
new tasks can potentially shrink the O(THC) complexity illustrated in Figure 1 to O(HC). In
the meantime, hardware-aware NAS methods [Cai et al., 2019, 2018, Xu et al., 2020], e.g. the
train-once-for-all technique [Cai et al., 2019], support deployments of searched models to fit different
hardware platforms with various latency constraints. These hardware-aware NAS techniques further
reduce the search complexity from O(THC) to O(T) [Cai et al., 2018].

In this paper, we propose a novel Hardware-aware Meta Network Architecture Search (H-Meta-NAS).
Integration of the MAML framework into hardware-aware NAS theoretically reduces the search
complexity from O(THC) to O(1), allowing for a rapid adaption of model architectures to unseen
tasks on new hardware systems. However, we identified the following challenges in this integration:

• Classic NAS search space contains many over-parameterized sub-models, this makes it hard
to tackle the over-fitting phenomenon in few-shot learning.

• Hardware-aware NAS profiles latency for sub-networks on each task-hardware pair, this
profiling can be prolonged significantly with a great number of tasks and, more importantly,
if the targeting device has scarce computation resources.

To tackle these challenges, we then propose to use Global Expansion (GE) and Adaptive Number
of Layers (ANL) to allow a drastic change in model capabilities for tasks with varying difficulties.
Our experiments later demonstrate that such changes alleviate over-fitting in few-shot learning and
improve the accuracy significantly. We also present a novel layer-wise profiling strategy to allow the
reuse of profiling information across different tasks. We make the following contributions:

• We propose a novel Hardware-aware Network Architecture Search for Meta learning (H-
Meta-NAS). H-Meta-NAS quickly adapts meta-architectures to new tasks with hardware-
awareness and can be conditioned with various device-specific latency constraints. The
proposed NAS reduces search complexity from O(THC) to O(1) in a realistic many-task
many-device few-shot learning setup. We extensively evaluate H-Meta-NAS on various
hardware platforms (GPU, CPU, mCPU, IoT, ASIC accelerator) and constraints (latency
and model size), our latency-accuracy performance generally outperforms various MAML
baselines and other NAS competitors.

• We propose a task-agnostic layer-wise profiling strategy that reduces the profiling run-
time from around 105 hours to 1.2 hours when targeting hardware with limited capabilities
(e.g. IoT devices).

2

• MAML models are prone to over-fitting in the few-shot learning setup Antoniou et al.
[2018]. We show several design options for the NAS algorithm, namely Global Expansion
and Adaptively Number of Layers respectively. These methods help the NAS to overcome
the over-fitting problem by optimizing in the architectural design space.

• We reveal that popular Metric-based MAML methods are not latency-friendly. Our
empirical results suggest that Optimization-based MAML method with well-tuned architec-
tures can achieve comparable accuracy with significantly less latency overhead (≈ 2000×
on Mini-ImageNet 5-way 1-shot classification).

2 Background

2.1 Few-shot learning in the MAML framework

Inspired by human’s ability to learn from only a few tasks and generalize the knowledge to unseen
problems, a meta learner is trained over a distribution of tasks with the hope of generalizing its
learned knowledge to new tasks Finn et al. [2017].

argmin
θ

(ET ∈T[Lθ(T)]) (1)

Equation (1) captures the optimization objective of meta-learning, where optimal parameters are
obtained through optimizing on a set of meta-training tasks. Current approaches of using meta-
learning to solve few-shot learning problems can be roughly categorized into three types: Memory-
based, Metric-based and Optimization-based.

Memory-based method utilizes a memory-augmented neural network [Munkhdalai and Yu, 2017,
Gidaris and Komodakis, 2018] to memorize meta-knowledge for a fast adaption to new tasks. Metric-
based methods aim to meta-learn a high-dimensional feature representation of samples, and then apply
certain metrics to distinguish them. For instance, Meta-Baseline utilizes the cosine nearest-centroid
metric [Chen et al., 2020] and DeepEMD applies the Wasserstein distance [Zhang et al., 2020].
Optimization-based method, on the other hand, focuses on learning a good parameter initialization
(also known as meta-parameters or meta-weights) from a great number of training tasks, such that
these meta-parameters adapt to new few-shot tasks within a few gradient updates. The most well-
established Optimization-based method is Model-Agnostic Meta-Learning (MAML) [Finn et al.,
2017]. MAML is a powerful yet simple method to tackle the few-shot learning problem, since its
adaption relies solely on gradient updates. Antoniou et al. later demonstrate MAML++, a series of
modifications that improved MAML’s performance and stability. Baik et al. introduce an additional
network for generating adaptive parameters for the inner-loop optimization.

Despite the rise in popularity of the meta-learning framework applied to few-shot learning, little
attention has been paid to the runtime efficiency of these approaches. In this work, we reveal that the
current mainstream Metic-based methods all suffer from a severe latency overhead, since Metric-
based approaches rely on metric comparisons and have to use multiple inference runs to generate
these metrics (at least two) for a single image classification. With the help of H-Meta-NAS, we show
how Optimization-based methods can achieve a similar level of accuracy but using significantly less
computation at inference time.

2.2 Network architecture search

Architecture engineering is a tedious and complex process requiring a lot of effort from human
experts. Network Architecture Search (NAS) focuses on reducing the amount of manual tuning
in this design space. Early NAS methods use evolutionary algorithms and reinforcement learning
to traverse the search space [Zoph and Le, 2016, Real et al., 2017]. These early methods require
scoring architectures trained to a certain convergence and thus use a huge number of GPU hours. Two
major directions of NAS methods, Gradient-based and Evolution-based methods, are then explored
in parallel in order to make the search cost more affordable. Gradient-based NAS methods use
Stochastic Gradient Descent (SGD) to optimize a set of probabilistic priors that are associated with
architectural choices [Liu et al., 2018, Casale et al., 2019]. Although these probabilistic priors can
be made latency-aware [Wu et al., 2019, Xu et al., 2020], it is challenging to make them follow a
hard latency constraint. Evolution-based NAS, on the other hand, operates on top of a pre-trained
super-net and use evolutionary algorithms or reinforcement learning to pick best-suited sub-networks

3

[Cai et al., 2018, 2019], making it easier to be constrained by certain hardware metrics. For instance,
Once-for-all (OFA) is an Evolution-based NAS method and its searched networks are not only
optimized for a specific hardware target but also constrained by a pre-defined latency budget [Cai
et al., 2019]. Our proposed H-Meta-NAS shares certain similarities to Once-for-all, since this method
offers a chance to reduce the hardware search complexity from O(HC) to O(1). Latency is a key
metric in mobile applications, and obviously can be also improved through other techniques such
as quantization [Zhao et al., 2019a, Hönig et al., 2022] and sparsification [Gao et al., 2018, Wang
et al., 2019] in various learning setups, however, many of these optimizations might be ineffectual
[Nikolić et al., 2019] unless the underlying hardware has special support for it [Su et al., 2018, Zhao
et al., 2019b, Parashar et al., 2017]. NAS algorithm is a promising approach to address this problem,
since it can directly optimize the network topology; recent NAS methods have also been extended to
Transformers [So et al., 2019] and Graph Neural Networks [Zhao et al., 2020b,a].

Several NAS methods are proposed under the MAML framework [Kim et al., 2018, Shaw et al., 2018,
Lian et al., 2019], these methods successfully reduce the search complexity from O(T) to O(1).
However, some of these methods do not show significant performance improvements compared
to carefully designed MAML methods (e.g. MAML++) [Kim et al., 2018, Shaw et al., 2018]. In
the meantime, some of these MAML-based NAS methods follow the Gradient-based approach and
operate on complicated cell-based structures [Lian et al., 2019]. We illustrate later how cell-based
NAS causes an undesirable effect on latency, and also meets fundamental scalability challenges when
trying to deploy in a many-task many-device few-shot learning setup.

3 Method

Problem formulation In the MAML setup, we consider a set of tasks T and each task Ti ∈ T
contains a support set Ds

i and a query set Dq
i . The support set is used for task-level learning while

the query set is in charge of evaluating the meta-model. All tasks are divided into three sets, namely
meta-training (Ttrain), meta-validation (Tval) and meta-testing (Ttest) sets.

Equation (2) formally states the objective of the pre-training stage illustrated in Figure 3a. The
objective of this process is to optimize the parameters θ of the super-net for various sub-networks
sampled from the architecture set A. This will ensure the proposed H-Meta-NAS to have both the
meta-parameters and meta-architectures ready for the adaption to new tasks.

argmin
θ

Eα∼p(A)[ET ∈Ttrain [Lθ(T , α)]] (2)

Equation (3) describes how H-Meta-NAS adapts network architectures to a particular task T with
a given hardware constraint Ch. In practice, using the support set data Ds

i from a target task Ti,
we apply a genetic algorithm for finding the optimal architectures α∗. We discuss further how this
process in detail in later sections.

α∗ = min
α

∑
α∈A

Lθ(Ds
i , α)

s.t. C(α) ≤ Ch
(3)

Architecture search space H-Meta-NAS considers a search space composed of different kernel
sizes, the number of channels, and activation types. We mostly consider a VGG9-based NAS
backbone, that is a 5-layer CNN model with the last layer being a fully connected layer. We chose
this NAS backbone because both MAML Finn et al. [2017] and MAML++ Antoniou et al. [2018]
used a VGG9 model architecture. The details of this backbone are in Appendix A.

We allow kernel sizes to be picked from {1, 3, 5}, channels to be expanded with a set of scaling factors
{0.25, 0.5, 0.75, 1, 1.5, 2, 2.25} and also six different activation functions (details in Appendix). For a
single layer, there are 3×7×6 = 126 search options. H-Meta-NAS also contains an Adaptive Number
of Layers strategy, the network is allowed to use a subset of the total layers in the supernet with
maximum usage of 4 layers. The whole VGG9-based backbone then gives us in total 1264 × 4 ≈ 109

possible neural network architectures.

In addition, to demonstrate the ability of H-Meta-NAS on a more complex NAS backbone. We also
studied an alternative ResNet12-based NAS backbone, that has approximately 2 × 1024 possible
sub-networks.

4

...

...

Layer 1

Profile all layer-wise
architecture combinations
on all devices

AIOT
Layer 2

Latency Profiler
Module (LPM)

Building a Latency Profiler Applying a Latency Profiler

0.4ms 1.2ms+ = 1.6ms

Add recorded profile
information of each layer
for the given hardware

Figure 2: An illustration of how Latency Profiler works. The left side shows how the profiler is built
by recording the run-time of all configurations of each layer. The right side shows this profiler then
can sum the layer-wise information to provide a hardware-aware runtime for a whole network.

Super-Net

At each training step,
Randomly sample architectures

from the Super-Net

...

Meta-training on a pool of tasks

(a) Super-net meta-training.

0 50 100 150 200 250 300
Number of Iterations (M)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
ed

 a
cc

ur
ac

y

P = 50
P = 100
P = 200
P = 500

(b) The effect of different pool size (P) and different
number of iterations (M).

Figure 3: Figure 3a is an overview of the super-net meta-training. Figure 3b shows how different
parameters in the Adaption strategy can affect accuracy.

Layer-wise profiling Hardware-aware NAS needs the run-time of sub-networks on the targeting
hardware to guide the search process Cai et al. [2019], Xu et al. [2020]. However, the profiling stage
can be time-consuming if given a low-end hardware as the profiling target and the search space is
large. For instance, running a single network inference of VGG9 on the Raspberry Pi Zero with
a 1GHz single-core ARMv6 CPU takes around 2.365 seconds to finish. If we assume this is the
average time needed for profiling a sub-network, given that the entire search space includes around
109 sub-networks, a naive traverse will take a formidable amount of time which is approximately
6× 105 hours. More importantly, the amount of profiling time scales with the number of hardware
devices (O(H)). Existing hardware-aware NAS schemes build predictive methods to estimate the
run-time of sub-networks Cai et al. [2019], Xu et al. [2020] and have a relatively significant error. An
illustration of a profiler is shown in Figure 2, and the latency predictor’s illustration is in Figure 8.

Adaption strategy The adaption strategy uses a genetic algorithm Whitley [1994] to pick the
best-suited sub-network with respective to a given hardware constraint, the full algorithm is detailed
in Appendix D. In general, the adaption algorithm randomly samples a set of tasks from Tval, and
uses the averaged loss value and satisfaction to the hardware constraints as indicators for the genetic
algorithm. The genetic algorithm has a pool size P and number of iterations M .

We then run a hyper-parameter analysis in Figure 3b to determine the values of P and M . The full
adaption algorithm makes use of these hyper-parameters is in our Appendix. The horizontal axis
shows the number of iterations and the vertical axis shows the averaged accuracy on the sampled
tasks for all architectures in the pool. Figure 3b shows that the accuracy convergence is reached after

5

Existing NAS methods have a fixed number of channels
for layers at the 'edge' of each searchable block

GE allows these edge layers to shrink/expand

output

ANL allows the network to use fewer layers
Figure 4: A graphical illustration of GE and ANL. Both methods will allow a more drastic change in
model capabilities, allowing the searched model to deal with tasks with varying difficulties.

around 150 iterations, and running for additional iterations only provides marginal accuracy gains.
For this reason, we picked the number of iterations to be 200 for a balance between accuracy and
run-time. In the meantime, we notice in general a higher pool size will give better-adapted accuracy.
However, this does not mean the final searched accuracy is affected to the same degree. The final
re-trained accuracy of searched architectures show an accuracy gap of 0.21% between P = 100 and
P = 200 and 0.32% between P = 100 and P = 500. An increase in pool size can prolong the
run-time significantly, we thus picked a pool size of 100 since it offers the best balance between
accuracy and run-time.

NAS backbone design, Global Expansion (GE) and Adaptive Number of Layers (ANL) One
particular problem in few-shot learning is that models are prone to over-fitting. This is because only
a small number of training samples are available for each task and the network normally iterate on
these samples many times Antoniou et al. [2018]. We would like to explore the architectural space to
help models overcome over-fitting and conduct a case study for different design options available
for the backbone network. We identify the following key changes to the NAS backbone to help the
models to have high accuracy in few-shot learning:

• n× n pooling: Pooling that applied to the final convolutional operation, n× n indicates the
height and width of feature maps after pooling.

• Global Expansion (GE): Allowing the NAS to globally expand or shrink the number of
channels of all layers.

• Adaptive Number of Layers (ANL): Allowing the NAS to use an arbitrary number of layers,
the network then is able to early stop using only a fewer number of layers.

Figure 4 further illustrates how GE and ANL can allow a much smaller model compared to existing
NAS backbones. We also discuss in Section 3 how the pooling strategy can join the NAS process.

Super-net meta-training strategy As illustrated by prior work Cai et al. [2019], progressively
shrinking the super-net during meta-training can reduce the interference between sub-networks. We
observe the same phenomenon and then use a similar progressive shrinking strategy in H-Meta-NAS,
the sampling process α ∼ p(A) will pick the largest network with a probability of p, and randomly
pick other sub-networks with a probability of 1− p. We apply an exponential decay strategy to p:

p = pe + (pi − pe)× exp(−α× e− es
em − es

)) (4)

pe and pi are the end and initial probabilities. e is the current number of epochs, and es and em are
the starting and end epochs of applying this decaying process. α determines how fast the decay is.
A graphical illustration is shown in Figure 3a. In our experiment, we pick pi = 1.0 and es = 30,
because the super-net reaches a relatively stable training accuracy at that point.

We then start the decaying process, and the value α = 5 is determined through a hyper-parameter
study shown in our Appendix B.

6

Table 1: Comparing latency predictor with our proposed profiling. MSE Error is the error between
estimated and measured latency, Time is the total time taken to collect and build the estimator.

Hardware Metric Latency Predictor Layer-wise Profiling

2080 Ti GPU MSE Error 0.0188 0.00690
Time 16.09 mins 6.216 secs

Intel i9 CPU MSE Error 0.165 0.0119
Time 21.92 mins 16.41 secs

Pi Zero MSE Error N/A 0.00742
Time N/A (Approx. 220 hours) 82.41 mins

4 Evaluation

We evaluate H-Meta-NAS on a range of popular few-shot learning benchmarks. For each dataset,
we search for the meta-architecture and meta-parameters. We then adapt the meta-architecture with
respect to a target hardware-constraint pair. In the evaluation stage, we then re-train the obtained
hardware-aware task-specific architecture to convergence and report the final accuracy. We consider
three popular datasets in the few-shot learning community: Omniglot, Mini-ImageNet and Few-shot
CIFAR100. We use the PytorchMeta framework to handle the datasets [Deleu et al., 2019].

Omniglot is a handwritten digits recognition task, containing 1623 samples [Lake et al., 2015]. We
use the meta train/validation/test splits originally used Vinyals et al. Vinyals et al. [2016]. These
splits are over 1028/172/423 classes (characters).

Mini-ImageNet is first introduced by Vinyals et al.. This dataset contains images of 100 different
classes from the ILSVRC-12 dataset [Deng et al., 2009], the splits are taken from Ravi et al.[Ravi
and Larochelle, 2016].

Table 10 in our appendix details the systems and representative devices considered. We use the
ScaleSIM cycle-accurate simulator Samajdar et al. [2018] for the Eyeriss Chen et al. [2016] accelerator.
This simulation and more datasets and search configurations information are in Appendix F.

Evaluating layer-wise profiling We re-implemented the latency predictor in OFA Cai et al. [2019]
as a baseline and compare it to our layer-wise profiling. We pick 16K training samples and 10K
validation samples to train and test the latency predictor, which is the same setup used in OFA. We use
another 10K testing samples to evaluate the performance of OFA-based latency predictor against our
layer-wise profiling on different hardware systems in terms of MSE (measuring the latency estimation
quality) and Time (measuring the efficiency). As illustrated in Table 1, layer-wise profiling saves not
only time but also has a smaller MSE error compared to a predictor-based strategy that is very popular
in today’s evolutionary-based NAS frameworks [Cai et al., 2019, 2018]. In addition, layer-wise
profiling shows orders of magnitude better run-time when targeting hardware devices with scarce
computational resources. If we consider an IoT class device as a target (i.e the Raspberry Pi Zero), it
requires an unreasonably large amount of time to generate training samples for latency predictors,
making them an infeasible approach in real life. For instance, the total time consumed by the latency
predictor is infeasible to execute on Pi Zero (last row in Table 1). Of course, in reality, there is also a
great number of IoT devices using more low-end CPUs compared to Pi Zero (ARMV5 or ARMV4),
making the latency predictor even harder to be deployed on these devices. Also in a many-hardware
setup considered in this paper, this profiling is executed O(H) times.

Most existing layer-wise profile/look-up approaches consider at most mobile systems as targeting
platforms [Xu et al., 2020, Yang et al., 2018]. These systems are in general more capable than a
great range of IoT devices. In this paper, we demonstrate the effectiveness of this approach on more
low-end systems (Raspberry Pi and Pi Zeros), illustrating this is the more scalable approach for
hardware-aware NAS operating on constrained hardware systems.

Evaluating GE and ANL Our results in Table 2 suggest that a correct pooling strategy, GE and
ANL can change the NAS backbone to allow the search space to reach much smaller models and
thus provide better accuracy. In addition, Table 2 also illustrates that 5× 5 pooling is necessary for
higher accuracy. We hypothesize this is because a relatively large fully-connected layer after the

7

Table 2: A case study of different design options for the NAS backbone network. Experiments are
executed with a model size constraint of 70K on the Mini-ImageNet 5-way 1-shot classification task.

Design options Accuracy

MAML 48.70%
MAML++ 52.15%

H-Meta-NAS + 1× 1 Pool 42.28%
H-Meta-NAS + 5× 5 Pool 46.13%

H-Meta-NAS + 5× 5 Pool + GE 53.09%
H-Meta-NAS + 5× 5 Pool + GE + ANL 56.35%

pooling is required for the network to achieve a good accuracy in this few-learning setup. We then
demonstrate using a case study in our evaluation of how a combination of these techniques can help
H-Meta-NAS: the final searched model can have an up to 14.28% accuracy increase on the 5-way
1-shot Mini-ImageNet classification if using these optimization tricks. Table 2 also showed us that
a well-tuned architecture can help MAML models overcome the over-fitting phenomenon in the
few-shot learning setup.

Table 3: Results of Omniglot 20-way few-shot classification. We keep two decimal places for our
experiments, and keep the decimal places as it was reported for other cited work. ∗ reports a MAML
replication implemented by Antoniou et al..

Method Size MACs Accuracy
1-shot 5-shot

Siamese Nets Koch et al. [2015] 35.96M 1.36G 99.2% 97.0%
Matching Nets Vinyals et al. [2016] 225.91K 20.29M 93.8% 98.5%

Meta-SGD Li et al. [2017] 419.86K 46.21M 95.93%± 0.38% 98.97%± 0.19%
Meta-NAS Elsken et al. [2020] 100.00K - 96.20%± 0.16% 99.20%± 0.07%

MAML Finn et al. [2017] 113.21K 10.07M 95.8%± 0.3% 98.9%± 0.2%
MAML∗ (Replication from Antoniou et al. [2018]) 113.21K 10.07M 91.27%± 1.07% 98.78%

MAML++ ∗ Antoniou et al. [2018] 113.21K 10.07M 97.65%± 0.05% 99.33%± 0.03%
MAML++ (Local Replication) 113.21K 10.07M 96.60%± 0.28% 99.00%± 0.07%

H-Meta-NAS 110.73K 4.95M 97.61± 0.03% 99.11%± 0.09%

Table 4: Results of Mini-ImageNet 5-way classification. We use two decimal places for our experi-
ments, and keep the decimal places of cited work as they were originally reported. T-NAS uses the
complicated DARTS cell Lian et al. [2019], it has a smaller size but a large MACs usage.

Method Size MACs Accuracy
1-shot 5-shot

Matching Nets Vinyals et al. [2016] 228.23K 200.31M 43.44± 0.77% 55.31± 0.73%
CompareNets Sung et al. [2018] 337.95K 318.38M 50.44± 0.82% 65.32± 0.70%

MAML Finn et al. [2017] 70.09K 57.38M 48.70± 1.84% 63.11± 0.92%
MAML++ Antoniou et al. [2018] 70.09K 57.38M 52.15± 0.26% 68.32± 0.44%

ALFA + MAML + L2F Baik et al. [2020] 70.09K 57.38M 52.76± 0.52% 71.44± 0.45%

OFA Cai et al. [2019] (Local Replication) + MAML++ 82.20K 33.11M 51.32± 0.07% 68.22± 0.12%
Auto-Meta Kim et al. [2018] 98.70K - 51.16± 0.17% 69.18± 0.14%

BASE (Softmax) Shaw et al. [2018] 1200K - - 65.4± 0.7%
BASE (Gumbel) Shaw et al. [2018] 1200K - - 66.2± 0.7%

Meta-NAS ∗ Elsken et al. [2020] 100K - 53.2± 0.4% 67.8± 0.7%
T-NAS ∗ Lian et al. [2019] 24.3/26.5K 37.96/52.63M 52.84± 1.41% 67.88± 0.92%

T-NAS++ ∗ Lian et al. [2019] 24.3/26.5K 37.96/52.63M 54.11± 1.35% 69.59± 0.85%

H-Meta-NAS 70.28K 24.09M 57.36± 1.11% 77.53± 0.77%

Evaluating H-Meta-NAS searched architectures Table 3 displays the results of H-Meta-NAS on
the Omniglot 20-way 1-shot and 5-shot classification tasks. We match the size of H-Meta-NAS to
MAML and MAML++ for a fair comparison. H-Meta-NAS outperforms all competing methods apart
from the original MAML++. MAML++ uses a special evaluation strategy, it creates an ensemble of
models with best validation-set performance. MAML++ then picks the best model from the ensemble
based on support set loss and report accuracy on the query set. We then locally replicated MAML++
without this trick, and show that H-Meta-NAS outperforms it by a significant margin (+1.01% on
1-shot and +0.11% on 5-shot) with around half of the MACs (4.95M compared to 10.07M).

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Inference Latency on NVIDIA 2080 Ti GPU (ms)

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Ac
cu

ra
cy

H-Meta-NAS
MAML
MAML++
Matching Nets
CompareNets
TNAS
TNAS++

Figure 5: Target a GPU

0 1 2 3 4 5
Inference Latency on Eyeriss (ms)

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Ac
cu

ra
cy

H-Meta-NAS
MAML
MAML++

Figure 6: Target an ASIC

0 10000 20000 30000 40000
Inference Latency on Raspberry Zero (ms)

0.44

0.46

0.48

0.50

0.52

0.54

0.56

Ac
cu

ra
cy

H-Meta-NAS
MAML
MAML++
Matching Nets
CompareNets
TNAS
TNAS++

Figure 7: Target an IoT device

Table 4 shows the results of running the 5-way 1-shot and 5-shot Mini-ImageNet tasks, simi-
lar to the previous results, we match the size of searched networks to MAML, MAML++ and
ALFA+MAML+L2F. Table 4 not only displays results on MAML methods with fixed-architectures,
it also shows the performance of searched networks including Auto-Meta Kim et al. [2018], BASE
Shaw et al. [2018] and T-NAS Lian et al. [2019]. H-Meta-NAS shows interesting results when
compared to T-NAS and T-NAS++. H-Meta-NAS has much higher accuracy (+3.26% in 1-shot
and 7.94% in 5-shot) and a smaller MAC count, but uses a greater amount of parameters. T-NAS
and T-NAS++ use DARTS cells Liu et al. [2018]. This NAS cell contains a complex routing of
computational blocks, making it not suitable for latency critical applications. We will demonstrate
later how this design choice gives a worse on-device latency performance.

H-Meta-NAS for diverse hardware platforms and constraints In addition to using the model
sizes as a constraint for H-Meta-NAS, we use various latency targets on various hardware platforms
as the optimization target. Figure 5, Figure 6 and Figure 7 show how GPU, ASIC and IoT device
latency can be used as constraints. The smaller model sizes of T-NAS do not provide a better run-time
on GPU devices (Figure 5), in fact, T-NAS based models have the worst run-time on GPU devices
due to the complicated dependency of DARTS cells. We only compare to MAML and MAML++
when running on Eyeriss due to the limitations of the ScaleSIM simulator Samajdar et al. [2018]. In
Appendix J, we provide more latency vs. accuracy plots using various hardware platforms’ latency as
constraints and observe the same pareto dominance.

Table 5: Applying H-Meta-NAS to different NAS backbones/algorithms for the Mini-ImageNet
5-way 1-shot classification.

Method Network Backbone Inference Style Size MACs Accuracy

MAML Finn et al. [2017] VGG-based Single Pass 70.09K 57.38M 48.70± 1.84%
MAML++ Antoniou et al. [2018] VGG-based Single Pass 70.09K 57.38M 52.15± 0.26%
Meta-Baseline Chen et al. [2020] ResNet-based Multi Pass 12.44M 56.48G 63.17± 0.23%

DeepEMD Zhang et al. [2020] ResNet-based Multi Pass 12.44M 56.38G 65.91± 0.82%
MetaNAS Elsken et al. [2020] DARTS-cell-based Single Pass 1M - 61.8± 0.1%

H-Meta-NAS VGG-based Single Pass 70.28K 24.09M 57.36± 1.11%
H-Meta-NAS ResNet-based Single Pass 70.62K 28.19M 64.67± 2.03%

Table 6: Comparing the NAS search complexity with N tasks, H hardware platforms and C
constraints. Search time is estimated for a deployment scenario with 500 tasks and 10 hardware-
constraint pairs, estimation details are discussed in Appendix.

Method Style Hardware-aware Search complexity Search time (GPU hrs)

DARTS Liu et al. [2018] Gradient-based, single task No O(THC) ≈ 106

Once-for-all Cai et al. [2019] Evolution-based, single task Yes O(N) ≈ 104

TNAS & TNAS++ Lian et al. [2019] Gradient-based, multi task No O(HC) ≈ 103

H-Meta-NAS Evolution-based, multi task Yes O(1) 40

A more complex NAS backbone and a comparison to Metric-based MAML Table 5 shows
how H-Meta-NAS performs with a more complicated NAS backbone. In previous experiments, we
build the NAS on top of a VGG9 backbone since it is the architecture utilized in the MAML++
algorithm. To have a fair comparison, we did not manually pick a complex NAS backbone. However,
in this section, we additionally show that H-Meta-NAS can be applied with a more complicated
backbone and it shows better final accuracy as expected.

We compare the proposed approach with state-of-the-art Metric-based meta-learning methods Zhang
et al. [2020], Chen et al. [2020]. There is a current trend that Metric-based MAML approaches are

9

becoming the mainstream in few-shot learning. Chen et al. shows that a simple cosine-similarity
measurement can be used as a metric and outperforms standard Optimization-based approaches by
a significant margin. In this experiment, we demonstrate that Metric-based methods suffer from
a significant runtime overhead. Optimization methods, on the other hand, have a significantly
less MACs usage. Although using only a single inference pass (our method does not conduct
inference runs on the support set when deployed), H-Meta-NAS shows competitive results with SOTA
Metric-based methods while having a much smaller MACs usage (around 2000×), showing that a
well-tuned network architecture can help Optimization methods to close the accuracy gap. We hope
this finding will encourage researchers in this field to look back into Optimization-based MAML.
Search complexity and search time In Table 6, we show a comparison between H-Meta-NAS and
various NAS schemes in the many-task many-device setup. Specifically, we consider a scenario
with 500 tasks and 10 different hardware-constraint pairs. Our results in Table 6 suggest that
H-Meta-NAS is the most efficient search method because of its low search complexity.

5 Conclusion

In this paper, we show H-Meta-NAS, a NAS method focusing on fast adaption of not only model
weights but also model architectures in a many-task many-device few-shot learning setup. H-Meta-
NAS outperforms a wide range of MAML baselines on a set of few-shot learning tasks. We study the
effectiveness of H-Meta-NAS on different hardware systems and constraints, and demonstrate its
superior performance on real devices using an orders of magnitude shorter search time compared to
existing NAS methods.

Acknowledgements

Xitong Gao is supported in part by Shenzhen Science and Technology Innovation Commission (No.
JCYJ20190812160003719).

References
A. Antoniou, H. Edwards, and A. Storkey. How to train your MAML. arXiv preprint

arXiv:1810.09502, 2018.

S. Baik, M. Choi, J. Choi, H. Kim, and K. M. Lee. Meta-learning with adaptive hyperpa-
rameters. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 20755–20765. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
ee89223a2b625b5152132ed77abbcc79-Paper.pdf.

H. Cai, L. Zhu, and S. Han. ProxylessNAS: Direct neural architecture search on target task and
hardware. arXiv preprint arXiv:1812.00332, 2018.

H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-all: Train one network and specialize it for
efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

F. P. Casale, J. Gordon, and N. Fusi. Probabilistic neural architecture search. arXiv preprint
arXiv:1902.05116, 2019.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang, Y. Hu, L. Ceze,
et al. TVM: An automated End-to-End optimizing compiler for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18), pages 578–594, 2018.

Y. Chen, X. Wang, Z. Liu, H. Xu, and T. Darrell. A new meta-baseline for few-shot learning. arXiv
preprint arXiv:2003.04390, 2020.

Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-efficient reconfigurable accelerator
for deep convolutional neural networks. IEEE journal of solid-state circuits, 52(1):127–138, 2016.

T. Deleu, T. Würfl, M. Samiei, J. P. Cohen, and Y. Bengio. Torchmeta: A Meta-Learning
library for PyTorch, 2019. URL https://arxiv.org/abs/1909.06576. Available at:
https://github.com/tristandeleu/pytorch-meta.

10

https://proceedings.neurips.cc/paper/2020/file/ee89223a2b625b5152132ed77abbcc79-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ee89223a2b625b5152132ed77abbcc79-Paper.pdf
https://arxiv.org/abs/1909.06576

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages
248–255. IEEE, 2009.

T. Elsken, B. Staffler, J. H. Metzen, and F. Hutter. Meta-learning of neural architectures for few-shot
learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 12365–12375, 2020.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks.
In International Conference on Machine Learning, pages 1126–1135. PMLR, 2017.

X. Gao, Y. Zhao, Ł. Dudziak, R. Mullins, and C.-z. Xu. Dynamic channel pruning: Feature boosting
and suppression. arXiv preprint arXiv:1810.05331, 2018.

S. Gidaris and N. Komodakis. Dynamic few-shot visual learning without forgetting. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4367–4375, 2018.

J. Guo, X. Zhu, C. Zhao, D. Cao, Z. Lei, and S. Z. Li. Learning meta face recognition in unseen
domains. CoRR, abs/2003.07733, 2020. URL https://arxiv.org/abs/2003.07733.

Y. Guo, Y. Zheng, M. Tan, Q. Chen, J. Chen, P. Zhao, and J. Huang. NAT: Neural architecture
transformer for accurate and compact architectures. arXiv preprint arXiv:1910.14488, 2019.

R. Hönig, Y. Zhao, and R. Mullins. DAdaQuant: Doubly-adaptive quantization for communication-
efficient federated learning. In International Conference on Machine Learning, pages 8852–8866.
PMLR, 2022.

J.-Y. Hsu, Y.-J. Chen, and H.-y. Lee. Meta learning for end-to-end low-resource speech recognition.
In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 7844–7848. IEEE, 2020.

J. Kim, S. Lee, S. Kim, M. Cha, J. K. Lee, Y. Choi, Y. Choi, D.-Y. Cho, and J. Kim. Auto-meta:
Automated gradient based meta learner search. arXiv preprint arXiv:1806.06927, 2018.

G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot image recognition.
In ICML deep learning workshop, volume 2. Lille, 2015.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through proba-
bilistic program induction. Science, 350(6266):1332–1338, 2015.

Z. Li, F. Zhou, F. Chen, and H. Li. Meta-SGD: Learning to learn quickly for few-shot learning. arXiv
preprint arXiv:1707.09835, 2017.

D. Lian, Y. Zheng, Y. Xu, Y. Lu, L. Lin, P. Zhao, J. Huang, and S. Gao. Towards fast adaptation of
neural architectures with meta learning. In International Conference on Learning Representations,
2019.

H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

T. Munkhdalai and H. Yu. Meta networks. In International Conference on Machine Learning, pages
2554–2563. PMLR, 2017.

M. Nikolić, M. Mahmoud, A. Moshovos, Y. Zhao, and R. Mullins. Characterizing sources of
ineffectual computations in deep learning networks. In 2019 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 165–176. IEEE, 2019.

B. N. Oreshkin, P. Rodriguez, and A. Lacoste. Tadam: Task dependent adaptive metric for improved
few-shot learning. arXiv preprint arXiv:1805.10123, 2018.

A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer, S. W. Keckler,
and W. J. Dally. SCNN: An accelerator for compressed-sparse convolutional neural networks.
ACM SIGARCH computer architecture news, 45(2):27–40, 2017.

11

https://arxiv.org/abs/2003.07733

S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. 2016.

E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Kurakin. Large-scale
evolution of image classifiers. In International Conference on Machine Learning, pages 2902–2911.
PMLR, 2017.

A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna. Scale-sim: Systolic cnn accelerator
simulator. arXiv preprint arXiv:1811.02883, 2018.

A. Shaw, W. Wei, W. Liu, L. Song, and B. Dai. Meta architecture search. arXiv preprint
arXiv:1812.09584, 2018.

D. So, Q. Le, and C. Liang. The evolved transformer. In International Conference on Machine
Learning, pages 5877–5886. PMLR, 2019.

J. Su, J. Faraone, J. Liu, Y. Zhao, D. B. Thomas, P. H. Leong, and P. Y. Cheung. Redundancy-reduced
MobileNet acceleration on reconfigurable logic for ImageNet classification. In International
Symposium on Applied Reconfigurable Computing, pages 16–28. Springer, 2018.

F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales. Learning to compare:
Relation network for few-shot learning. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1199–1208, 2018.

O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks for one
shot learning. arXiv preprint arXiv:1606.04080, 2016.

K. Wang, X. Gao, Y. Zhao, X. Li, D. Dou, and C.-Z. Xu. Pay attention to features, transfer learn
faster CNNs. In International conference on learning representations, 2019.

D. Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85, 1994.

B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and K. Keutzer. FBNet:
Hardware-aware efficient ConvNet design via differentiable neural architecture search. In CVPR,
2019.

Y. Xu, L. Xie, X. Zhang, X. Chen, B. Shi, Q. Tian, and H. Xiong. Latency-aware differentiable neural
architecture search. arXiv preprint arXiv:2001.06392, 2020.

T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze, and H. Adam. Netadapt:
Platform-aware neural network adaptation for mobile applications. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 285–300, 2018.

C. Zhang, Y. Cai, G. Lin, and C. Shen. Deepemd: Few-shot image classification with differentiable
earth mover’s distance and structured classifiers. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12203–12213, 2020.

Y. Zhao, X. Gao, D. Bates, R. Mullins, and C.-Z. Xu. Focused quantization for sparse CNNs.
Advances in Neural Information Processing Systems, 32, 2019a.

Y. Zhao, X. Gao, X. Guo, J. Liu, E. Wang, R. Mullins, P. Y. Cheung, G. Constantinides, and C.-Z.
Xu. Automatic generation of multi-precision multi-arithmetic cnn accelerators for FPGAs. In
2019 International Conference on Field-Programmable Technology (ICFPT), pages 45–53. IEEE,
2019b.

Y. Zhao, D. Wang, D. Bates, R. Mullins, M. Jamnik, and P. Lio. Learned low precision graph neural
networks. arXiv preprint arXiv:2009.09232, 2020a.

Y. Zhao, D. Wang, X. Gao, R. Mullins, P. Lio, and M. Jamnik. Probabilistic dual network architecture
search on graphs. arXiv preprint arXiv:2003.09676, 2020b.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

12

A Details of VGG9 and ResNet12 backbones

Table 7 and Table 8 show the NAS backbones of H-Meta-NAS. Clearly the ResNet-based
NAS backbone is significantly more complicated. The kernel size search space is {1, 3, 5}.
The channel expansion search space is {0.25, 0.5, 0.75, 1, 1.5, 2, 2.25} for the VGG-based NAS
backbone but {0.25, 0.5, 1, 1.5, 1.75, 2} for the ResNet-based backbone. The reason for the
modification in search space is because the GPU RAM limitation does not support an ex-
pansion size of 2.25 on the ResNet-based backbone. The activation search space contains
{[′relu′,′ elu′,′ selu′,′ sigmoid′,′ relu6′,′ leakyrelu′}.

Table 7: Details of the VGG9 NAS backbone

Layer Name Base channel counts Stride

Layer0 64 2
Layer1 64 2
Layer2 64 2
Layer3 64 2

Table 8: Details of the ResNet NAS backbone

Layer Name Base channel counts Stride

Block0_Layer0 32 2
Block0_Layer1 32 1
Block0_Layer2 32 1
Block1_Layer0 64 2
Block1_Layer1 64 1
Block1_Layer2 64 1
Block2_Layer0 128 2
Block2_Layer1 128 1
Block2_Layer2 128 1
Block3_Layer0 256 2
Block3_Layer1 256 1
Block3_Layer2 256 1

B Tuning the decay process in pre-training strategy

As mentioned in Section 3.3 in the paper, we apply a progressive shrinking strategy to pre-training.
We decay the probability of picking the largest sub-network gradually. Recall that the architectural
sampling process α ∼ p(A) will pick the largest network with a probability of p, and randomly pick
a sub-network with a probability of 1− p. We apply an exponentially decay strategy to p:

p = pe + (pi − pe)× exp(−α× e− es
em − es

)) (5)

pe and pi are the end and initial probabilities. e is the current number of epochs, and es is the starting
epoch of applying this decaying process. α determines how fast the decay is. In our experiment, we
pick pi = 1.0 and es = 30, because the super-net reaches a relatively stable training accuracy at that
point. We then start the decaying process, and evaluate different values of α in Table 9. The averaged
accuracy is averaged across 100 randomly picked sub-networks on the Tval tasks. Based on these
results, we picked α = 5 for our later experiments.

C Latency predictor: an explanation

Figure 8 explains how the latency predictor work. The predictor builds on N profiled networks, and
this style of sub-network profiling is infeasible on IoT devices.

13

Table 9: Tuning the decay factor α for pre-training on Mini-ImageNet 5-way 1-shot classification.
Accuracy is averaged across 100 randomly picked sub-networks.

α 0.1 0.5 5 10 50
AVG ACCURACY 0.424 0.4145 0.5464 0.5323 0.4423

Profile N (N is normally large)
sub-networks
(each network has a
stack of layers) on all devices,
and use this data to train a
prediction model AIOT

Latency Predictor
Module

Building a Latency Predictor Applying a Latency Profiler

Predictor direclty
predicts a runtime

...

1.6ms

Figure 8: An illustration of how Latency Predictor works. The left side shows how the predictor
is built by training on the run-time of a bunch of profiled sub-networks. The right side shows this
predictor then can predict a hardware-aware runtime for a whole network.

D Adaption algorithm and the hyper-parameter choices

Algorithm 1 details the adaption algorithm. In the Mutate function, each architecture is ranked
with the averaged loss across all sampled tasks, and 10% of the architectures with the lowest loss
values are then used to perform a classic genetic algorithm mutation Whitley [1994]. The mutation
will allow the top-performing architectures to have two randomly picked architectural choices being
modified to another choice that is not the original one. The mutation function considers the original
pool of architectures (A) and their averaged loss values (La). The cost of each architecture can be
computed by the pre-build hardware-specific hash-table Ht(A). We then only mutate the subset in A
that their hardware cost has satisfied the constraints {A|A ∈ A ∧Ht(A) ≤ C}. The mutation is to
randomly pick two options in the entire architectural space and change them to other choices that are
different from the original.

Algorithm 1 The adaption algorithm

Input: M , P , C, Ht

A = Init(P) ▷ Initialise a set of architectures with a size of P
for i = 0 to M − 1 do

La = ∅
Ts ∼ p(Tval) ▷ Obtain a subset from the validation task set
for A ∈ A do

Lt = ∅
for T ∈ Ts do

l = L(T ,A) ▷ Compute loss
Lt = Lt

⋃
{l}

end for
La = La

⋃
{mean(Lt)} ▷ Collect averaged loss values across all tasks

end for
A = Mutate(A, La, Ht, C) ▷ Mutate the architectures based on hardware constraints

end for

14

Table 10: Details of hardware systems experimented.

System Device

Cloud Nvidia GeForce RTX 2080 Ti
Mid-end CPU Intel CPU
Mobile CPU Raspberry Pi 4B

IoT Raspberry Pi Zero
ASIC Eyeriss Chen et al. [2016]

E Hardware devices

To demonstrate the hardware-awareness of our NAS algorithm, Table 10 summarises the hardware
platform we used for our experiments. We deployed our networks to Raspberry Pi models using
TVM Chen et al. [2018].

F H-Meta-NAS search configurations and hardware simulation

We mostly follow the experiment setup in MAML++ Antoniou et al. [2018]. In the pre-training stage,
we train for 100 epochs, each epoch consists of 500 iterations. We also pick 600 tasks to be validation
tasks. In the adaption stage, we randomly sample from the validation set, and pick 16 tasks to build a
data slice for the architectures to traverse. In the final re-training stage of a searched architecture, we
follow the strategy used in MAML++ Antoniou et al. [2018]. We then introduce the detailed special
configurations for the datasets:

• Omniglot: We randomly split 1200 characters for training, and the rest is used for testing.
The images are augmented with randomised rotation of multiples of 90 degrees.

• Mini-ImageNet: All images are down-sampled to 84× 84.

We use the ScaleSim framework Samajdar et al. [2018] for simulating the Eyeriss Chen et al.
[2016] accelerator. ScaleSim is an open-source cycle-accurate CNN simulator. The simulator has
certain limitations with respect to the DRAM simulation, it could be advanced with an external
DRAM simulator but will cause a large run-time. So we kept the original setup and the DRAM
simulation would report a read/write bandwidth requirements. For simplicity, we assume these
DRAM requirements are met. In addition, it is a well-known fact that cycle-accurate simulators are
slow to execute. Due to this reason, we only launched the MAML and MAML++ networks in the
ScaleSim simulator.

G T-NAS baseline results

We notice the model sizes of some baseline models (e.g. MAML and MAML++) reported in the
original TNAS paper Lian et al. [2019] are different from our results in Table 3. We calculated the
model sizes of these baselines using their official open-sourced implementations. T-NAS did not
provide an implementation of their mentioned baselines in their official repository, so we cannot
replicate their model size numbers. We have contacted the T-NAS authors regarding this issue.

H Additional results on FC100

FC100 is introduced by Oreshkin et al. and has 100 different classes from the CIFAR100 dataset
Krizhevsky [2009].

In Table 11, we further demonstrate the effectiveness of the proposed H-Meta-NAS on the FC100
dataset. T-NAS did not report their model sizes on this task, and our results suggest that H-Meta-
NAS achieves the best accuracy on both the 1-shot and 5-shot setups.

15

Table 11: Results of FC100 5-way few-shot classification. We keep two decimal places for our
experiments, and keep the decimal places of cited work as they were originally reported.

METHOD SIZE
ACCURACY

1-SHOT 5-SHOT

MAML 70.09K 38.1± 1.7% 50.4± 1.0%
MAML++ 70.09K 38.7± 0.4% 52.9± 0.4%

T-NAS - 39.7± 1.4% 53.1± 1.0%
T-NAS++ - 40.4± 1.2% 54.6± 0.9%

H-META-NAS 55.52K 43.29± 1.22% 56.86± 0.76%

I Search time estimation

Due to the limited computing facilities available, we estimate the search time of DARTS Liu et al.
[2018], Once-for-all Cai et al. [2019] and T-NAS Lian et al. [2019] in a multi-task multi-device setup.
We take the search time reported in the original publications and multiply them by the appropriate
scaling factors. For DARTs, we take the search time (4 GPU days = 96 GPU hours) and multiply it
by H × T = 5000. We additionally assume a linear scaling relationship between search time and
input image sizes, so we multiply the total search time by 84×84

32×32 , this gives us in total a search time
of around 106. We perform the same estimation for Once-for-all Cai et al. [2019] and T-NAS Lian
et al. [2019].

J Latency-aware optimisation on more hardware platforms

In addition to using the model sizes as a constraint for H-Meta-NAS, we use various latency targets on
various hardware platforms as the optimisation target. Figure 9 shows how GPU latencies can be used
as constraints. T-NAS and T-NAS++ show a better performance on the size-accuracy plot in Figure 9.
The smaller model sizes of T-NAS do not provide a better run-time on GPU devices (Figure 5), in fact,
T-NAS based models have the worst run-time on GPU devices due to the complicated dependency
of DARTS cells. We only compare to MAML and MAML++ when running on Eyeriss due to the
limitations of the ScaleSIM simulator Samajdar et al. [2018].

0 50 100 150 200 250 300 350
Model size (K)

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Ac
cu

ra
cy

H-Meta-NAS
MAML
MAML++
Matching Nets
CompareNets
Auto-Meta
TNAS
TNAS++

Figure 9: Target model sizes

0 10 20 30 40 50 60
Inference Latency on Intel i9 CPU (ms)

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Ac
cu

ra
cy

H-Meta-NAS
MAML
MAML++
Matching Nets
CompareNets
TNAS
TNAS++

Figure 10: Target a mid-end
CPU

0 200 400 600 800 1000 1200
Inference Latency on Raspberry Pi 4B (ms)

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Ac
cu

ra
cy

H-Meta-NAS
MAML
MAML++
Matching Nets
CompareNets
TNAS
TNAS++

Figure 11: Target a low-end
CPU

K Searched Pooling mechanism

In this section, we discuss the effect of automatically search for the pooling strategy in the proposed
algorithm. The H-Meta-NAS algorithm used a fixed pooling strategy that is manually tuned, this is
the same setup in other NAS algorithms (e.g. T-NAS Lian et al. [2019]). We add an additional search
space of pooling (1× 1, 3× 3, 5× 5 and 7× 7).

Table 12 shows the results of searched pooling. Unsurprisingly, the network picked 5× 5 pooling for
both datasets, which is the same as pooling strategy obtained from our manual tunning. The automatic
search for the pooling strategy should be more beneficial if our downstream tasks are of different
image resolutions. Unfortunately, most of the standard benchmarks today in few-shot learning do
not consider this scenario. If given the resolutions are the same for the meta-tasks and downstream
tasks, an automatic search for the pooling design might not be necessary, since the number of pooling
options are normally small.

16

Table 12: Searched pooling strategy. Experiments are executed with a model size constraint of
70K and 120K on the Mini-ImageNet 5-way 1-shot classification task and Omniglot 20-way 1-shot
classification respectively.

METHOD DATASET SIZE 1-SHOT ACCURACY

H-META-NAS + 5× 5 POOL + GE + ANL MINI-IMAGENET 67.2K 56.35± 0.73
H-META-NAS + SEARCHED POOL + GE + ANL MINI-IMAGENET 69.3K 56.42± 1.02

H-META-NAS + 5× 5 POOL + GE + ANL OMNIGLOT 110.73K 97.61± 0.03
H-META-NAS + SEARCHED POOL + GE + ANL OMNIGLOT 103.23K 97.22± 0.92

L License of the assets

In our work, we utilized the following datasets/library/code listed in Table 13.

Table 13: Licenses of used assets.

DATASET/ALGORITHM/LIB NAMES LICENSE

THE OMNIGLOT DATASET MIT LICENSE
THE MINI-IMAGENET DATASET MIT LICENSE

THE FC100 DATASET APACHE V2 LICENSE
PYTORCH-META MIT LICENSE

MAML++ MIT LICENSE

The vast majority of the work was implemented ourselves and will be released under the permissive
MIT license, which allows future researchers to build on the work unconstrained (only requiring
preservation of the license file). All dependencies of my library are similarly released under OSI2-
approved licenses, allowing them all to be easily compiled and installed.

M Computation resources

Apart from the hardware devices used for profiling in the main paper. All experiments complete in
< 30 GPU-days on a four NVIDIA GeForce GTX 1080 Ti system with an Intel(R) Xeon(R) CPU
E5-2620 v4 at 2.10GHz.

2https://opensource.org/licenses

17

	Introduction
	Background
	Few-shot learning in the MAML framework
	Network architecture search

	Method
	Evaluation
	Conclusion
	Details of VGG9 and ResNet12 backbones
	Tuning the decay process in pre-training strategy
	Latency predictor: an explanation
	Adaption algorithm and the hyper-parameter choices
	Hardware devices
	H-Meta-NAS search configurations and hardware simulation
	T-NAS baseline results
	Additional results on FC100
	Search time estimation
	Latency-aware optimisation on more hardware platforms
	Searched Pooling mechanism
	License of the assets
	Computation resources

