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1 IMPLEMENTATION DETAILS

Our implementation is based on Pytorch (Paszke et al., 2019). We use CLIP-B/32, Instagram (Ma-
hajan et al., 2018), and ResNet50 (He et al., 2016) as our pre-trained model, and the batch size is
256, 32, 128, respectively. All visual prompting in our experiments are trained for 1000 epochs. For
EVP, we use SGD with a cosine learning rate schedule; the intiial learning rate is 70. The prompting
size is 30 pixels by default. To fairly compare with VP, we follow its text prompting setup (Bahng
et al., 2022) in CLIP model. Specifically, we use “This is a photo of a [LABEL]” by default for the
text prompting. For CLEVR datasets, we use “This is a photo of [LABEL] objects”, for DMLab
datasets, we use “The distance is [LABEL1], and the reward is [LABEL2]”, and for Camelyon17,
the text prompting template is “a tissue region [LABEL] tumor”.

2 PROMPTING SIZE

The prompting size is defined as p = K−k
2 , where k is the image size after shirinking, and K is the

input size of pre-trained model. Therefore, the number of parameters is 12p(K − p), which only
depends on p since K is fixed for a given model. In our experiment, the optimal prompting size
varies across datasets, as shown in Fig. 1. Since we shrink the original image and pad learnable
pixels around it, there shows a tradeoff between the image resolution and the number of parameters.
Interestingly, we note that, for datasets with a low resolution (e.g., CIFAR100), the prompting of
p=30 achieves the best performance. While for datasets with a high resolution, we note setting p
to a small value empirically works the best. For example, we find that p=5 is the best in Food101
dataset which has a resolution of 512×512. The best hyper-parameter is shown in Tab. 1; we note
setting prompting size to 30 generally achieve the best overall accuracy on these four datasets.

3 PERFORMANCE UNDER DIFFERENT CORRUPTION CASES

In section 4.3, we see that our EVP outperforms other methods on corruption setting. Here, we
list the generalization performance of all methods under various types of corruptions, as shown
in Tab. 2 and Tab. 3. Specifically, compared to VP, we note 1) on CIFAR-10-C, EVP yields the
largest improvement on constrast (+8.8%) and the smallest improvement on brightness(+3.5%);
2) on CIFAR-100-C, EVP yields the largest improvement on contrast (+11.0%) and the smallest
improvement on impulse noise (+1.1%).

4 PERFORMANCE COMPARSION WITH VPT-DEEP

VPT-DEEP is an advanced version of VPT, which additionally introduces learnable tokens at every
Transformer layer’s input space for enhancing performance. We hereby briefly compare its perfor-
mance to that of EVP. specifically, we compare the performance of EVP and VPT in three settings:
CLIP-model, OOD, and corruption.

Table 1: The optimal prompting size in our experiments across 12 datasets on CLIP.

Image size CIFAR100 CIFAR10 Flowers Food EuroSAT SUN DMLab SVHN Pets DTD RESISC CLEVR

Prompt size (p) 30 30 30 5 30 30 30 30 20 30 30 30
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Figure 1: Ablation on prompting size. The pre-trained model is CLIP-B/32. We vary the prompting size,
which determines the number of parameters, and show the performance on four datasets.

Table 2: Specific performance on CIFAR-10C

Methods brightness contrast defocus blur elastic fog frost gaussian blur gaussian noise glass blur impulse noise

VP 91.9 81.6 87.8 82.0 86.5 84.8 85.4 61.4 60.7 61.9
VPT 87.6 78.0 82.0 73.9 78.8 77.1 79.9 46.8 46.0 55.8

EVP(Ours) 95.4 90.3 93.1 87.7 91.5 89.8 91.6 66.3 69.0 67.8
LP 92.9 85.0 88.6 82.1 87.0 85.6 86.2 56.2 55.1 62.1
FT 94.9 91.6 92.1 84.2 91.2 88.5 91.1 57.1 59.5 68.7

Methods jpeg compression motion blur pixelate saturate shot noise snow spatter speckle noise zoom blur Avg.

VP 74.3 79.7 66.6 88.9 67.5 84.8 87.3 69.1 84.6 78.2
VPT 63.9 72.5 58.1 84.1 56.1 77.9 80.6 59.0 75.9 70.2

EVP(Ours) 80.4 86.3 75.3 93.2 73.6 89.6 91.0 75.2 90.3 84.3
LP 75.1 80.8 77.9 90.5 65.0 86.2 88.6 67.8 85.2 78.8
FT 74.3 86.8 77.3 93.0 66.4 89.0 91.0 69.4 89.0 82.7

Table 3: Specific performance on CIFAR-100C

Adaptation brightness contrast defocus blur elastic fog frost gaussian blur gaussian noise glass blur impulse noise

VP 71.3 55.5 65.7 57.9 61.5 58.0 62.2 30.6 27.6 37.4
VPT 72.8 62.8 67.9 57.9 64.6 58.7 65.4 30.3 25.8 41.0

EVP(Ours) 77.7 66.5 73.2 63.5 69.1 64.2 70.2 36.3 31.8 38.5
LP 75.5 63.1 69.8 60.0 66.2 63.4 66.4 31.1 30.8 39.4
FT 80.7 73.1 75.7 62.9 72.9 66.6 73.6 34.8 31.9 46.1

Adaptation jpeg compression motion blur pixelate saturate shot noise snow spatter speckle noise zoom blur Avg.

VP 47.4 55.2 46.1 61.7 37.7 59.3 63.5 38.6 61.1 52.5
VPT 45.2 57.8 45.0 64.3 38.0 60.5 64.9 39.4 63.4 54.0

EVP(Ours) 52.8 63.5 51.4 69.1 43.8 65.4 68.6 44.6 68.0 58.6
LP 49.5 61.4 57.2 66.8 39.7 64.7 67.8 42.4 65.8 56.9
FT 48.3 66.5 52.6 73.5 42.9 69.1 72.9 44.3 70.9 61.1
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Table 4: Performance comparison across 12 datasets with CLIP. We note EVP outperforms VPT-deep with
fewer tunable parameters. The results where EVP outperforms VPT-deep are highlight in bold.

Adaptation Tunable params (M) CIFAR100 CIFAR10 Flowers Food EuroSAT SUN DMLab SVHN Pets DTD RESISC CLEVR Avg.

VPT-D 0.092 78.3 96.1 84.4 85.6 97.4 70.2 57.7 90.1 92.5 70.1 90.6 69.7 81.9
EVP(Ours) 0.062 81.2 96.6 82.3 84.1 97.6 71.0 62.3 90.5 90.0 68.4 89.7 75.9 82.5

Table 5: Robustness comparison on out-of-distribution and corruption datasets. Left: out-of-distribution
datasets. Right: corruption datasets. We can observe that EVP achieves much stronger robustness on both
out-of-distribution setting and corruption setting.

Model Adaptation iwildcam camelyon17 fmow Avg.

CLIP VPT-D 62.7 93.6 39.3 65.2
CLIP Ours 64.9 95.1 40.2 66.7

Model Adaptation CIFAR100-C CIFAR10-C Avg.

CLIP VPT-D 56.3 82.6 69.5
CLIP Ours 58.6 84.3 71.5

4.1 PERFORMANCE ON CLIP-MODEL

In this section, based on CLIP model, we conducted a comparative analysis of the performance
of EVP and VPT-deep on 12 classification dataset. The results are shown in Tab. 4. We can see
that EVP demonstrates an average performance improvement of 0.6% over VPT-deep(82.5% v.s.
81.9%), with only 0.062 Million tunable parameters, which is 0.03 million fewer than VPT-deep.

4.2 PERFORMANCE ON ROBUSTNESS

Following the setting in main text, we test the robustness of EVP and VPT-deep to distribution
shift and common image corruption. Tab. 5 presents the specific conparative results. In both the
OOD (+1.5%) and corruption settings (+2.0%), EVP achieves superior performance consistently
compared to VPT-deep, which demonstrates the robustness of EVP.
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