
A Appendix

A.1 Code availability

The source code underlying this project is available at the GitHub repository https://github.
com/Thorben010/llm_synthesis.

A.2 Additional results

Table 3: Model comparison. Comparison of embedding methods on different data regimes for
sintering and calcination temperatures. We report mean across five runs with standard deviation in
parentheses. ↭ indicates training on the respective data source.

Synth.

Data

Literature

Data
Sintering temperature Calcination temperature Rel. MAE Imp.

Model MAE → RMSE → R
2 ↑ MAE → RMSE → R

2 ↑ ↑

SyntMTE ↭ ↭ 135.00

(0.84)
181.30

(0.71)
0.545

(0.004)
153.72

(0.54)
199.71

(0.48)
0.436

(0.003) 4.08%

SyntMTE ↭ 141.00
(2.13)

189.27
(2.46)

0.504
(0.013)

160.00
(2.97)

206.56
(2.53)

0.395
(0.015) 0.00%

SyntMTE ↭ 149.43
(3.53)

197.78
(1.47)

0.428
(0.014)

169.63
(2.46)

214.64
(1.87)

0.358
(0.019) -6.00%

CrabNet ↭ ↭ 148.03
(1.00)

196.88
(1.60)

0.464
(0.009)

159.67
(0.89)

206.50
(1.13)

0.397
(0.007) 3.77%

CrabNet ↭ 152.87
(6.59)

205.37
(8.20)

0.416
(0.047)

166.88
(3.13)

215.80
(0.46)

0.340
(0.025) 0.00%

CrabNet ↭ 160.41
(2.12)

199.83
(0.69)

0.402
(0.016)

172.54
(4.07)

216.66
(1.47)

0.329
(0.036) -4.13%

Composition + NN ↭ ↭ 149.75
(0.87)

191.68
(0.78)

0.492
(0.004)

162.82
(0.41)

208.44
(0.50)

0.385
(0.003) 0.96%

Composition + NN ↭ 150.23
(2.43)

193.82
(3.21)

0.480
(0.017)

165.38
(3.41)

211.54
(3.74)

0.366
(0.022) 0.00%

Composition + NN ↭ 170.58
(2.74)

203.32
(0.06)

0.339
(0.016)

176.87
(3.56)

219.88
(0.00)

0.315
(0.017) -10.09%

Composition + XGBoost ↭ ↭ 163.62
(0.59)

210.47
(0.73)

0.387
(0.004)

179.54
(0.84)

228.00
(1.07)

0.263
(0.007) -13.23%

Composition + XGBoost ↭ 141.12
(0.90)

189.14
(1.45)

0.505
(0.008)

161.96
(0.87)

206.65
(1.05)

0.395
(0.006) 0.00%

Composition + XGBoost ↭ 196.03
(1.90)

242.25
(1.83)

0.188
(0.012)

225.74
(3.49)

276.76
(3.48)

-0.086
(0.027) -39.16%

Figure 5: LM ensemble comparison. Top-k exact-match accuracy for three individual language
models: Grok 3 Mini, GPT-4.1, and Llama 4 Maverick; and their joint ensemble with predictions
combined using minimum-rank, average-rank, and maximum-rank voting. The minimum-rank
ensemble achieves the best recall beyond Top–1.
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Figure 6: Parity plots for the regression task shown in Table 3. The literature only model has been
trained on literature only, while the model Literature + Synth. is sequentially trained on both datasets.
Notably R2 scores are increased in the second setting.

A.3 Dataset

We base our study on the corpus introduced by Kononova et al. [16], containing 33,343 solid-state
synthesis records extracted from the literature with paragraph- and phrase-level NLP models that
tag targets, precursors, and by-products. Following quality control, removal of entries with unclear
stoichiometry and enforcement of element balance between targets and their precursor sets, the
working set comprises 18,804 reactions, of which 9,255 are unique. For evaluation, we use the
year-stratified, Distinct Reactions, and Novel Material Systems (NMS) splits described by Prein et

al. [26].

A.4 LM overview

In our study, we systematically evaluated seven contemporary LMs, selected to represent a diverse
array of architectures, parameter scales and licensing schemes. The main characteristics of these
models are summarized in Table 4.
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Model Release #Params #Active Context Window Open Source ELO Score MMLU-Pro

Qwen 2.5 VL-72B Jan 2025 72B - 32k tokens Yes (Qwen License) 1123 71.2
Mistral Small 3.1 Mar 2025 24B - 128k tokens Yes (Apache 2.0) 1249 66.8
DeepSeek-V3-0324 Mar 2025 671B 37B 128k tokens Yes (MIT License) 1369 81.2
Gemini 2.0 Flash Feb 2025 - - 1M tokens No 1352 76.4
GPT-4.1 Apr 2025 - - 1M tokens No 1365 -
LLaMA 4 Maverick Apr 2025 400B 17B 1M tokens Yes (LLaMA 4 Comm. License) 1266 80.5
Grok 3 Mini Beta Apr 2025 - - 131k tokens No - 78.9

Table 4: LMs evaluated in this work, sorted by release date. Arena scores from the Chatbot Arena
leaderboard as of May 18, 2025

Qwen 2.5 VL-72B. Released in January 2025, Qwen 2.5 VL-72B (Apache 2.0 license) comprises
72 billion parameters and features a context window of 32,000 tokens. The model achieved an ELO
rating of 1123 and an MMLU-Pro score of 71.2. [70, 71]

Mistral Small 3.1. This model was introduced in March 2025 under the Apache 2.0 license and
contains 24 billion parameters. It offers an extended context window of 128,000 tokens. While
detailed training data information remains undisclosed, it attains an ELO score of 1249 and an
MMLU-Pro score of 66.8, indicating robust generalization abilities. [72, 71]

DeepSeek-V3-0324. This model, released under the MIT license, is a Mixture-of-Experts (MoE)
language model featuring 671 billion total parameters, with 37 billion activated per token. Its MoE
layers consist of 1 shared and 256 routed experts, with 8 routed experts actively engaged for each
token. It’s pre-trained on 14.8 trillion tokens and supports a context window extended to 128,000
tokens. The March 2025 checkpoint of this model achieves the highest ELO (1369) and MMLU-Pro
(81.2) score among the evaluated models. [73, 74, 71]

Gemini 2.0 Flash. Released in February 2025 as a proprietary model, Gemini 2.0 Flash features a
context window of 1 million tokens. While the specific parameter count and training details are not
publicly disclosed, the model’s performance is notable, reflected by an ELO rating of 1352 and an
MMLU-Pro score of 76.4. [71]

GPT-4.1. This model was introduced in April 2025, also supporting a large context window of 1
million tokens. Despite undisclosed training and parameter specifics, it achieved a remarkably high
ELO score of 1365. [75, 71]

LLaMA 4 Maverick. The model, released in April 2025 under the LLaMA 4 Community License,
incorporates a Mixture-of-Experts (MoE) architecture with 128 experts. It features a grand total of
400 billion parameters, of which approximately 17 billion are actively engaged during inference.
Trained on an extensive dataset of roughly 22 trillion tokens, its 1 million token context window
supports advanced in-context learning capabilities. Evaluation metrics include an ELO score of 1266
and an MMLU-Pro score of 80.5. [76, 71]

Grok 3 Mini Beta. This proprietary LM, launched in April 2025, provides a context window of
131,000 tokens. It attained an MMLU-Pro score of 78.9. The ELO score was not disclosed publicly.
[77]

A.5 LM multi-Provider Inference via OpenRouter Proxy

All model inference is performed through the OpenRouter API, which federates requests to multiple
upstream providers under a single authentication and billing framework. For every model we set the
temperature parameter at ω = 0.1, giving token probabilities

pω (i) =
exp(zi/ω)∑
j exp(zj/ω)

(1)

and retained all other provider defaults. All models were benchmarked via OpenRouter on 1000
held-out targets. These models were selected to represent a diverse cross-section of leading commer-
cially available large language models, with a primary focus on balancing strong performance and
cost-effectiveness.
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Model Input ($/1M) Output ($/1M)

GPT-4.1 (OpenAI) 2.0 8.0
Grok 3 Mini Beta (xAI) 0.3 0.5
Llama 4 Maverick (Meta) 0.17 0.85
DeepSeek Chat v3 (DeepSeek) 0.27 1.1
Mistral Small 3.1 (Mistral) 0.10 0.30
Gemini 2.0 Flash-001 (Google) 0.10 0.40
Qwen 2.5 VL 72B (Alibaba) 0.70 0.70

Table 5: Per-token API costs via OpenRouter (May 23, 2025)

All API requests and responses are recorded in a structured log for full traceability. If a response
doesn’t satisfy the prescribed output format (missing the required list or dictionary structure), the
identical prompt is retried up to two additional times, for a total of three format validation attempts.
Should all three attempts yield structurally invalid output, the response is marked as a failure. API-
level errors are immediately assigned a value of None. They are logged, and retried without counting
against the three allowed format attempts. This separation ensures that transient infrastructure issues
do not penalize model performance estimates.

A.6 LM prompting

In-context learning refers to a language model’s ability to solve a novel task from prompt-side
demonstrations without parameter updates. Performance in this setting typically improves with the
number of examples (or “shots”) provided, at least until the model’s context window is exhausted.
This phenomenon was first highlighted in GPT-3, where accuracy on benchmarks such as SuperGLUE
increased monotonically as the number of demonstrations was varied from 1–32, demonstrating that
richer prompts can substitute for task-specific fine-tuning [78]. Here, we adopt this methodology to
determine an appropriate number of examples for our models. Our evaluation using Mistral Small on
the precursor suggestion task shows that overall performance improves up to 40 in-context examples
and plateaus beyond this point. Accordingly, we use 40 examples in our evaluations on all models.

Figure 7: Influence of the number of in-context examples on the performance across 736 samples of
the validation set.
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A.7 LM evaluation protocols

For the two main tasks at hand: Precursor suggestion and synthesis condition regression, we use the
evaluation protocols described below.

A.7.1 LM precursor suggestion task

We evaluate on a 1,000-sample subset of the curated corpus by Kononova et al. [16]. For the precursor
suggestion task, each LM is prompted to propose feasible precursor sets for a target material. Prompts
include 40 few-shot, solid-state examples to fix the output schema. Models return a Python object
that we parse into a ranked list of precursor sets (the list index defines the rank). All formulas are
then canonicalized to pretty formulas with pymatgen [79] prior to scoring.

Our evaluation follows prior work [25, 41]. We iterate over the test set assuming a single ground-truth
precursor set per target (the dataset is de-duplicated with respect to target–precursor pairs) and do not
merge alternative literature routes for the same target, avoiding bias toward highly reported systems.
Exact-match accuracy is reported as the fraction of cases where the ground-truth set appears within
the Top-k predictions (Top-1, Top-3, Top-5, etc.).

A.8 LM synthesis-condition regression task

For condition prediction, we ask each model to output calcination and sintering temperatures along
with the associated dwell times. The test set comprises 1,000 entries from the Kononova corpus [16].
Prompts are augmented with 40 few-shot examples drawn from the validation split (none overlap the
test set). Generated responses are post-processed to extract numeric values and scored against ground
truth using R2, mean absolute error (MAE), and root-mean-square error (RMSE). Figure 8 illustrates
sintering-temperature performance for Gemini 2.0 Flash, with each point representing one sample.

Figure 8: Scatter plot of true versus predicted sintering temperatures for the Gemini 2.0 Flash model
on the 40-shot test set with fixed precision length.

A.9 LM additional dataset generation details

In addition to the procedures described in the main text, we retrieved all 48,927 reported syntheses
from the Materials Project database [6], filtering exclusively for compounds with documented ex-
perimental syntheses. Each chemical formula was parsed into a Composition object in pymatgen
and converted into an atomic-fraction vector over the union of all elements. These high-dimensional
vectors were discretized into M = 1, 000 clusters via MiniBatchKMeans, producing a histogram rep-
resentation of compositional regions. To select a uniform, maximally diverse subset of K = 10, 000
formulas, we employed a greedy Shannon-entropy maximization algorithm: at each iteration, a
random candidate subset was sampled, the increase in histogram entropy for each candidate was
computed, and the candidate yielding the greatest gain was selected. We then prompted GPT-4.1
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Figure 9: t-SNE projection of inorganic precursor compositions in embedding space. a) Com-
positions from the Kononova dataset [16] are shown in purple, and LM-generated compositions in
orange. Compositions are represented by standardized elemental-fraction vectors and projected via
t-SNE. The expanded spread of orange points indicates that our generated dataset spans a larger
chemical composition space than the baseline dataset. b)–c) Distributions of generated processing
parameters.

to assess solid-state synthesizability, flagged compositions were excluded and only those amenable
to solid-state methods were retained. For each remaining material, the top three precursor routes,
reflecting the model’s 64.1 % Top-3 accuracy, were preserved (Table 1). Synthesis-condition pa-
rameters were subsequently predicted by GPT-4.1 (Table 2), yielding 29,473 entries. The initial
review revealed unphysically low temperatures arising from liquid-phase route suggestions (e.g.,
Cu(NH3)4(NO3)2 via crystallization rather than solid-state synthesis [80]). To ensure plausibility,
we imposed minimum temperature thresholds of 300 °C for calcination and 500 °C for sintering,
resulting in the final set of 28,548 solid-state synthesis recipes.

A.10 SyntMTE Model Architecture and Training

SyntMTE is a transformer-based model derived from the MTEncoder framework [41], pretrained on
the Alexandria DFT database [7] across 12 materials properties (Table 6). It encodes each reaction by
processing the target composition and all precursor materials with shared MTEncoder weights; the
resulting embeddings are mean-pooled and concatenated, then passed to a two-layer MLP head for
multi-task regression of calcination and sintering temperatures. We fine-tune all weights. Training
uses Adam (learning rate 4.39 → 10↓5) with L1 loss, batch size 25, and 200 epochs; the encoder
hidden dimension is 512. Experiments run on two NVIDIA RTX A6000 GPUs.

A.11 SyntMTE LLZO case study methodology

We study processing temperatures for LLZO garnet solid electrolytes. Reference LLZO literature is
drawn from the corpus compiled by [54]. To ensure strict extrapolation, we exclude from training
and validation any record whose target mentions LLZO or a commonly doped variant (Al, Ga, Ta,
Nb, W). Calcination and sintering temperatures were extracted using OpenAI’s O3 model, followed
by manual spot checks. The SyntMTE model used for evaluation was fine-tuned sequentially on our
synthetic recipes and then on the literature-mined corpus [16], after which it was applied to the mined
LLZO dataset. In Fig. 4b, error bars aggregate across distinct literature routes and precursor choices;
they reflect across-route variability and do not represent model uncertainty.
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A.12 SyntMTE baseline Models

For the regression task we employ several baseline models.

A.12.1 CrabNet

CrabNet is a composition-only materials prediction framework that leverages a transformer encoder to
learn contextualized embeddings for each element in a compound [55]. By combining learned element
vectors with sinusoidal “fractional embeddings” of stoichiometry, CrabNet’s multi-head self-attention
layers capture complex inter-element interactions without any hand-crafted descriptors or structural
information. This design not only yields state-of-the-art accuracy on benchmarks like MatBench, often
outperforming graph-based models such as Roost, [81] but also enables interpretability: attention
maps highlight which element pairs drive a given property prediction. In our experiments we use
three transformer blocks.

A.12.2 MTEncoder (SyntMTE)

Figure 10 depicts the MTEncoder workflow, demonstrating how a material’s elemental representation
is encoded via a transformer-based model [41]. Each material is broken down into individual element
tokens (e.g., Na, Fe, O) alongside a dedicated “Compound” token (CPD) that aggregates the element-
specific information. These tokens are fed into the transformer encoder, which produces context-rich
embeddings for the composition. The embedding associated with the CPD token serves as the learned
representation of the material and is passed to an MLP head to predict various properties. Pretraining
is conducted using the Alexandria database on 12 tasks (Table 6[7]).

Figure 10: Overview of the MTEncoder pipeline. Material compositions are tokenized and
processed by a transformer to generate feature embeddings for downstream property prediction.

Pretraining Objectives

Stress
Band Gap (Direct)
Band Gap (Indirect)
Density of States at Fermi Level
Energy Above Hull
Formation Energy
Corrected Total Energy
Phase Separation Energy
Number of Atomic Sites
Total Magnetic Moment
Crystal Space Group
Masked Element Reconstruction (Self-Supervised)

Table 6: Pretraining objectives for MTEncoder. These tasks are drawn from the Alexandria
materials dataset [7].
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A.12.3 Composition + NN

Three-layer feed-forward neural network: This model comprises three fully connected layers, each
followed by a ReLU activation, optional dropout for regularization, and layer normalization to
accelerate convergence and stabilize training. Compositional feature vectors (for example, elemental
fractional embeddings) are input to this multilayer perceptron (MLP) to predict the target property.

A.12.4 Composition + XGB

A gradient-boosted decision-tree model trained on the same compositional features. XGBoost
captures nonlinear interactions among elemental descriptors through an ensemble of shallow trees,
providing an efficient and robust baseline for materials-property prediction [82].

A.13 LM Prompt Template

Listing 1 provides the complete prompt used to elicit precursor proposals for solid-state synthesis
of Na3Bi(AsO4)2. It directs the model to produce 20 candidate precursor sets, each covering all
elements of the target, prioritizing stable and commonly used reagents, and ordering the sets by
chemical plausibility.

You are a computational chemistry expert specializing in solid -state
synthesis and retrosynthesis.

Your task is to identify potential precursor combinations for solid -
state synthesizing the target material: ’Na3Bi(AsO4)2’.

** Requirements **:
1. Generate 20 distinct combinations of precursor materials.
2. Use standard chemical formulas ONLY (e.g., ’TiO2’, ’Na2CO3 ’).
3. ** Constraint Check :** Ensure each precursor combination contains

ALL elements present in the target material ’Na3Bi(AsO4)2’. Assume
Oxygen and other common laboratory elements (e.g., C for

carbonate sources) are available.
4. ** Plausibility Filter :** Prefer chemically plausible routes using

reasonably common and stable laboratory reagents. A plausible
route is one that uses precursors commonly found in solid -state
synthesis and avoids highly unstable or rare compounds.

5. Order the 20 combinations from the MOST plausible/common synthesis
routes to the LEAST plausible/common.

6. ** Common Precursor Types :** Consider oxides (e.g., TiO2 , Fe2O3),
carbonates (e.g., Na2CO3 , CaCO3), nitrates (e.g., KNO3 , Ca(NO3)2),
hydroxides (e.g., Al(OH)3), and other standard laboratory

reagents.
7. **No Gases :** Do not include ’O2’ in the precursor combinations.
7. If the target material is not suitable for solid -state synthesis ,

respond with False as a boolean.

** Examples of Target -> Precursors :**
- Target: "\ce{MoF5}", Precursors: [False] #only synthesizable via gas

-solid reaction , not suitable for conventional solid -state
synthesis

- Target: ’Gd2TiO5 ’, Precursors: [’TiO2’, ’Gd2O3’]
- Target: ’NdTl(MoO4)2’, Precursors: [’MoO3’, ’Tl2O3 ’, ’Nd2O3’]
- Target: ’Sr(GaO2)2’, Precursors: [’SrCO3 ’, ’Ga2O3’]
- Target: ’La0 .075 Ta2O5 .113’, Precursors: [’La2O3’, ’Ta2O5 ’]
- Target: ’LaFeO3 ’, Precursors: [’Fe2O3 ’, ’LaCO3’]
- Target: ’Sr1.9 Ca1Tl0 .9V0.1 Cu2Bi0 .1O7’, Precursors: [’SrCO3 ’, ’Tl2O3’

, ’CuO’, ’CaO’, ’Bi2O3 ’, ’V2O5’]
- Target: ’La3RuO7 ’, Precursors: [’RuO2’, ’La2O3’]
- Target: ’Zr0.8 Ti1Sn0 .2O4’, Precursors: [’SnO2’, ’TiO2’, ’ZrO2’]
- Target: ’La1Fe0 .95W0.05O3’, Precursors: [’WO3’, ’Fe2O3 ’, ’La2O3’]
- Target: ’Bi3PO7 ’, Precursors: [’PH9(NO2)2’, ’Bi2O3 ’]
- Target: ’CsTaWO6 ’, Precursors: [’WO3’, ’Cs2CO3 ’, ’Ta2O5 ’]
- Target: ’TaWO6’, Precursors: [’WO3’, ’Ta2O5’]
- Target: ’Dy0 .05 Zn1Ga1 .95O4’, Precursors: [’Dy2O3’, ’Ga2O3 ’, ’ZnO’]
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- Target: ’Nd0 .02 Gd0 .98 V1O4’, Precursors: [’Gd2O3’, ’V2O5’, ’Nd2O3’]
- Target: ’Ba1Pr0 .8In0.2O3’, Precursors: [’BaCO3’, ’Pr6O11 ’, ’In2O3’]
- Target: ’Ba4SrSmTi3V7O30 ’, Precursors: [’SrCO3’, ’Sm2O3 ’, ’BaCO3’, ’

TiO2’, ’V2O5’]
- Target: ’ZrSiO’, Precursors: [’SiO2’, ’ZrO2’]
- Target: ’Ba0.6Sr0.4Nb0.1Co0.9O3’, Precursors: [’SrCO3 ’, ’Nb2O5’, ’

BaCO3’, ’Co2O3 ’]
- Target: ’CsAlP2O7 ’, Precursors: [’Cs2O’, ’P2O5’, ’Al2O3 ’]
- Target: ’Ag4 .64 Pb2O5 .87’, Precursors: [’Ag2O’, ’PbO’]
- Target: ’Ca1Ti4Cu3 .2O12’, Precursors: [’CuO’, ’TiO2’, ’CaCO3’]
- Target: ’Gd0.3 Fe1Bi0 .7O3’, Precursors: [’Gd2O3’, ’Bi2O3 ’, ’Fe2O3’]
- Target: ’YTiO’, Precursors: [’TiO2’, ’Y2O3’]
- Target: ’Ba6Sn6Se13 ’, Precursors: [’BaSe’, ’Se’, ’Sn’]
- Target: ’V0.9Cu0.1Bi2O5 .35’, Precursors: [’CuO’, ’Bi2O3 ’, ’V2O5’]
- Target: ’MgNb2(PbO3)3’, Precursors: [’Nb2O5’, ’MgCO3 ’, ’PbO’]
- Target: ’Cs0 .75 Rb0 .25 P1H2O4 ’, Precursors: [’RbP(HO2)2’, ’CsP(HO2)2’]
- Target: ’TiCdO3 ’, Precursors: [’TiO2’, ’CdO’]
- Target: ’Pu0.9Am0.1O2’, Precursors: [’AmO2’, ’PuO2’]
- Target: ’La0.9 Mn1Pb0 .1O3’, Precursors: [’PbO’, ’MnO2’, ’La2O3’]
- Target: ’Li3 .55 Ca5 .45 Si3O12 .45F1.55’, Precursors: [’SiO2’, ’CaCO3’,

’Li2CO3 ’, ’LiF’]
- Target: ’HoMnO3 ’, Precursors: [’Mn2O3 ’, ’Ho2O3’]
- Target: ’SiPbC’, Precursors: [’Pb’, ’SiC’]
- Target: ’CsAl(SiO3)2’, Precursors: [’SiO2’, ’Cs2CO3 ’, ’Al2O3’]
- Target: ’CdIn2O4 ’, Precursors: [’CdO’, ’In2O3’]
- Target: ’CdWO4’, Precursors: [’WO3’, ’CdO’]
- Target: ’Sr1.8Ca0.9Ti0.2Tl0.9 Cu2Bi0 .1O7’, Precursors: [’SrCO3’, ’

Tl2O3’, ’Ti2O3 ’, ’CuO’, ’CaO’, ’Bi2O3’]
- Target: ’Ca3ZrSi2O9 ’, Precursors: [’SiO2’, ’CaCO3’, ’ZrO2’]
- Target: ’Ba3NbFe3(SiO7)2’, Precursors: [’SiO2’, ’Nb2O3 ’, ’BaCO3’, ’

Fe2O3’]
- Target: ’Mn2Ni(CO2)6’, Precursors: [’MnH6(CO)4’, ’NiH6(CO)4’]

Note: Ensure the quality and consistency of the example data to
prevent parsing issues.

Generate the list of 20 precursor combinations for the target ’Na3Bi(
AsO4)2’.

** Output Format :** Respond ONLY with a single Python -formatted list of
lists. Each inner list should contain the precursor strings.

Typically , 2-4 precursors per combination are expected.
Example Output Format: [[’precursor1a ’, ’precursor1b ’, ’precursor1c ’],

[’precursor2a ’, ’precursor2b ’, ’precursor2c ’], , ..., [’
precursor20a ’, ’precursor20b ’, ’precursor20c ’]]

** Important :** Ensure all combinations are chemically valid and
contain all elements needed to synthesize the target material. Do
not include any explanations or text outside the Python list
format.

Listing 1: Prompt for precursor generation

Conditions Prompt

\begin{lstlisting}
You are a computational chemistry expert specializing in solid -state

synthesis.
Assume there is only one sintering and one calcination step involved.
Your task is to predict the optimal synthesis conditions for the

following chemical reaction:
4 BaCO3 + 1 Fe2O3 + 4 Nb2O5 + 0.333 Pr6O11 == 1 Ba4Pr2Fe2Nb8O30 + 4

CO2 + 0.333 O2

** Required Conditions to Predict **:
1. Sintering Temperature (in \(^{\ circ }\)C)
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2. Sintering Time (in hours)
3. Calcination Temperature (in \(^{\ circ }\)C)
4. Calcination Time (in hours)

** Guidelines for Prediction **:
- Base your predictions on established solid -state chemistry

principles.
- Provide scientifically plausible values within typical laboratory

ranges.
- Assume there is only one sintering and one calcination step involved

.

** Examples of Synthesis Conditions :**
- Reaction: 2 BaCO3 + 0.667 Co3O4 + 6 Fe2O3 == 1 Ba2Co2Fe12O22 + 2 CO2

+ 0.333 O2
Sintering Temperature (\(^{\ circ }\)C): 1240.0
Sintering Time (hours): 4.0
Calcination Temperature (\(^{\ circ }\)C): 1000.0
Calcination Time (hours): 6.0

- Reaction: 1 GeO2 + 1 ZnO == 1 ZnGeO3
Sintering Temperature (\(^{\ circ }\)C): 1240.0
Sintering Time (hours): 6.0
Calcination Temperature (\(^{\ circ }\)C): 1000.0
Calcination Time (hours): 6.0

- Reaction: 0.5 In2O3 + 0.5 La2O3 == 1 LaInO3
Sintering Temperature (\(^{\ circ }\)C): 1150.0
Sintering Time (hours): 24.0
Calcination Temperature (\(^{\ circ }\)C): 830.0
Calcination Time (hours): 1.0

- Reaction: 0.05 Fe2O3 + 0.015 O2 + 0.98 SrCO3 + 0.92 TiO2 == 1 Sr0 .98
Ti0 .92 Fe0.1O3 + 0.98 CO2

Sintering Temperature (\(^{\ circ }\)C): 1450.0
Sintering Time (hours): 24.0
Calcination Temperature (\(^{\ circ }\)C): 1100.0
Calcination Time (hours): 12.0

- Reaction: 1.5 Li2CO3 + 0.5 Nb2O5 == 1 Li3NbO4 + 1.5 CO2
Sintering Temperature (\(^{\ circ }\)C): 970.0
Sintering Time (hours): 2.0
Calcination Temperature (\(^{\ circ }\)C): 800.0
Calcination Time (hours): 4.0

- Reaction: 0.05 Al2O3 + 0.9 CaCO3 + 0.05 Nd2O3 + 0.9 TiO2 == 1 Ca0.9
Nd0.1Ti0.9Al0.1O3 + 0.9 CO2

Sintering Temperature (\(^{\ circ }\)C): 1300.0
Sintering Time (hours): 12.0
Calcination Temperature (\(^{\ circ }\)C): 1200.0
Calcination Time (hours): 10.0

- Reaction: 1 BaCO3 + 1 Ir + 1 O2 == 1 BaIrO3 + 1 CO2
Sintering Temperature (\(^{\ circ }\)C): 1000.0
Sintering Time (hours): 72.0
Calcination Temperature (\(^{\ circ }\)C): 900.0
Calcination Time (hours): 12.0

- Reaction: 2 BaCO3 + 3 CuO + 0.5 Y2O3 == 1 Y1Ba2Cu3O + 2 CO2 + 2.75
O2

Sintering Temperature (\(^{\ circ }\)C): 950.0
Sintering Time (hours): 8.0
Calcination Temperature (\(^{\ circ }\)C): 950.0
Calcination Time (hours): 24.0
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- Reaction: 1.5 Bi2O3 + 0.5 O2 + 0.5 Sb2O3 == 1 Bi3SbO7
Sintering Temperature (\(^{\ circ }\)C): 860.0
Sintering Time (hours): 2.0
Calcination Temperature (\(^{\ circ }\)C): 700.0
Calcination Time (hours): 4.0

- Reaction: 0.667 Co3O4 + 1 SnO2 == 1 Co2SnO4 + 0.333 O2
Sintering Temperature (\(^{\ circ }\)C): 1250.0
Sintering Time (hours): 48.0
Calcination Temperature (\(^{\ circ }\)C): 1200.0
Calcination Time (hours): 48.0

- Reaction: 0.5 O2 + 1 PbO + 2 TiO2 == 1 Pb(TiO3)2
Sintering Temperature (\(^{\ circ }\)C): 1100.0
Sintering Time (hours): 2.0
Calcination Temperature (\(^{\ circ }\)C): 800.0
Calcination Time (hours): 2.0

- Reaction: 0.8 CaCO3 + 0.2 SrCO3 + 1 TiO2 == 1 Ca0.8Sr0.2TiO3 + 1 CO2
Sintering Temperature (\(^{\ circ }\)C): 1460.0
Sintering Time (hours): 4.0
Calcination Temperature (\(^{\ circ }\)C): 1100.0
Calcination Time (hours): 4.0

- Reaction: 1 Li2CO3 + 1 TiO2 == 1 Li2TiO3 + 1 CO2
Sintering Temperature (\(^{\ circ }\)C): 1100.0
Sintering Time (hours): 2.0
Calcination Temperature (\(^{\ circ }\)C): 600.0
Calcination Time (hours): 2.0

- Reaction: 2 TiO2 + 1 Y2O3 == 1 Y2Ti2O7
Sintering Temperature (\(^{\ circ }\)C): 1600.0
Sintering Time (hours): 6.0
Calcination Temperature (\(^{\ circ }\)C): 1000.0
Calcination Time (hours): 6.0

- Reaction: 1 La2O3 + 2 ZrO2 == 1 La2Zr2O7
Sintering Temperature (\(^{\ circ }\)C): 1549.85
Sintering Time (hours): 50.0
Calcination Temperature (\(^{\ circ }\)C): 1399.85
Calcination Time (hours): 10.0

- Reaction: 0.5 Dy2O3 + 0.25 O2 + 1 RuO2 + 2 SrCO3 == 1 Sr2DyRuO6 + 2
CO2

Sintering Temperature (\(^{\ circ }\)C): 1199.85
Sintering Time (hours): 24.0
Calcination Temperature (\(^{\ circ }\)C): 979.85
Calcination Time (hours): 12.0

- Reaction: 0.025 Gd2O3 + 0.013 O2 + 0.95 SnO2 == 1 Gd0 .05 Sn0 .95O2
Sintering Temperature (\(^{\ circ }\)C): 1350.0
Sintering Time (hours): 24.0
Calcination Temperature (\(^{\ circ }\)C): 1200.0
Calcination Time (hours): 24.0

- Reaction: 1 MgO + 1 TiO2 == 1 MgTiO3
Sintering Temperature (\(^{\ circ }\)C): 1400.0
Sintering Time (hours): 4.0
Calcination Temperature (\(^{\ circ }\)C): 1100.0
Calcination Time (hours): 4.0

- Reaction: 1.7 CaCO3 + 2 CuO + 0.15 La2O3 + 4 TiO2 == 1 Ca1.7La0.3
Cu2Ti4O12 + 1.7 CO2 + 0.075 O2

Sintering Temperature (\(^{\ circ }\)C): 1100.0
Sintering Time (hours): 24.0
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Calcination Temperature (\(^{\ circ }\)C): 900.0
Calcination Time (hours): 5.0

- Reaction: 0.05 Fe2O3 + 0.035 O2 + 0.98 SrCO3 + 0.9 TiO2 == 1 Sr0.98
Ti0.9Fe0.1O3 + 0.98 CO2

Sintering Temperature (\(^{\ circ }\)C): 1450.0
Sintering Time (hours): 24.0
Calcination Temperature (\(^{\ circ }\)C): 1100.0
Calcination Time (hours): 12.0

- Reaction: 1 MoO3 + 1 Nd2O3 == 1 Nd2MoO6
Sintering Temperature (\(^{\ circ }\)C): 1350.0
Sintering Time (hours): 6.0
Calcination Temperature (\(^{\ circ }\)C): 1200.0
Calcination Time (hours): 4.0

- Reaction: 1 Li2CO3 + 1 MnCO3 + 0.5 O2 == 1 Li2MnO3 + 2 CO2
Sintering Temperature (\(^{\ circ }\)C): 750.0
Sintering Time (hours): 24.0
Calcination Temperature (\(^{\ circ }\)C): 700.0
Calcination Time (hours): 20.0

- Reaction: 0.5 Fe2O3 + 0.5 Tb2O3 == 1 TbFeO3
Sintering Temperature (\(^{\ circ }\)C): 1300.0
Sintering Time (hours): 12.0
Calcination Temperature (\(^{\ circ }\)C): 1200.0
Calcination Time (hours): 12.0

- Reaction: 3 BaCO3 + 1.18 CaO + 0.91 Nb2O5 + 0.135 O2 == 1 Ba3Ca1 .18
Nb1 .82O9 + 3 CO2

Sintering Temperature (\(^{\ circ }\)C): 1600.0
Sintering Time (hours): 2.0
Calcination Temperature (\(^{\ circ }\)C): 1400.0
Calcination Time (hours): 4.0

- Reaction: 1 CaCO3 + 3 CuO + 4 TiO2 == 1 CaCu3Ti4O12 + 1 CO2
Sintering Temperature (\(^{\ circ }\)C): 1080.0
Sintering Time (hours): 10.0
Calcination Temperature (\(^{\ circ }\)C): 950.0
Calcination Time (hours): 15.0

- Reaction: 1 CaCO3 + 1 ZrO2 == 1 CaZrO3 + 1 CO2
Sintering Temperature (\(^{\ circ }\)C): 1449.85
Sintering Time (hours): 50.0
Calcination Temperature (\(^{\ circ }\)C): 1349.85
Calcination Time (hours): 10.0

- Reaction: 0.9 CeO2 + 0.025 O2 + 0.05 Re2O3 == 1 Re0.1Ce0.9O2
Sintering Temperature (\(^{\ circ }\)C): 1650.0
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