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Appendix A. Invariant predictor

Here, we show that hX |= Z|Y = y for all y implies invariant risk in F . The proof uses the following
insights

• Satisfying independence hX |= Z | Y means Ptrain(hX |Y, Z) = Ptrain(hX |Y ).

• The assumptions on F mean Ptrain(hX |Y,Z) = P (hX |Y,Z) in any member of the family.

• Combined this means Ptrain(hX |Y,Z) = PD(hX |Y ) for any PD ∈ F when the model
Ptrain(Y |hX) satisfies hX |= Z|Y .

Proposition Suppose model hX satisfies hX |= Z|Y on any PD ∈ F . Then for all PD′ ∈ F ,
EPD

[log pD(Y |hX)] = EPD′ [log pD(Y |hX)].

Proof Consider test set performance EPtest(Y,X)[logPtrain(Y |hX)]. By the assumption on the
family, by Bayes, and by satisfying the independence constraint:

E
Ptest(Y,X)

[logPtrain(Y |hX)] = E
Ptest(Y,X)

[
log

Ptrain(hX |Y )P (Y )

Ptrain(hX)

]
= E

Ptest(Y,X,Z)

[
log

Ptrain(hX |Y,Z)P (Y )

EP (Y )

[
Ptrain(hX |Y,Z)

]]
= E

Ptest(Y,hX ,Z)

[
log

Ptrain(hX |Y, Z)P (Y )

EP (Y )

[
Ptrain(hX |Y, Z)

]]
= E

Ptest(Y,hX ,Z)

[
log

P (hX |Y,Z)P (Y )

EP (Y )

[
P (hX |Y,Z)

]]
= E

Ptest(Y,hX ,Z)

[
log

P (hX |Y )P (Y )

EP (Y )

[
P (hX |Y )

]]
= E

Ptest(Y,hX)

[
log

P (hX |Y )P (Y )

EP (Y )

[
P (hX |Y )

]]
= E

Ptest(hX |Y )Ptest(Y )

[
log

P (hX |Y )P (Y )

EP (Y )

[
P (hX |Y )

]]
= E

P (hX |Y )P (Y )

[
log

P (hX |Y )P (Y )

EP (Y )

[
P (hX |Y )

]]
= E

P (hX ,Y )

[
log

P (hX |Y )P (Y )

EP (Y )

[
P (hX |Y )

]]
The last quantity does not depend on any specific PD(Z|Y ). This means that performance of the
Ptrain(Y |hX) model, when the independence is satisfied, is the same on all Ptest in F .
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Appendix B. Estimation in practice

B.1. Splitting samples

For a given batch, we use 1/4 of the samples for the normalization term and 3/4 for the main
term, though this number may be changed. Further, the main term of any of the three estimators
is defined on a pair of independent samples, i.e. it is a U-statistic. There are two ways to estimate
such expectations. One option is to further break the samples left for the main term in half into two
batches S1 and S2 and then compute on all pairs i ∈ S1, j ∈ S2. The alternative, which has slightly
higher sampler efficiency and is the method we use, is to compute on all pairs of samples and then
leave out any diagonal terms k(Xi, Xi) from the average.

B.2. Trade-offs among the 3 proposed estimators

For large samples, DR estimates with correct GW and correct mW are lower variance than the
regression with correct mW , and lower variance than re-weighting with correct GW . Even when
mW is mis-specified but GW is correct, the DR estimator may still be lower variance than the re-
weighting estimator with correct GW alone. However, the DR estimator with correct mW but mis-
specified GW may be higher variance than the regression estimator with correct mW (Davidian,
2005). For this reason, when the missingness model GW is wrong, the regression estimator may
out-perform the DR estimator even in large sample sizes.

The variance of the DR and re-weighting estimators comes from two distinct places. One is
general to missingness: small observation probabilities GW in the denominator. The other reason
is general Monte Carlo error: we need individual samples of Z̃ in the numerator. This is especially
a problem in the spurious correlation setting: Y and Z are possibly strongly correlated. We need
to compute the MMD conditional on Y = y which involves, for each Y = y, expectations using
samples where Z = 1 and where Z = 0, but we may have very few samples for one of these
Z values. This second source of variance also applies to estimates of the full-data MMD under
no missingness (eq. (6)). We compare the mean and variance of these estimators empirically in
Appendix B.3.

B.3. Empirical investigation of variance

As discussed, when E[∆|X,Y ] small, or (Y,Z) highly correlated, or both, all estimators will be
high variance. We train a model on the experiment 1 simulation using the NONE method and then
study the mean and variance of DR, DR+ (to study the effect of using the true GW ), REG (since it
yielded better performance on MIMIC) and FULL (since this method is used to report the MMDs in
the tables). In this simulation, we are free to generate as many large batches of samples as needed.
Keeping the model fixed, for each batch size between 1000 and 10, 000 incrementing by 250 we
draw 100 new batches of that size and estimate the MMD using each method. For each method, we
report the mean (fig. 3(a)) and standard deviation (fig. 3(b)) of these estimates.

Notably, we cannot compute an actual ground-truth for the MMD of this model, but we could
take the mean of the FULL estimate (no missingness) at the largest sample size of 10, 000 samples.
This is about 0.2. We see that the regression estimator stays closer to this number for all sample
sizes relative to the DR methods. Interesting, for standard deviation, we see that the DR estimator is
more well-behaved than the DR+ estimator that uses the true GW . This has also been observed for
learned versus true propensity scores in treatment effect estimation and usually results from models
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Figure 3: Figure 3(a): Mean of 100 MMD estimates at each batch size. Figure 3(b): Standard
Deviation of 100 MMD estimates at each batch size

learning less extreme probabilities than the true ones, trading some bias. In this case, there is not
a substantial difference in estimated weights or in bias, but there is a large difference in variance.
More investigation is required.

The main take-away from both plots is that the regression method seems more stable than DR

and that GW may be the part of the DR estimator that is not being learned well. On the other hand
the DR estimator may possibly be safer when it is unknown if it is easier to estimate GW or mW .
We recommend using all 3 of the proposed estimators and comparing validation objectives.

Appendix C. Full experiments

Table 4: Simulation. λ = 1.

NONE OBS FULL DR DR+ REG IP IP+

TR MMD 0.21± 0.04 0.05± 0.04 0.00± 0.01 0.00± 0.01 0.00± 0.01 0.01± 0.00 0.00± 0.00 0.00± 0.01
TR ACC 0.89± 0.00 0.87± 0.00 0.86± 0.01 0.85± 0.01 0.84± 0.02 0.86± 0.00 0.84± 0.01 0.84± 0.01
TE ACC 0.67± 0.02 0.77± 0.02 0.80± 0.01 0.81± 0.02 0.81± 0.01 0.79± 0.02 0.82± 0.02 0.81± 0.00

Table 5: Simulation. λ = 5.

NONE OBS FULL DR DR+ REG IP IP+

TR MMD 0.21± 0.04 0.03± 0.02 0.00± 0.01 0.00± 0.00 0.00± 0.0 0.00± 0.01 0.00± 0.0 0.00± 0.0
TR ACC 0.89± 0.0 0.85± 0.02 0.84± 0.01 0.82± 0.01 0.78± 0.06 0.84± 0.00 0.81± 0.02 0.81± 0.03
TE ACC 0.67± 0.02 0.78± 0.02 0.83± 0.01 0.82± 0.02 0.77± 0.04 0.82± 0.01 0.81± 0.02 0.80± 0.01
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Table 6: MNIST λ = 1.

NONE OBS FULL DR DR+ REG IP IP+

TR MMD 2.05± 0.18 0.02± 0.04 0.00± 0.01 0.00± 0.01 0.00± 0.01 0.00± 0.01 0.07± 0.12. 0.03± 0.06
TR ACC 0.90± 0.01 0.74± 0.03 0.76± 0.01 0.77± 0.00 0.76± 0.01 0.76± 0.01 0.67± 0.16 0.68± 0.15
TE ACC 0.13± 0.01 0.63± 0.17 0.74± 0.01 0.72± 0.04 0.73± 0.01 0.73± 0.01 0.64± 0.14 0.61± 0.11

Table 7: MNIST λ = 5.

NONE OBS FULL DR DR+ REG IP IP+

TR MMD 2.05± 0.18 0.01± 0.02 0.00± 0.00 0.00± 0.00 0.00± 0.01 0.00± 0.01 0.01± 0.01 0.01± 0.02
TR ACC 0.9± 0.01 0.66± 0.15 0.75± 0.01 0.65± 0.14 0.65± 0.13 0.75± 0.01 0.71± 0.08 0.60± 0.12
TE ACC 0.13± 0.01 0.65± 0.15 0.75± 0.01 0.73± 0.02 0.70± 0.09 0.75± 0.01 0.55± 0.3 0.60± 0.12

Appendix D. Failures of restricting to observed data

Proposition There exist distributions on (X,Y,∆, Z) such that

∃h⋆X s.t. h⋆X |= Z|Y = y, but h⋆X ̸|= Z|Y = y,∆ = 1

and there exist distributions on (X,Y,∆, Z) such that

∃h⋆X s.t. h⋆X |= Z|Y = y,∆ = 1 but h⋆X ̸|= Z|Y = y

First direction. There exist distributions on (X,Y,∆, Z) such that

∃h⋆X s.t. h⋆X |= Z|Y = y, but h⋆X ̸|= Z|Y = y,∆ = 1

It suffices to illustrate this even when Z, Y are not correlated. Consider

Y ∼ N (0, 1), Z ∼ N (0, σ2
Z), ϵX ∼ N (0, σ2

X), X = [Y − Z + ϵX , Y + Z]

For h⋆X = (X1 +X2), we first show h⋆X |= Z|Y = y. We have

h⋆X |Y ∼ N (2Y, σ2
X)

and in particular h⋆X = 2Y + ϵX . Given Y = y, the only randomness in h⋆X is due ϵX . But ϵX is
independent of the joint variable (Z, Y ) meaning ϵX |= Z|Y = y and therefore h⋆X |= Z|Y = y.

We now construct ∆|(X,Y ) such that h⋆X ̸|= Z|Y = y,∆ = 1. Let

∆ = OR
(
1 [X1 +X2 < 0] ,1 [X2 − Y < 0]

)
.

Checking the condition

h⋆X ̸|= Z|Y = y,∆ = 1

(using definition of h⋆X ) is equivalent to checking

(X1 +X2) ̸|= Z|Y = y,∆ = 1

16



LEARNING INVARIANT REPRESENTATIONS WITH MISSING DATA

(using definition of ∆) is equivalent to checking

(X1 +X2) ̸|= Z|Y = y,OR
(
1 [X1 +X2 < 0] ,1 [X2 − Y < 0]

)
= 1

(using defintion of X2) is equivalent to checking

(X1 +X2) ̸|= Z|Y = y,OR
(
1 [X1 +X2 < 0] ,1 [Z < 0]

)
= 1

To check that, we need to check if the distribution of (X1 + X2)|Y = y,∆ = 1 changes when
conditioning on different events involving the random variable Z. For example, 1 [Z < 0] and
1 [Z ≥ 0]:

1. (X1 +X2) | Y = y,OR
(
1 [X1 +X2 < 0] ,1 [Z < 0]

)
= 1,1 [Z < 0] = 1

2. (X1 +X2) | Y = y,OR
(
1 [X1 +X2 < 0] ,1 [Z < 0]

)
= 1,1 [Z ≥ 0] = 1.

We can show these two conditional variables differ in distribution simply by showing they differ in
support. The first conditional variable can be full support because the event 1 [Z < 0] satisfies one
of the OR conditions leaving the other condition 1 [X1 +X2 < 0] = 1 [h⋆X < 0] free to take either
value. However, the second conditional variable needs X1 + X2 = h⋆X < 0 because 1 [Z < 0] is
not satisfied (since we condition on 1 [Z ≥ 0] = 1) but the OR has to be 1. These different supports
imply the distributions differ. That the variables differ on two non-measure zero sets is enough to
show dependence. Then (X1 +X2) ̸|= Z|Y = y,∆ = 1 which means h⋆X ̸|= Z|Y = y,∆ = 1.

Second direction. There exist distributions on (X,Y,∆, Z) such that

∃h⋆X s.t. h⋆X |= Z|Y = y,∆ = 1 but h⋆X ̸|= Z|Y = y

Let the data be drawn as

Y ∼ N (0, 1), Z ∼ B(0.5), X = [Y − Z, Y + Z]

Let h⋆X = 1 [X1 ≥ 0]. We first show h⋆X ̸|= Z|Y = y. We have

h⋆X = 1 [X1 ≥ 0]

= 1 [Y − Z ≥ 0]

Given Y = y, we ask if the random variable 1 [y − Z ≥ 0] is independent of Z. To show depen-
dence, we show that the random variable 1 [y − Z ≥ 0] changes in distribution when Z takes on its
two values:

1. 1 [y − Z ≥ 0] |Y = y, Z = 0

2. 1 [y − Z ≥ 0] |Y = y, Z = 1

Suppose y ∈ (0, 1). When Z = 0 we have that 1 [y − Z ≥ 0] = 1 with probability one. When
Z = 1, we have 1 [y − Z ≥ 0] = 0 with probability one. Therefore the variables are dependent.

We now let ∆ = 1 [X1 ≥ 0] = 1 [Y − Z ≥ 0] and show h⋆X |= Z|Y = y,∆ = 1. Note that
∆(X,Y ) = h⋆X . We ask whether

1 [Y − Z ≥ 0] |= Z|Y = y,1 [Y − Z ≥ 0]

The conditioning set fully determines the variable 1 [Y − Z ≥ 0] meaning it is a constant and is
therefore independent of Z. Therefore h⋆X |= Z|Y = y,∆ = 1 as desired.
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Appendix E. IP and outcome estimators

We review estimation of E[Z] under missingness. Two pieces of the data generation process can
help, the missingness process GW and the conditional expectation mW of the missing variable:

GW ≜ E[∆ | X,Y ], mW ≜ E[Z | X,Y ]

Inverse-weighting estimators use GW (Horvitz and Thompson, 1952; Binder, 1983; Robins et al.,
1994; Van der Laan and Robins, 2003; Hernan and Robins, 2021)

E[Z] = E
X

E
Z|X

[Z]

= E
X

E
Z|X

[E[∆|X]

E[∆|X]
Z
]

= E
X

E
Z|X

E
∆|X

[ ∆Z

E[∆|X]

]
= E

XZ∆

[ ∆Z

E[∆|X]

]
= E

X∆Z

[∆Z

GW

]
= E

X∆Z

[∆Z̃

GW

]

(11)

This means we can estimate E[Z] provided that (1) ignorability and positivity hold and (2) GW is
known. GW can be estimated by regressing ∆ on X . Alternatively, standardization estimators use
mW (Rubin, 1976; Schafer, 1997; Rubin, 2004; Pearl, 2009; Little and Rubin, 2019; Hernan and
Robins, 2021):

E[Z] = E
X

[
E[Z|X]

]
= E

X

[
E[Z|X,∆ = 1]

]
= E[mW ] (12)

The equality between the middle two terms means that mW can be estimated by regressing Z̃ on
X just on those samples where ∆ = 1. The equality follows from the ignorability assumption
Z |= ∆|X,Y .

Appendix F. DR estimator of mean of Z

The inverse weighting and regression estimators can be combined. Equation (3) defines the DR

estimator of E[Z] by

E[Z] = E
[∆Z̃

GW
− ∆−GW

GW
mW

]
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Let us re-write this expectation until we see it equals E[Z] when G or m are correct.

E
[∆Z̃

GW
− ∆−GW

GW
mW

]
= E

[∆Z

GW
− ∆−GW

GW
mW

]
= E

[
Z +

∆Z

GW
− Z − ∆−GW

GW
mW

]
= E

[
Z +

∆Z

GW
− GW

GW
Z − ∆−GW

GW
mW

]
= E

[
Z +

∆−GW

GW
Z − ∆−GW

GW
mW

]
= E

[
Z +

∆−GW

GW
(Z −mW )

]
= E

[
Z
]
+ E

[∆−GW

GW
(Z −mW )

]
The first term is what we want, so we just have to check if the second term is 0 when either G or m
are correct. If G is correct (regardless of m) then:

E
[∆−GW

GW
(Z −mW )

]
= E

[
E
[∆−GW

GW
(Z −mW )

∣∣∣X,Z
]]

= E

[
E[∆|X,Z]−GW

GW
(Z −mW )

]

= E

[
E[∆|X]−GW

GW
(Z −mW )

]

= E

[
GW −GW

GW
(Z −mW )

]
= 0

When m is correct (regardless of G):

E
[∆−GW

GW
(Z −mW )

]
= E

[
E
[∆−GW

GW
(Z −mW )

∣∣∣X,∆
]]

= E

[
∆−GW

GW
(E[Z|X,∆]−mW )

∣∣∣X,∆

]

= E

[
∆−GW

GW
(E[Z|X,∆]− E[Z|X,∆ = 1])

∣∣∣X,∆

]

= E

[
∆−GW

GW
(E[Z|X]− E[Z|X])

∣∣∣X,∆

]
= 0
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Appendix G. Deriving MMD estimators under missingness

G.1. Deriving the GW -based re-weighted estimator

Here we start at the target quantity and derive the estimator. We give the derivation for Z = 1, Z ′ =
1. The other cases are analogous.

E
P (X|Z=1)P (X′|Z′=1)

[
kXX′

]
=

∫
X,X′

kP (X|Z = 1)P (X ′|Z ′ = 1)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kP (Z = 1, X)P (Z ′ = 1, X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kP (Z = 1|X)P (Z ′ = 1|X)P (X)P (X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kE(Z = 1|X)E(Z ′ = 1|X)P (X)P (X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,Z
X′,Z′

[
k · Z · Z ′

]

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,Z
X′,Z′

[E[∆|X]E[∆′|X ′]

E[∆|X]E[∆′|X ′]
k · Z · Z ′

]

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[ ∆∆′

GWGW ′
k · Z · Z ′

]

G.2. Deriving the mW -based standardization estimator

Here we start at the target quantity and derive the estimator. We give the derivation for Z = 1, Z ′ =
1. The other cases are analogous.

E
P (X|Z=1)P (X′|Z′=1)

[
kXX′

]
=

∫
X,X′

kP (X|Z = 1)P (X ′|Z ′ = 1)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kP (Z = 1, X)P (Z ′ = 1, X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kP (Z = 1|X)P (Z ′ = 1|X)P (X)P (X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kE(Z = 1|X)E(Z ′ = 1|X)P (X)P (X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,X′

[
mW ·mW ′ · k

]
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G.3. Deriving the DR estimator

Here we start at the estimator and derive the target quantity. We give the derivation for Z = 1, Z ′ =
1. The other cases are analogous.

1

P (Z = 1)

1

P (Z ′ = 1)

1

N(N − 1)

∑
i ̸=j

[∆ijZ̃ij

Gij
kij −

∆ij −Gij

Gij
mijkij

]
≈ 1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[∆∆′Z̃Z̃ ′

GWGW ′
k − ∆∆′ −GWGW ′

GWGW ′
mWmW ′k

]

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[∆∆′ZZ ′

GWGW ′
k − ∆∆′ −GWGW ′

GWGW ′
mWmW ′k

]

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[
ZZ ′k +

∆∆′

GWGW ′
ZZ ′k − ZZ ′k − ∆∆′ −GWGW ′

GWGW ′
mWmW ′k

]

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[
ZZ ′k +

∆∆′

GWGW ′
ZZ ′k − GWGW ′

GWGW ′
ZZ ′k − ∆∆′ −GWGW ′

GWGW ′
mWmW ′k

]

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[
ZZ ′k +

∆∆′ −GWGW ′

GWGW ′
ZZ ′k − ∆∆′ −GWGW ′

GWGW ′
mWmW ′k

]

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[
ZZ ′k +

∆∆′ −GWGW ′

GWGW ′

(
ZZ ′ −mWmW ′

)
k
]

=
1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[
ZZ ′k

]
+

1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[∆∆′ −GWGW ′

GWGW ′

(
ZZ ′ −mWmW ′

)
k
]
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Our estimator equals two terms. We first show that the first term equals the desired quantity, and
then show the second term equals 0 when either auxiliary model is correct.

1

P (Z = 1)

1

P (Z ′ = 1)
E

X,∆,Z
X′,∆′,Z′

[
ZZ ′k

]
=

1

P (Z = 1)

1

P (Z ′ = 1)
E

X,X′

[
kE[Z,Z ′|X,X ′]

]
=

1

P (Z = 1)

1

P (Z ′ = 1)
E

X,X′

[
kP (Z = 1, Z ′ = 1|X,X ′)

]
=

1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kP (Z = 1, Z ′ = 1|X,X ′)P (X,X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kP (Z = 1|X)P (Z ′ = 1|X)P (X)P (X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kP (Z = 1, X)P (Z ′ = 1, X ′)dXdX ′

=
1

P (Z = 1)

1

P (Z ′ = 1)

∫
X,X′

kP (Z = 1, X)P (Z ′ = 1, X ′)dXdX ′

=

∫
X,X′

kP (X|Z = 1)P (X ′|Z ′ = 1)dXdX ′

= E
P (X|Z=1)P (X′|Z′=1)

[
k
]

That’s the expectation we want missing just the P (Z = 1) constants, so now we should show the
next term is 0 when either m or G are correct. When G correct:

E
X,∆,Z

X′,∆′,Z′

[∆∆′ −GWGW ′

GWGW ′

(
ZZ ′ −mWmW ′

)
k
]
= E

X,Z
X′,Z′

[E[∆∆′|X,X ′, Y, Z ′]−GWGW ′

GWGW ′

(
ZZ ′ −mWmW ′

)
k
]

= E
X,Z
X′,Z′

[E[∆∆′|X,X ′]−GWGW ′

GWGW ′

(
ZZ ′ −mWmW ′

)
k
]

= E
X,Z
X′,Z′

[E[∆|X]E[∆′|X ′]−GWGW ′

GWGW ′

(
ZZ ′ −mWmW ′

)
k
]

= E
X,Z
X′,Z′

[GWGW ′ −GWGW ′

GWGW ′

(
ZZ ′ −mWmW ′

)
k
]
= 0
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Likewise, when m correct:

E
X,∆,Z

X′,∆′,Z′

[∆∆′ −GWGW ′

GWGW ′

(
ZZ ′ −mWmW ′

)
k
]

= E
X,∆
X′,∆′

[∆∆′ −GWGW ′

GWGW ′

(
E[ZZ ′|X,X ′,∆,∆′]−mWmW ′

)
k
]

= E
X,∆
X′,∆′

[∆∆′ −GWGW ′

GWGW ′

(
E[Z|X,∆]E[Z ′|X ′,∆′]−mWmW ′

)
k
]

= E
X,∆
X′,∆′

[∆∆′ −GWGW ′

GWGW ′

(
E[Z|X,∆]E[Z ′|X ′,∆′]− E[Z|X,∆ = 1]E[Z ′|X ′,∆′ = 1]

)
k
]

= E
X,∆
X′,∆′

[∆∆′ −GWGW ′

GWGW ′

(
E[Z|X]E[Z ′|X ′]− E[Z|X]E[Z ′|X ′]

)
k
]
= 0

The proof for the other two terms is analogous but with using Z = (1 − Z) instead of Z and
m = 1−m when conditioning on Z = 0.

Appendix H. kernel mmd between joint and product of marginals

Continuous nuisances. In this work we study binary nuisance. We can instead measure the MMD

between joint p(hX , Z) and product of marginals p(hX)P (Z), which allows for continuous nui-
sance.

The above formulation of MMD between hX |Z = 1 and hX |Z = 0 relied on optimizing with
respect to h only: P (Z) is constant in the optimization so the distance between conditionals spec-
ifies the distance between the product of marginals and joint and thus the dependence. However,
considering the more general case of MMD between P (hX , Z) and P (hX)P (Z) has the advantage
that is not necessary to consider a finite set of conditioning values for Z. That means the MMD can
be extended to continuous nuisance Z. Let X :: Z denote the concatenation of X and Z. The more
general formulation is:

E (X,Z)∼P (X,Z)
(X′,Z′)∼P (X,Z)

[
k
(
X::Z,X ′::Z ′

)]
+ E (X,Z)∼P (X)P (Z)

(X′,Z′)∼P (X′)P (Z′)

[
k
(
X::Z,X ′::Z ′

)]

− 2E (X,Z)∼P (X,Z)
(X′,Z′)∼P (X′)P (Z′)

[
k
(
X::Z,X ′::Z ′

)]

This leads to the following estimator:

E P (X,Z)
P (X′,Z′)

[
k
(
X::Z,X ′::Z ′

)]
= E

[
∆∆′k(X::Z,X ′::Z ′)

GWW ′
− ∆∆′ −GWW ′

GWW ′
E[k|X,X ′]

]
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and

E P (X)P (Z)
P (X′)P (Z′)

[
k
(
X::Z,X ′::Z ′

)]

= EP (X1)P (X2,Z2)
P (X3)P (X4,Z4)

[
k
(
X1::Z2, X3::Z4

)]

= E

[
∆∆′k(X1::Z2, X3::Z4)

GX1X3

− ∆∆′ −GX1X3

GX1X3

E[k(X1::Z2, X3::Z4)|X1, X3]

]

and

E P (X,Z)
P (X′)P (Z′)

[
k
(
X::Z,X ′::Z ′

)]

= E P (X1,Z1)
P (X2)P (X3,Z3)

[
k
(
X1::Z1, X2::Z3

)]

= E

[
∆∆′k(X1::Z1, X2::Z3)

GX1X3

− ∆∆′ −GX1X3

GX1X3

E[k(X1::Z1, X2::Z3)|X1, X3]

]

The challenging part of applying this estimator is that now instead of one function mW we have
three functions, each of which estimates the mean of k under a different sampling distribution.
Moreover, these conditional expectations depend on the current representation hX . This means
they must be updated each time h changes.
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