
Appendix

1 DDPG Experiments

In addition to SAC, we also provide experiments on DDPG[1]. Instead of the probabilistic policy
used in SAC, DDPG has a deterministic policy. The average performances are shown in 1. Though
DDPG-based algorithms have worse performance than SAC, CLOS, ER, GEM and APD still have
a satisfying result, which is consistent to that in SAC.

2 4 6 8 10
1000

500

0

500

1000

1500

2000

Oracle
Random
SAC

(a) SAC

2 4 6 8 10
1000

500

0

500

1000

1500

2000

Oracle
Random
L2

(b) L2

2 4 6 8 10
1000

500

0

500

1000

1500

2000

Oracle
Random
EWC

(c) EWC

2 4 6 8 10
1000

500

0

500

1000

1500

2000

Oracle
Random
AGEM

(d) AGEM

2 4 6 8 10
1000

500

0

500

1000

1500

2000

Oracle
Random
GEM

(e) GEM

2 4 6 8 10
1000

500

0

500

1000

1500

2000

Oracle
Random
ER

(f) ER

2 4 6 8 10
1000

500

0

500

1000

1500

2000

Oracle
Random
APD

(g) APD

2 4 6 8 10
1000

500

0

500

1000

1500

2000

Oracle
Random
CLOS

(h) CLOS

Figure 1: Performance of lifelong learning methods with the RL framework. The x-axis denotes
task IDs. The y-axis denotes cumulative rewards. Each lifelong reinforcement learning algorithm
consists of a lifelong learning algorithm and DDPG as the RL algorithm. The figure shows the
performance of the policy on each task after finishing learning the last one. Oracle and random
agent is included in each figure for comparison.

2 Reinforcement Lifelong Learning Framework

The pseudo code is shown in Algorithm. 1. The descriptive figure of it is shown in Fig. 2.

References
[1] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.

Continuous control with deep reinforcement learning. In ICLR (Poster), 2016.

5th Conference on Robot Learning (CoRL 2021), London, UK.

Algorithm 1 Reinforcement Lifelong Learning Framework

1: INPUT K: the number of tasks needed to be learnt;
2: D ←− {} ∗K # Initialize K empty replay buffer;
3: C ←− {c1, c2, . . . cK} # Initialize the critic set;
4: for k ∈ {1, 2, . . .K} do
5: (s′t, a

′
t, s

′
t+1, r

′
t, d

′
t) ∼ RollOut(θ, k);

6: Dk ←− Dk ∪ (skt , a
k
t , s

k
t+1, rt);

7: (skt , a
k
t , s

k
t+1, r

k
t , d

k
t) ∼ Dk # Sample a data from the replay buffer;

8: lc ←− (Qφk(skt , a
k
t)− (rkt + γ(1− dt)Qφk(skt+1, πθ(s

k
t)))

2 #Compute the critic loss;
9: gkc ←− ∇φk lc;

10: φk ←− φk − βgkc ; # Update the critic parameters;
11: la, g

k
a ←− −ck(πθ(skt), k),−∇ck(πθ(skt), k) # Compute the actor loss;

12: l′a, g
k
a
′ ←− LifelongLearning(la, g

k
a) # Update the Actor Loss and gradients according

to the lifelong learning algorithm
13: θc ←− θc − αgka

′ # Update the shared module in the actor
14: θs ←− θs − αgka # Update the task-specific module in the actor.
15: end for

𝑘, 𝑠!" , 𝑎!" , 𝑠!#$" , 𝑟!"

𝑄 ⟷ '𝑄

Critic k

Task 1 Task k Task K

.

Actor

(𝑎!"

Actor
Loss

Lifelong Reinforcement Learning Framework

Critic 1 Critic K

.

Lifelong Learning
AlgorithmReplay Buffer 1 Replay Buffer k Replay Buffer T……

Sample

Sample Previous Tasks

Figure 2: Reinforcement Lifelong Learning Framework. The framework combines an Actor-Critic
algorithm with a lifelong learning algorithm. The actor is decomposed into shared parts and task-
specific parts. Each task is assigned an individual critic. We keep the replay memory of previous
tasks and sample data from them when needed in the lifelong learning process.

2

	DDPG Experiments
	Reinforcement Lifelong Learning Framework

