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ABSTRACT

In this paper, we argue that iterative computation, as exemplified by diffusion
models, offers a powerful paradigm for not only image generation but also for vi-
sual perception tasks. First, we unify few of the mid-level vision tasks as image to
image translations tasks ranging from depth estimation to optical flow to segmen-
tation. Then, through extensive experiments across these tasks, we demonstrate
how diffusion models scale with increased compute during both training and in-
ference. Notably, we train various dense and Mixture of Expert models up to 2.8
billion parameters, and we utilize increased sampling steps, use various ensem-
bling methods to increase compute at test time. Our work provides compelling
evidence for the benefits of scaling compute at train and test time for diffusion
models for visual perception, and by studying the scaling properties carefully, we
were able to archive same performance of the state-of-the-art with less compute.

1 INTRODUCTION

Recently, Diffusion models and Auto Regressive models have emerged as a powerful technique for
generating images and videos. With some loss of generalizations Diffusion models can be viewed
as auto regressive models in frequency space (Dieleman, 2024). These models have shown excellent
scaling behaviours for image and video generation tasks. One could attribute part of this success to
iterative computation, which at inference the model spends more compute, usually about one or two
orders of magnitude compared to single forward pass.

While the success story of Diffusion and Auto Regressive models on generative tasks is unprece-
dented, in this work we ask, can these iterative prediction models be used for perceptual tasks (in-
verse problems) and leverage the benefits of scaling test time computation. Marigold (Ke et al.,
2024) and FlowDiffuser (Luo et al., 2024) partially answered this question for depth estimation and
optical flow individually, and showed that diffusion models are indeed suited these perceptual tasks.
Our work explores a range of perceptual tasks from low-level optical flow to mid-level depth estima-
tion and more complex semantic segmentation and occlusion reasoning, under a unified framework,
and we carefully study the compute scaling behaviours at train and test time.

To study the scaling properties of diffusion models for inverse problems both at training and test-
time, we pre-train various dense models sizes from 14 million to 1.8 billion parameters, and up to
2.8 billion parameter mixture of experts models for the class-conditional image generation task. We
fine-tune these pre-trained models on various downstream tasks. We study the scaling properties at
training by varying model size, data resolution, and pre-training compute. In addition to this, we
apply efficient training strategies such as upcycling dense checkpoints to mixture-of-experts models
without training them from scratch. At inference, we evaluate our models on downstream tasks, with
various test-time compute allocation techniques. These include scaling number of diffusion steps,
test-time ensembling, and increasing number of model experts.

In summary, this paper argues in favour of iterative feedback computation for visual perception
tasks, presenting three key findings. Through extensive ablation studies, we explore various meth-
ods to scale computational resources during training and inference. Our results demonstrate that by
utilizing these scaling laws, we can achieve competitive performance across a diverse range of per-
ception tasks, from low-level optical flow to complex amodal segmentation. Furthermore, we train
a unified model architecture that employs expert routing, enabling it to effectively address multiple
perception tasks within a single model.
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Figure 1: A Unified Framework: We fine-tune a pre-trained Diffusion Model, for visual perception
tasks. We take a RGB image, and a conditional image (i.e. next video frame, occlusion mask, etc.),
along with the noised image of the ground truth prediction. Our model generates predictions for
various visual tasks such as depth estimation, optical flow prediction, and amodal segmentation,
based on the conditional task embedding.

2 RELATED WORK

Biological Inspirations: Visual information processing in both biological systems involves com-
plex interconnections. In human visual cortices, feedforward connections link low to high-level
areas in dorsal and ventral pathways, while feedback connections allow for refined processing over
time (Felleman & Van Essen, 1991; Lamme & Roelfsema, 2000; Kravitz et al., 2013). For example,
in inferotemporal cortex for the neurons that are selective for face, and their first response for a
face stimuli are simple classifier of where the stimuli is a face or not, but with over time, the cells
responses will contain expressions and identity (Lamme & Roelfsema, 2000).

Generative Modeling: Generative modeling has been studied under various methods,
VAEs (Kingma, 2013), GANs (Goodfellow et al., 2014), Normalizing Flows (Rezende & Mohamed,
2015), Auto-Regressive models (van den Oord et al., 2016), and Diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020). Among these, Denoising Diffusion Probabilistic Models (DDPMs) (Ho
et al., 2020) have shown impressive scaling behaviors and have become a de facto generative tool
for many image and video generation models. Notable examples include Latent Diffusion Mod-
els (Rombach et al., 2022) which enhanced efficiency by operating in a compressed latent space,
Imagen (Saharia et al., 2022) which generates samples in pixel space with increasing resolution and
Consistency Models (Song et al., 2023) which aim to accelerate sampling while maintaining gener-
ation quality. Apart from diffusion based models, Parti (Yu et al., 2022) and MARS (He et al., 2024)
showcased the potential of auto regressive models image generation tasks and the Muse architec-
ture (Chang et al., 2023) introduced a masked image generation approach using transformers.

Scaling Diffusion Models: Diffusion modeling has shown impressive scaling behaviors in terms
of data, model size, and compute. Latent Diffusion Models (Rombach et al., 2022) first showed
that, scaling the training with large-scale web datasets and compute can archive high quality im-
age generation results with U-Net model. DiT (Peebles & Xie, 2023) studied the scaling behavior
of diffusion models with transformer architecture and showed that, transformer models have good
scaling for class conditional image generation. Later, Li et al.(Li et al., 2024) studied the scaling
laws of text-to-image diffusion models for alignment. Recently, Fei et al.(Fei et al., 2024a) trained
DiT models up to 16 billion parameters with mixture of experts and achieved high-quality image
generation results. Finally, another way to scale transformer models is via upcycling. Komatsuzaki
et al. (Komatsuzaki et al., 2022) used sparse upcycling to learn a mixture of experts model from a
dense transformer model without needing to pretrain a mixture of experts model.

Diffusion Models for Perception Tasks: While diffusion models have an impressive track record
of generating images and videos, they have also been used for various downstream visual tasks.
For example, diffusion models have been used for estimating depth (Ji et al., 2023; Duan et al.,
2023; Saxena et al., 2023; 2024; Zhao et al., 2023), and recently Marigold (Ke et al., 2024) and
GeoWizard (Fu et al., 2024) showed impressive results by repurposing pretrained diffusion models
for monocular depth estimation. Diffusion models with few modifications are used for semantic seg-
mentation for categorical distributions (Hoogeboom et al., 2021; Brempong et al., 2022; Tan et al.,
2022; Amit et al., 2021; Baranchuk et al., 2021; Wolleb et al., 2022), instance segmentation (Gu
et al., 2024), and panoptic segmentation (Chen et al., 2023). Additionally, diffusion models are also
used for optical flow estimation (Luo et al., 2024; Saxena et al., 2024) and 3D understanding (Liu
et al., 2023; Jain et al., 2022; Poole et al., 2022; Wang et al., 2023; Watson et al., 2022).
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3 GENERATIVE PRE-TRAINING

Our approach involves first pre-training diffusion models for conditional image generation task, and
we utilize a diffusion transformer (DiT) backbone. For the pre-training we follow DiT recipes (Pee-
bles & Xie, 2023).

Starting with a target image I ∈ Ru×u×3 as an RGB image, where the resolution of the image
is u × u, our pretrained, frozen Stable Diffusion variational autoencoder (Rombach et al., 2022)
compresses the target to a latent z0 ∈ Rw×w×4, where w = u/8. Gaussian noise is added at
sampled time steps to obtain a noisy target latent and noisy samples are generated as:

zt =
√
αt · z0 +

√
1− αt · ϵt (1)

for timestep t. The noise is distributed as ϵ ∼ N (0, I), t ∼ Uniform(T ), with T = 1000 and
αt :=

∏t
s=1(1− βs), with {β1, . . . , βT } as the variance schedule of a process.

In the denoising process, the class-conditional DiT fθ(·) parameterized by learned parameters θ
gradually removes noise from zt to obtain zt−1. Parameters θ are updated by noising z0 with sam-
pled noise ϵ at a random timestep t, and computing the noise estimate

θ∗ = argmin
θ

Lθ(zt, ϵi) = argmin
θ

1

n

n∑
i=1

(ϵi − ϵ̂i)
2 (2)

as a mean squared loss applied between the generated noise and noise estimated by the θ parameter-
ized DiT, in an n batch size sample.

3.1 MODEL SIZE

Figure 2: Scaling at Model Size: For generative
pre-training of DiT models we see a clear scaling
behaviors as we increase the model size.

We pre-train six different dense DiT models
as in Table 1, increasing model size by vary-
ing the number of layers and hidden dimen-
sion size. We follow the pre-training recipe in
DiT (Peebles & Xie, 2023), using Imagenet-
1K (Russakovsky et al., 2015) as our pre-
training dataset with the same amount of total
training iterations. we trained all the models
for 400k iterations with a fixed learning rate of
1e − 4 for all the models and a batch size of
256. Fig 2 shows that larger models converge
to lower loss with a clear power law behavior.
We show the train loss as a function of compute
(in MACs), and out predictions show a power
law relationships of L(C) = 0.23× C−0.0098.

3.2 MIXTURE OF EXPERTS

We pre-train Sparse Mixture of Experts (MoE) models (Shazeer et al., 2017), following the model
configurations in (Fei et al., 2024b) for S/2 and L/2 configurations. We use three different MoE
configurations listed in table 2, scaling the total parameter count by increasing hidden size, number
of experts, layers, and attention heads. Each MoE block activates the top-2 experts per token and
has a shared expert that is used by all tokens. To alleviate issues with expert balance, we use the
proposed expert balance loss function from (Fei et al., 2024b) to distribute the load across experts
more efficiently. Sparse MoE pre-training allows for a higher parameter count while increasing
throughput, making it more compute efficient than training a dense DiT model. We train our DiT-
MoE models with the same training recipe as the dense DiT models, using ImageNet-1K as the
pre-training dataset and training for 400K iterations with batch size 256.

3
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Model Params Dimension Heads Layers

a1 14.8M 256 16 12
a2 77.2M 512 16 16
a3 215M 768 16 20
a4 458M 1024 16 24
a5 1.2B 1536 16 28
a6 1.9B 1792 16 32

Table 1: Dense DiT Models: We scale dense
DiT model size by increasing hidden dimen-
sion and number of layers linearly while keep-
ing number of heads constant following (Yang
et al., 2022; Touvron et al., 2023).

Model Active / Total Dim Heads Layers

S/2-8E2A 71M / 199M 384 6 12
S/2-16E2A 71M / 369M 384 6 12
L/2-8E2A 1.0B / 2.8B 1024 16 24

Table 2: MoE DiT Models: We scale the MoE
DiT models by increasing dimension size, num-
ber attention heads, layers, and experts follow-
ing (Fei et al., 2024b).

4 FINE-TUNING FOR PERCEPTUAL TASKS

During fine tuning, we utilize the image-to-image diffusion process from (Ke et al., 2024) and
(Brooks et al., 2023) as our training recipe, and we pose all our visual tasks as conditional denoising
diffusion generation. Give an RGB image I ∈ Ru×u×3 and it’s pair ground truth image D ∈
Ru×u×3, we first project them to latent space, i0 ∈ Rw×w×4 and d0 ∈ Rw×w×4 respectively. We
only add noise the ground truth latent to get dt and concatenate it with the RGB latent to get a tensor
of zt = {i0, dt}. The first convolution layer of the DiT model is modified to match the doubled
number of channels in the input, and it’s values are reduced by half to make sure the predictions are
the same if the inputs are just RGB images (Ke et al., 2024). Finally, we simply perform diffusion
training by denoising the ground truth image.

This approach allow us to unify all the visual tasks as image-to-image translation. We ablate various
fine tuning compute scaling behaviors on the monocular depth estimation task and report absolute
error and delta1 accuracy. We use the best configurations from the depth estimation ablation study
to fine-tune for other visual tasks.

4.1 EFFECT OF MODEL SIZE

We fine-tune the pre-trained a1-a6 dense models on the depth estimation task to study the effect of
model size. We scale model size as shown in Table 1, increasing total layers and hidden size. We
follow the pre-training recipe of the original DiT (Peebles & Xie, 2023), using ImageNet-1K (Rus-
sakovsky et al., 2015) as our pre-training dataset with the same amount of total training iterations.
Fig 3 shows that larger dense DiT models converge to lower fine-tuning loss, presenting a clear
power law scaling behavior. We show the train loss as a function of compute (in MACs), and our
model predictions show a power law relationship in both depth Absolute Relative error and depth
Delta1 error.

Figure 3: Effect of Model Size: We fine-tune a1-a6 models on the Hypersim dataset for 30K
iterations with a exponential decay learning rate schedule from 3e − 5 to 3e − 7. We observe a
strong correlation between the fine-tuning scaling law and validation metric scaling laws.
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4.2 EFFECT OF PRE-TRAINING COMPUTE

We also investigate the behavior of the fine-tuning process as we scale the number of pre-training
steps for the DiT backbone. We train the A4 model with a varied number of pre-training steps while
keeping all other hyperparameters constant. We then fine-tune these four models on the same depth
estimation dataset. Fig 4 displays the power law scaling behavior of the validation metrics for depth
estimation as we increase DiT pre-training steps.

Figure 4: Effect of scaling model pre-training compute on depth estimation: (a) Depth Absolute
Relative Error vs. MACs. (b) Depth Delta1 Error vs. MACs. We pre-train four A4 models with
60K, 80K, 100K, and 120K steps with a batch size of 1024 at a fixed learning rate of 1e− 4. These
models are then fine-tuned for 30K steps on the Hypersim depth estimation dataset with a batch
size of 32. We observe a clear power law as we increase the DiT pre-training compute across depth
estimation validation metrics.

4.3 EFFECT OF IMAGE RESOLUTION

The total number of tokens per image also affects the total compute spent during training. For
each forward pass, we can scale the number of FLOPs used by simply scaling up the resolution of
the image, which will increase the number of tokens used to represent the image embedding. By
increasing the resolution and the number of tokens, we can increase the amount of information the
model can learn from at training time to build stronger internal representations, which can in turn
improve downstream performance. We use dense DiT-XL models with resolutions of 256x256 and
512x512 from (Peebles & Xie, 2023) and we pre-train DiT L/2-8E2A models with 256x256 and
512x512 resolutions following the recipe in (Fei et al., 2024b). We then fine-tune each of these
models with the corresponding resolution for the depth estimation task. In Fig 5, we present scaling
laws for image resolution during fine-tuning on depth estimation.

Figure 5: Effect of Image Resolution. We fine-tune DiT-XL and DiT-MoE L/2 models with reso-
lutions of 256x256 and 512x512. We observe a power law when increasing image resolution during
training. By scaling the number of tokens per image by 4X, we achieve strong performance on Depth
Absolute Error, displaying the effect of increasing total dataset tokens for dense visual perception
tasks such as depth estimation.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.4 EFFECT OF UPCYCLING

Sparse MoE models are efficient options for increasing the capacity of a model, but pre-training an
MoE model from scratch can be expensive. One way to alleviate this issue is Sparse MoE Upcycling
(Komatsuzaki et al., 2023). Upcycling converts a dense transformer checkpoint to an MoE model
by copying the MLP layer in each transformer block E times, where E is the number of experts,
and adding a learnable router module to send each token to the top-k selected experts. The outputs
of the selected experts are then combined in a weighted sum at the end of each MoE block.

In Fig 6, we show the effect of up-cycling various dense models after they have been fine-tuned
for depth estimation. We continue the fine-tuning on each up-cycled model, which also tunes the
randomly initialized router module weights. Fig 6 displays the scaling laws for up-cycling, providing
an average improvement of 5.3% on Absolute Relative Error and 8.6% on Delta1 error.

Figure 6: Effect of Upcycling. We upcycle A2, A3, and A4 models for a varying number of experts
as shown in the figure. We continue fine-tuning each upcycled model for another 15K iterations
at a batch size of 128 on the Hypersim depth estimation dataset. We observe a clear scaling law
between using more MACs with upcycling and decreasing Absolute Relative and Delta1 error rates.
We also observe that upcycling can achieve equivalent or superior performance to our dense A5 and
A6 checkpoints, each of which utilize more compute during pre-training and fine-tuning. We also
note that increasing the total number of experts and the total active experts improves the downstream
performance.

5 SCALING TEST-TIME COMPUTE

Scaling inference compute has been applied for autoregressive Large Language Models (LLMs)
to improve performance on long-horizon and complex reasoning tasks (Brown et al., 2024; Snell
et al., 2024; El-Refai et al.). In this section, we explore methods for scaling test-time compute for
perceptual tasks with diffusion models.

We present the general inference pipeline in Fig 7. We use the original Stable-Diffusion VAE to
encode the input image into the latent space (Rombach et al., 2022). Then, we sample a target
noise latent from a standard Gaussian distribution, which will be iteratively denoised to generate the
downstream prediction using the same noise schedule as fine-tuning. We apply the non-Markovian
sampling with re-spaced steps to speed up inference as proposed in DDIM (Song et al., 2021).
The target latent is then decoded by the VAE to obtain the final downstream task prediction. For
the depth estimation downstream task, we follow the procedure in Marigold by averaging the final
decoded prediction across the channel dimension (Ke et al., 2024). In Fig 7, we summarize our three
approaches to scaling test-time compute for diffusion.

5.1 EFFECT OF INFERENCE STEPS

One natural way of scaling diffusion inference is by increasing denoising steps. Since the model is
trained to denoise the input at various timesteps, we can scale the number of diffusion denoising steps
at test-time to produce more accurate predictions. This paradigm is also reflected in the generative
case, where the corruption process of diffusion pushes the model to learn a coarse-to-fine denoising
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Figure 7: Inference Scaling: Diffusion models by design allows scaling of test time compute na-
tively. First, we can simply increase the number of denoising steps to increase the compute spent at
inference. Second, since we are estimating deterministic outputs, we can initialize the noise multiple
time and combine the predictions to get a better estimate the output. Finally, we can also allocate
different compute budget for low and high frequency denoising with cosine schedule.

trajectory. We can exploit this paradigm for the discriminative case by increasing the number of
denoising steps, which will generate finer predictions. In Fig 8, we observe that increasing the total
test-time compute by simply increasing the number of diffusion sampling steps provides substantial
gains in depth estimation performance.

Figure 8: Effect of Number of Sampling Steps. (a) Delta1 Error vs. Number of Steps. (b) Absolute
Relative Error vs. Number of Steps. We show the effect of scaling test-time compute by increasing
the number of diffusion sampling steps. For each model, we sample for T ∈ [1, 2, 5, 10, 20, 50, 100]
steps with the DDIM sampler. We show a clear power law scaling behavior in (a) and (b), displaying
the effectiveness of simply utilizing the iterative nature of diffusion to improve downstream perfor-
mance.

5.2 EFFECT OF TEST TIME ENSEMBLING

We also explore scaling inference compute through test-time ensembling. Here, we take advan-
tage of the fact that denoising different noise latent initializations will generate different results. In
test-time ensembling, we compute N forward passes for each input sample, and reduce the outputs
through one of two methods. The first technique is naive ensembling: simply compute N forward
passes and use the pixel-wise median or mean across all outputs as the prediction. This is the me-
dian/mean aggregation technique, which provides a straightforward method for combining predic-
tions across multiple noise initializations efficiently. The second ensembling technique presented in
(Ke et al., 2024) is median compilation, where we collect predictions {d̂1, . . . , d̂N} that are affine-
invariant, jointly estimate scale and shift parameters ŝi and t̂i, and minimize the distances between
each pair of scaled and shifted predictions (d̂′

i, d̂
′
j) where d̂′ = d̂× ŝ+ t̂. For each optimization step,

we take the pixel-wise median m(x, y) = median( ˆd′
1(x, y), . . . ,

ˆd′
N (x, y)) to compute the merged

depth m. This iterative optimization on spatial alignment paired with extra regularization is used
to produce the final depth prediction. Since it requires no additional ground truth, we can scale this
ensembling technique by increasing N to utilize more test-time compute.
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Figure 9: Effect of Test Time Ensembling. (a) Delta1 Error vs. Number of Forward Passes. (b) Ab-
solute Relative Error vs. Number of Forward Passes. We observe that using an ensembling strategy
by merging multiple predictions from distinct noise initializations displays power law scaling behav-
ior. Here, we increase test-time compute by increasing the number of forward passes at each denois-
ing step by denoising N noise latents. We apply this method using values of N ∈ [1, 2, 5, 10, 15, 20].

5.3 EFFECT OF NOISE VARIANCE SCHEDULE

In diffusion noise schedulers, we can also define a schedule for the variance of the Gaussian noise
applied to the image over the total diffusion timesteps T . This schedule determines the noise level
applied to the image at each step t. Tuning the noise variance schedule allows for the reorganization
of compute by providing the option to spend more FLOPs on denoising steps early or later in the
noise schedule. We experiment with using three different noise level settings for DDIM: linear,
scaled linear, and cosine. Cosine scheduling from (Nichol & Dhariwal, 2021) linearly declines
from the middle of the corruption process, allowing for a more balanced noise schedule that doesn’t
corrupt the image too quickly as in linear schedules. In Fig 10, we observe that the cosine noise
variance schedule outperforms the default linear schedule for DDIM on the depth estimation task.

Figure 10: Effect of Noise Variance (Beta) Schedule. We fine-tune A4 models with three different
beta schedules: linear, scaled linear, cosine. We observe a power law when using different noise
variance schedules. Reallocating compute with the cosine schedule to spend more time denoising
at earlier timesteps by slowly adding noise provides improved Delta1 and Absolute Relative Error
rates.

6 PUTTING IT ALL TOGETHER

Using the lessons from our experiments on depth estimation, we train diffusion models for optical
flow prediction and amodal segmentation. Compared to prior methods, we utilize much smaller
models, less training compute, and smaller data resolution, while achieving similar results to state-
of-the-art for the respective tasks. We show that using diffusion models while considering efficient
methods to scale training and test-time compute can provide substantial performance benefits on
visual perception tasks. Finally, we train a unified model, capable of performing all three visual

8
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perception tasks previously mentioned, displaying the generalizability of our method. See Fig 11
for to see the quality of our predicted samples.

6.1 DEPTH ESTIMATION

We combine our findings from the ablation studies on depth estimation to create a model with the
best training and inference configuration. We train a DiT-XL model from (Peebles & Xie, 2023) on
depth estimation data from Hypersim for 30K steps with a batch size of 1024, resolution of 512x512,
and a learning rate exponentially decaying from 1.2e−4 to 1.2e−6. We use the median compilation
strategy at test-time with a cosine noise variance schedule. As shown in Table 3, our model is able
to achieve slightly improved validation performance over Marigold on the Hypersim dataset, while
being trained on a lower resolution and less pre-training data.

Metric Model Resolution Value

Delta 1 Accuracy DiT-XL/2 512x512 0.876
Abs Relative Error DiT-XL/2 512x512 0.136
Delta 1 Accuracy Marigold 480x640 0.8754

Abs Relative Error Marigold 480x640 0.135

Table 3: Depth Estimation Comparison on Hypersim. We achieve almost equivalent performance
on depth estimation over Marigold. We utilize a smaller resolution and a smaller DiT-XL/2 model
that has been trained with less data and parameters than the Stable Diffusion model used in Marigold.
These results display the effectiveness of applying our scaling techniques on depth estimation.

6.2 OPTICAL FLOW PREDICTION

We use a similar configuration as the depth estimation model for optical flow training. We train
a DiT-XL model on the FlyingChairs dataset for 4K steps with batch size of 1024, resolution of
512x512, and learning rate exponentially decaying from 1.2e − 4 to 1.2e − 6. We compare our
model’s performance with other specialized optical flow prediction techniques in Table 4.

Method Chairs test

DeepFlow 3.53
FlowNetS 2.71

FlowNetS+v 2.86
FlowNetS+ft 3.04

FlowNetS+ft+v 3.03
FlowNetC 2.19

FlowNetC+v 2.61
FlowNetC+ft 2.27

FlowNetC+ft+v 2.67
Ours 5.826

Table 4: Comparison with Specialized Techniques. We evaluate our optical flow model on the
FlyingChairs validation set. We observe our model is able to achieve similar results compared
to specialized methods such as DeepFlow (Weinzaepfel et al., 2013) and FlowNet (Fischer et al.,
2015) in terms of end-point error. Our model is trained on a much smaller dataset compared to the
specialied FlowNet method, which is trained on a variety of optical flow datasets.

6.3 AMODAL SEGMENTATION

For amodal segmentation, we further scale up our fine-tuning approach. We continue to train a DiT-
XL model on the pix2gestalt dataset (Ozguroglu et al., 2024) for 6K steps with a batch size of 4096,
resolution of 256x256, and learning rate exponentially decaying from 1.2e− 4 to 1.2e− 6.
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Figure 11: Amodal Segmentation and Depth Estimation Examples: On the left, we show the
results from our amodal segmentation models, where the model sees RGB image, and segmentation
of the occluded object. The task is to predict the amodal image, and out predictions are very similar
to the ground truth labels. On the right, we show predictions from our depth estiomation model,
with rgb, gtound truth and predction on the first, second and thrid columns respectively.

Method IOU

pix2gestalt 0.88
Ours 0.87

Table 5: Comparison with pix2gestalt. Our model is able to achieve almost equivalent IOU per-
formance as pix2gestalt (Ozguroglu et al., 2024) on their validation set. Our model was pre-trained
on only ImageNet-1K, whereas pix2gestalt uses Stable Diffusion, which is trained with at least an
order of magnitude more data at a higher resolution and more training compute.

6.4 ONE MODEL FOR ALL

Finally, we train a unified DiT-XL model for each of the different tasks. We train this model on
the mixed dataset for 10K steps with a batch size of 1024, resolution of 512x512, and learning rate
exponentially decaying from 1.2e−4 to 1.2e−6. To train this generalist model, we modify the DiT-
XL architecture by replacing the patch embedding layer with a separate PatchEmbedRouter
module, which routes each VAE embedding to a specific input convolutional layer based on the
dataset from which we sample the VAE embedding. This ensures the DiT-XL model is able to
distinguish between the task-specific embeddings during fine-tuning.

7 CONCLUSION

In our work, we examine the scaling properties of diffusion models for visual perception tasks. We
explore various approaches to scale training, including increasing model size, mixture-of-experts
models, increasing image resolution, and upcycling. We also realize the effectiveness of scaling
test-time compute by exploiting the iterative nature of diffusion to reallocate compute to boost down-
stream performance. Our experiments provide strong evidence of scaling with power laws across
various training and inference scaling techniques. We hope to inspire future work in scaling training
and test-time compute for iterative generative paradigms such as diffusion for perception tasks.
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