
A Generating the Hamiltonian AIS bound

Algorithm 6 Generating the (non-differentiable) Hamiltonian AIS variational bound.
Sample z1 ∼ q and ρ1 ∼ S.
Initialize estimator as L ← − log q(z1, ρ1).
for m = 1, 2, · · · ,M − 1 do

Run corrected Tm (Alg. 1) on input (zm, ρm), storing the output (zm+1, ρm+1).
Update estimator as L ← L+ log (π̄m(zm, ρm)/π̄m(zm+1, ρm+1)).

Update estimator as L ← L+ log p̄(zM , ρM ).
return L

B More results tuning more subsets of parameters for UHA

We tested UHA tuning different subsets of {ε, η,Σ, β, q(z), ε(β), ψ(β)}. Fig. 4 shows the results.
The first row shows the results obtained by tuning the pair (ε, η) and each other parameter individually
for different values of K, and the second row shows the results obtained by tuning increasingly more
parameters. It can be observed that tuning β and q(z) lead to the largest gains in performance.
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Figure 4: Tuning more parameters leads to significantly better results. Legends indicate what
parameters are being trained. Parameters are step-size ε, damping coefficient η, moment covariance
Σ, bridging densities parameters β and ψ, initial distribution q. ε(β) indicates we are learning the
step-size as an affine function of β.

C Results using architecture from Burda et al. [6]

In this section we show the results achieved for VAE training using the architecture from Burda et
al. [6] (with 1 stochastic layer). In this case the encoder and decoder consist on feed forward neural
networks with two hidden layers of size 200 with Tanh non-linearity, and latent space dimensionality
of 50. All training details are the same, but with the constraint ε ∈ (0, 0.04). Tables 4 and 5 show the
results.

Table 4: ELBO on the test set (higher is better). For K = 1 both methods reduce to plain VI.

K = 1 K = 8 K = 16 K = 32 K = 64

mnist UHA −92.4 −89.2 −88.5 −88.1 −87.1
IW −92.4 −89.9 −89.3 −88.8 −88.5

letters UHA −139.0 −134.3 −133.3 −132.6 −131.2
IW −139.0 −135.5 −134.7 −134.0 −133.4

kmnist UHA −197.5 −189.5 −188.1 −187.1 −180.3
IW −197.5 −191.8 −190.2 −188.8 −187.6
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Table 5: Log-likelihood on the test set (higher is better). This is estimated using AIS with under-
damped HMC using 2000 bridging densities, 1 HMC iteration with 16 leapfrog steps per bridging
density, integration step-size ε = 0.05, and damping coefficient η = 0.8.

K = 1 K = 8 K = 16 K = 32 K = 64

mnist UHA −88.3 −87.6 −87.4 −87.3 −86.3
IW −88.3 −87.3 −87.0 −86.8 −86.6

letters UHA −133.0 −131.8 −131.4 −131.2 −129.9
IW −133.0 −131.6 −131.2 −130.9 −130.6

kmnist UHA −188.3 −186.3 −185.8 −185.3 −177.4
IW −188.3 −184.4 −183.2 −182.1 −181.2

D Extrapolating optimal parameters for UHA

Some results in Section 5.2.1 (and Appendix B) use a number of bridging densities K up to 512. As
mentioned previously, for those simulations, if K1 ≥ 64 bridging densities were used, we optimized
the parameters for K2 = 64 and extrapolate the parameters to work with K1. We now explain this
procedure.

From the parameters considered, {ε, η,Σ, β, q(z), ε(β), ψ(β)}, the only ones that need to be "extrap-
olated" are the step-size ε and the bridging parameters β. All other parameters are tuned for K2 = 64
bridging densities and the values obtained are directly used with K1 bridging densities.

For β we use a simple interpolation. Define f(x) to be the piecewise linear function (with K2 = 64
"pieces") that satisfies f(xk) = βk, for xk = k/K2 and k = 0, · · · ,K2 (this is a bijection from
[0, 1] to [0, 1]). Then, when using K1, we simply define βk = f(xk), where xk = k/K1 and
k = 0, · · · ,K1.

For ε, we use the transformation εK1
= εK2

logK2

logK1
. While other transformations could be used (e.g.

without the log), we observed this to work best in practice. (In fact, we obtained this rule by analyzing
the dependence of the optimal ε on K for several tasks and values of K.)

E Approximation accuracy

We study the accuracy of the approximation provided by UHA by analyzing the posterior moment
errors: We estimate the mean and covariance of the target distribution using UHA and compute the
mean absolute error of these estimates. (We get the ground truth values using approximate samples
obtained running NUTS [20] for 500000 steps.) We consider a logistic regression model with the
sonar dataset (d = 61), and compare against mean field VI, IW, and HMC. We give each method the
same computational budget B, measured as the total number of model evaluations (or gradient), and
perform simulations for B ∈ {105, 5× 105, 106}.
For HMC, we use half of the budget for the warm-up phase and half to draw samples. For mean field
VI we use the whole budget for optimization, and use the final mean and variance parameters for
the approximation. For UHA and IW we train using K = 32 for 3000 steps, and use the remaining
budget of model evaluations to draw samples (used to estimate posterior moments) using K = 256.2
For UHA we tune the step-size ε, the damping coefficient η, the momentum distribution covariance
(diagonal), the bridging densities coefficients β, and the parameters of the initial distribution q(z).

Fig. 5 shows the results for the posterior covariance. We do not include the results for the posterior
mean because all methods perform similarly. It can be observed that HMC achieves the lowest error,
followed by UHA. Both mean field VI and IW yield significantly worse results.

F Proof of Lemma 1

We begin with the following result.

2For UHA we use the extrapolation explained in Appendix D
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Figure 5: Mean absolute error for posterior covariance approximation. Standard errors computed by
repeating the simulations using five different random seeds.

Lemma 3. Let T1, T2 and T3 be three transitions that leave some distribution π invariant and satisfy
Ti(z

′|z)π(z) = Ui(z|z′)π(z′) (i.e. Ui is the reversal of Ti with respect to π). Then the reversal of T
with respect to π is given by U = U3 ◦ U2 ◦ U1.

Proof.

T (z′|z)π(z) =

∫
T3(z′|z2)T2(z2|z1)T1(z1|z)π(z) dz1 dz2 (12)

=

∫
T3(z′|z2)T2(z2|z1)π(z1)U1(z|z1) dz1 dz2 (13)

=

∫
T3(z′|z2)π(z2)U2(z1|z2)U1(z|z1) dz1 dz2 (14)

= π(z′)

∫
U3(z2|z′)U2(z1|z2)U1(z|z1) dz1 dz2 (15)

= π(z′)

∫
U1(z|z1)U2(z1|z2)U3(z2|z′) dz1 dz2 (16)

= π(z′)U(z|z′). (17)

The rest of the proof is straightforward. Let the three steps from the corrected version of Tm (Alg. 1)
be denoted T 1

m, T 2
m and T 3

m. The latter two (Hamiltonian simulation with accept-reject step and
momentum negation) satisfy detailed balance with respect to πm(z, ρ) [28, §3.2]. Thus, for these
two, U im is defined by the same process as T im. For T 1

m (momentum resampling), its reversal is given
by the reversal of s(ρ′|ρ) with respect to S(ρ). We call this srev(ρ|ρ′), and it satisfies

srev(ρ|ρ′) = s(ρ′|ρ)
S(ρ)

S(ρ′)
. (18)

G Proof of Theorem 2

To deal with delta functions, whenever the transition states [Set z′ ← z], we use z′ ∼ N (z, a), and
take the limit a→ 0. We use ga(z) to denote the density of a Gaussian with mean zero and variance
a evaluated at z, and γ(z, ρ) = (z,−ρ) (operator that negates momentum).

We first compute Tm(zm+1, ρm+1|zm, ρm). We have that ρ′m ∼ s(·|ρm) and z′m ∼ N (zm, a). Thus,

T ′m(z′m, ρ
′
m|zm, ρm) = s(ρ′m|ρm)ga(z′m − zm). (19)
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Also, we have (zm+1, ρm+1) = (γ ◦ Tm)(z′m, ρ
′
m). Since γ ◦ Tm is an invertible transformation with

unit Jacobian and inverse (γ ◦ Tm)−1 = Tm ◦ γ, we get that

Tm(zm+1, ρm+1|zm, ρm) = T ′m((Tm ◦ γ) (zm+1, ρm+1)|zm, ρm) (20)
= s(T ρm(zm+1,−ρm+1)|ρm) ga(T zm(zm+1,−ρm+1)− zm), (21)

where T ρm is the operator that applies Tm and returns the second component of the result (and similarly
for T zm).

Now, we compute Um(zm, ρm|zm+1, ρm+1). We have that (z′m, ρ
′
m) = (Tm ◦ γ) (zm+1, ρm+1).

Thus,

Um(zm, ρm|zm+1, ρm+1) = Um(zm, ρm|z′m, ρ′m) (22)

= srev(ρm|ρ′m) ga(zm − z′m) (23)
= srev(ρm|T ρm(zm+1,−ρm+1) ga(zm − T zm(zm+1,−ρm+1)). (24)

Taking the ratio Um(zm, ρm|zm+1, ρm+1)/Tm(zm+1, ρm+1|zm, ρm) the factors involving the Gaus-
sian pdf cancel (the density of a mean zero Gaussian is symmetric) and using that

srev(ρm|ρ′m)S(ρ′m) = s(ρ′m|ρm)S(ρm) −→ srev(ρm|ρ′m)

s(ρ′m|ρm)
=
S(ρm)

S(ρ′m)
(25)

yields get the desired result.

17


	Generating the Hamiltonian AIS bound
	More results tuning more subsets of parameters for UHA
	Results using architecture from Burda et al. IWVAE
	Extrapolating optimal parameters for UHA
	Approximation accuracy
	Proof of Lemma 1
	Proof of Theorem 2

