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Abstract

Perhaps the single most important use case for differential privacy is to privately
answer numerical queries, which is usually achieved by adding noise to the answer
vector. The central question is, therefore, to understand which noise distribution
optimizes the privacy-accuracy trade-off, especially when the dimension of the
answer vector is high. Accordingly, an extensive literature has been dedicated to
the question and the upper and lower bounds have been successfully matched up to
constant factors [BUV18, SU17]. In this paper, we take a novel approach to address
this important optimality question. We first demonstrate an intriguing central limit
theorem phenomenon in the high-dimensional regime. More precisely, we prove
that a mechanism is approximately Gaussian Differentially Private [DRS21] if
the added noise satisfies certain conditions. In particular, densities proportional
to e−‖x‖

α
p , where ‖x‖p is the standard `p-norm, satisfies the conditions. Taking

this perspective, we make use of the Cramer–Rao inequality and show a “uncer-
tainty principle”-style result: the product of privacy parameter and the `2-loss of
the mechanism is lower bounded by the dimension. Furthermore, the Gaussian
mechanism achieves the constant-sharp optimal privacy-accuracy trade-off among
all such noises. Our findings are corroborated by numerical experiments.

1 Introduction

Introduced in [DMNS06], to date differential privacy (DP) is perhaps the most popular privacy
definition. One of the most important applications of differential privacy is to answer numeric queries.
Given a function f of interest, which is also termed a query, our goal is to evaluate this (potentially
vector-valued) query f on the sensitive data. To preserve privacy, a DP mechanism M working on a
dataset D, in its simplest form, is defined as

M(D) = f(D) + tX. (1)

Above, X denotes the noise term and t is a scalar, which together are selected depending on the
properties of the query f and the desired privacy level. Among these, perhaps the most popular
examples are the Laplace mechanism and the Gaussian mechanism where the noise X follows the
Laplace distribution and the Gaussian distribution, respectively.
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Aside from privacy considerations, the most important criterion of an algorithm is arguably the
estimation accuracy in the face of choosing, for example, between the Laplace mechanism or
its Gaussian counterpart for a given problem. To be concrete, consider a real-valued query f
with sensitivity 1—that is, ∆f = supD,D′ |f(D) − f(D′)| = 1, where the supremum is over all
neighboring datasets D and D′. Assuming (ε, 0)-DP for the mechanism M , we are interested in
minimizing its `2 loss defined as

err(M) := E(M(D)− f(D))2 = E(tX)2 = t2EX2.

This question is commonly2 addressed by setting X to a standard Laplace random variable and
t = ε−1 [DMNS06]. This gives err(M) = 2ε−2. Moving forward, we relax the privacy constraint
from (ε, 0)-DP to (ε, δ)-DP for some small δ. The canonical way, which was born together with the
notion of (ε, δ)-DP, is to add Gaussian noise [DKM+06]. A well-known result demonstrates that
Gaussian mechanism withX being the standard normal and t = 1

ε

√
2 log(1.25δ−1) is (ε, δ)-DP (see,

e.g., [DR14]). The `2-loss is err(M) = t2 = 2ε−2 · log(1.25δ−1).

A quick comparison between the two errors reveals a surprising message. The latter error
2ε−2 · log(1.25δ−1) is larger than the former 2ε−2. In fact, the extra factor log(1.25δ−1) is al-
ready greater than 10 when δ = 10−5. At least on the surface, this observation contradicts the fact
that (ε, δ)-DP is a relaxation of (ε, 0)-DP. Put differently, moving from Laplace to Gaussian, both
privacy and accuracy get worse. Nevertheless, this contradiction suggests that we need a better alter-
native to the Gaussian mechanism instead of giving up the notion of (ε, δ)-DP. Indeed, the truncated
Laplace mechanism has been proposed as a better alternative to achieve (ε, δ)-DP [GDGK20], which
outperforms the Laplace mechanism in terms of estimation accuracy 3.

Motivated by these facts concerning the Laplace, Gaussian, and truncated Laplace mechanisms, one
cannot help asking:

(Q1) Why was the truncated Laplace mechanism not considered in the first place? Are there any
insights behind the design of such mechanisms?

(Q2) More importantly, are these insights inherent for answering one-dimensional queries, or can
we extend them to high-dimensional setting?

In this paper, we tackle these fundamental questions, beginning with explaining (Q1) in Section 2 from
the decision-theoretic perspective of DP [WZ10, KOV17, DRS21]. However, our main focus is (Q2).
In addressing this question, we uncover a seemingly surprising phenomenon — it is impossible to
utilize the (ε, δ) privacy budget in high-dimensional problems the same way as the truncated Laplace
mechanism utilizes it in the one-dimensional problem. More specifically, we show a central limit
behavior of the noise-addition mechanism in high dimensions, which, roughly speaking, says that for
general noise distributions, the corresponding mechanisms all behave like a Gaussian mechanism. The
formal language of “a mechanism behaves like the Gaussian mechanism” has been set up in [DRS21],
where a notion called Gaussian Differential Privacy (GDP) was proposed. Roughly speaking, a
mechanism is µ-GDP if it offers as much privacy as adding N(0, µ−2) noise to a sensitivity-1 query.
As in the (ε, δ)-DP case, the smaller µ is, the stronger privacy is offered.

To state our first main contribution, let f be an n-dimensional query and assume that its `2-sensitivity
is 1. Consider the noise addition mechanism M(D) = f(D) + tX where X has a log-concave
density ∝ e−ϕ(x) on Rn. Let IX := E[∇ϕ(X)∇ϕ(X)T ] be the n × n Fisher information matrix
and ‖IX‖2 be its operator norm.
Theorem 1.1 (Central Limit Theorem (Informal version of Theorem 3.1)). Under certain conditions
on ϕ, for t = µ−1 ·

√
‖IX‖2, the corresponding noise addition mechanism M defined in Eq.(1)

is asymptotically µ-GDP as the dimension n → ∞ except for an o(1) fraction of directions of
f(D)− f(D′).

In particular, the norm power functions ϕ(x) = ‖x‖αp (p, α > 1) satisfy these technical conditions.
Note that this class already contains correlated noise, so the results in [DRS21] do not apply here.
Numerical results in Figure 1 shows that the convergence occurs for a dimension as small as 30.

2If f is integer-valued, then the doubly geometric distribution is a better choice and yields an `2-loss of
1
2
sinh−2 ε

2
< 2ε−2. In the so-called high privacy regime, i.e. ε → 0, the two `2-losses have the same order in

the sense that their ratio goes to 1.
3One may blame the sub-optimality of the choice of t, but the problem remains even if the smallest possible

t from [BW18] is applied.
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Figure 1: Fast convergence to GDP as claimed in Theorem 1.1. Blue solid curves indicate the true
privacy (i.e. ROC functions, see Section 2 for details) of the noise addition mechanism considered
in Theorem 1.1. Red dashed curves are GDP limit predicted by our CLT. In all three panels the
dimension n = 30. Numerical details can be found in the appendix.

We then elaborate on the condition “o(1) fraction of f(D)−f(D′)”. Following the original definition,
DP or GDP is a condition that needs to hold for arbitrary neighboring datasets D and D′. This
worst case perspective is exactly what prevents us to observe the central limit behavior. For example,
consider a certain pair of datasets with f(D) = (0, 0, . . . , 0) and f(D′) = (1, 0, . . . , 0), then privacy
is completely determined by the first marginal distribution of X , and the dimension n plays no role
here. The “o(1) fraction of f(D)− f(D′)” rules out the essentially low-dimension cases and reveals
the truly high-dimensional behavior.

In summary, Theorem 1.1 suggests that when the dimension is high, a large class of noise addition
mechanisms behave like the Gaussian mechanism, and hence are doomed to a poor use of the given
(ε, δ) privacy budget, in the same fashion as we have seen in the one-dimensional example.

However, admitting the central limit phenomenon, our second theorem turns the table and charac-
terizes the optimal privacy-accuracy trade-off and justifies the Gaussian mechanism. To see this,
recall that the noise addition mechanism defined in Equation (1) is determined by the pair (t,X).
Both privacy and accuracy are jointly determined by t and X . Adopting the central limit theorem
1.1, it is convenient to take an equivalent parametrization, which is (µ,X), where µ is the desired
(asymptotic) GDP parameter. Given X , the two parametrizations are related by t = µ−1 ·

√
‖IX‖2.

Using parameters (µ,X), the corresponding mechanism Mµ,X is given by

Mµ,X(D) = f(D) + µ−1 ·
√
‖IX‖2 ·X

By Theorem 1.1, it is asymptotically µ-GDP. The following theorem states in an “uncertainty principle”
fashion that the privacy parameter and the error cannot be small at the same time.

Theorem 1.2. As long as the Fisher information of X is defined, we have

µ2 · err(Mµ,X) > n.

The equality holds if X is n-dimensional standard Gaussian.

Combining Theorems 1.1 and 1.2, among all the noise that satisfies the conditions of Theorem 1.1,
Gaussian yields the constant-sharp optimal privacy-accuracy trade-off. As far as we know, this is the
first result characterizing optimality with the sharp constant when the dimension is high.

The privacy conclusion of Theorem 1.1 does not work for every pair of neighboring datasets, so it is
worth noting that we do NOT intend to suggest this as a valid privacy guarantee. Instead, we present
it as an interesting phenomenon that has been largely overlooked in the literature. Furthermore, this
central limit theorem admits an elegant characterization of privacy-accuracy trade-off that is sharp in
constant. From a theoretical point of view, the proof of Theorem 1.1, as we shall see in later sections,
involves non-linear functionals of high dimensional distributions. This type of results are, to the best
of our knowledge, quite underexplored compared to linear functionals, so our results may serve as an
additional motivation to study this type of questions.
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Related work There is a large body of literature on the characterization of privacy-accuracy trade-
off for query answering mechanisms. For the one-dimensional case, the constant-sharp optimal noise
for (ε, 0)-DP was shown to have a piece-wise constant density by [GV16]. This complements our
discussion in Figure 2. When the dimension is high, only up-to-constant-factor optimality was known.
In particular, [BUV18, SU17] confirm that Gaussian mechanism is minimax rate optimal under (ε, δ)-
DP by a novel lower bound technique. In addition, [ENU20] also confirms the minimax optimality of
Gaussian mechanism for linear queries with a refined notion of sensitivity. Our work extends this
direction by taking the CLT perspective and providing an elegant constant-sharp optimality result.
There are also works studying the up-to-constant-factor minimax optimality in other models, such
as the (sparse) linear regression [CWZ21], generalized linear models [CWZ20, SSTT21], Gaussian
mixtures [KSSU20, ZZ21] and so on. In our work, we initialize the investigation in the (simpler)
mean estimation problem, and leave the constant-sharp optimality in other problems for future work.

2 GDP and the ROC Functions

The decision theoretic interpretation of DP was first proposed in [WZ10] and then extended by
[KOV17]. More recently, [DRS21] systematically studied this perspective and developed various
tools. In this section we take this perspective and introduce the basics of [DRS21]. This will allow us
to give an intuitive answer to (Q1).

Suppose each individual’s sensitive information is an element in the abstract set X . A dataset D of k
people is then an element in X k. Let a randomized algorithm M take a dataset as input and let D and
D′ be two neighboring datasets, i.e. they differ by one individual. Differential privacy seeks to limit
the power of an adversary identifying the presence of an arbitrary individual in the dataset. That is,
with the output as the observation, telling apart D and D′ must be hard for the adversary. Decision
theoretically, the quality of an attack is measured by the errors it makes. The more error it is forced
to make, the more privacy M provides.

To breach the privacy, the adversary performs the following hypothesis testing attack:

H0 : output ∼M(D) vs H1 : output ∼M(D′).

By the random nature of M , M(D) and M(D′) are two distributions. We emphasize this point by
denoting them by P and Q. The errors mentioned above are simply the probabilities confusing D and
D′, which are commonly known as false positive and false negative rates. Because of the symmetry
of the neighboring relation, there is no need to worry about which is which.

ROC function. For simplicity assume M outputs a vector in Rn. A general decision rule for
testing H0 against H1 has the form φ : Rn → {0, 1}. Observing v ∈ Rn, hypothesis Hi is accepted
if φ(v) = i, for i ∈ {0, 1}. The false positive rate (type I error) of φ, i.e. mistakenly accepting
H1 : v ∼ M(D′) = Q while actually v ∼ M(D) = P , is αφ := Pv∼P (φ(v) = 1) = EP (φ).
Similarly, the false negative rate (type II error) of φ is βφ := 1− EQ(φ). Note that both errors are in
[0, 1]. Consider the function fP,Q : [0, 1]→ [0, 1] defined as follows:

fP,Q(α) := inf{1− EQ(φ) : φ satisfies EP (φ) 6 α}. (2)

That is, fP,Q(α) equals the minimum false negative rate that one can achieve when false negative is
at most α. The graph of fP,Q is exactly the flipped ROC curve of the family of optimal tests (which,
by Neyman–Pearson lemma, are the likelihood ratio tests). We call it the ROC function of the test P
vs Q. The same notion is called trade-off function of P and Q in [DRS21] and is denoted by T [P,Q].
We avoid this name because in our paper “trade-off” mainly refers to the privacy-accuracy trade-off,
but we will keep their notation.

DP and ROC function Plugging in the privacy context where P = M(D), Q = M(D′), from
the discussion above, we see that T [M(D),M(D′)] measures the optimal error distinguishing
M(D) and M(D′). Therefore, a lower bound on T [M(D),M(D′)] implies privacy of M . Indeed,
[WZ10, KOV17] showed that M is (ε, δ)-DP if and only if T [M(D),M(D′)] > fε,δ pointwise in
[0, 1] for any neighboring dataset D,D′. The graph of fε,δ is plotted in the left panel of Figure 2.
Compared to a single (ε, δ) bound, the ROC function T [M(D),M(D′)] provides a more refined
picture of the privacy of M . In fact, [DRS21] shows that the ROC function is equivalent to an infinite
family of (ε, δ) bounds, which is called privacy profile in [BBG20].
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Figure 2: Left: fε,δ which recovers the classical (ε, δ)-DP definition. Middle: Laplace mechanism is
(ε, 0)-DP Right: Gaussian mechanism and truncated Laplace mechanism are both (ε, δ)-DP

Truncated Laplace vs Gaussian through the lense of ROC function Now we use ROC function
to answer (Q1) in the introduction. Namely, we want to explain the embarrassing situation of the
Gaussian mechanism that the privacy budget is not fully used, and the success of the truncated
Laplace mechanism.

When M is the Laplace mechanism which is designed to be (ε, 0)-DP, it is not hard to determine
T [M(D),M(D′)] via Neyman–Pearson lemma and verify that it is indeed lower bounded by fε,0
(see the middle panel of Figure 2). In fact, T [M(D),M(D′)] mostly agrees with fε,0. In other words,
the (ε, 0) privacy budget is almost4 fully utilized.

When M is the Gaussian mechanism with (ε, δ)-DP gaurantee, T [M(D),M(D′)] is naturally lower
bounded by fε,δ , however, there is a large gap between the two curves (see the right panel of Figure 2).
The (ε, δ) privacy budget is poorly utilized by the Gaussian mechanism. This explains why the l2-loss
of Gaussian mechanism is not satisfactory.

For noise addition mechanism, if the noise is bounded, say a uniform [−1, 1] distribution, then
T [M(D),M(D′)] = f0,δ for some δ ∈ (0, 1). This suggests us to consider bounded noise if we want
to add a δ slack in privacy to the Laplace mechanism. The obvious attempt is then to truncate Laplace
noise. Indeed, the corresponding ROC function is as close to fε,δ as that of the Laplace mechanism to
fε,0 (also see the right panel of Figure 2). This not only explains the success of the truncated Laplace
mechanism, but also points us to the right direction in searching for such a mechanism.

In hindsight, this achievement for one-dimensional mechanisms is due to the following fact: as we
change the noise distribution, the corresponding ROC functions are significantly different. Hence we
can pick the one that best utilizes our privacy budget. However, in the next section we will argue that
this no longer works when the dimension is high — many (if not all) choices of noise distribution
yield the same ROC function, which is the ROC of Gaussian mechanism.

ROC function of the Gaussian mechanism For µ > 0, let Gµ := T [N (0, 1),N (µ, 1)] where Φ
denotes the cumulative distribution function (CDF) of the standard normal distribution. Consider a
query f with sensitivity 1 and let Lap(0, 1) be the standard Laplace noise. Just like ε-DP captures the
privacy of the mechanism M(D) = f(D) + ε−1 · Lap(0, 1), the function Gµ captures the privacy of
M(D) = f(D) + µ−1 ·N(0, 1). In fact, if f(D′)− f(D) = 1, then M(D) = N(f(D), µ−2) and
M(D′) = N(f(D′), µ−2). By its hypothesis testing construction, T [P,Q] remains invariant when
an invertible transformation is simultaneously applied to P and Q, resulting in

T [M(D),M(D′)] = T [N(f(D), µ−2), N(f(D′), µ−2)] = T [N(0, 1), N(µ, 1)] = Gµ

Therefore, the privacy of a Gaussian mechanism is precisely captured by the ROC function Gµ. A
general mechanism M is said to be Gaussian differentially private (GDP) if it offers more privacy
than a Gaussian mechanism. More specifically,
Definition 2.1 (GDP). An algorithm M is µ-GDP if T [M(D),M(D′)] > Gµ for any pair of
neighboring datasets D and D′.

4If the query is integer-valued, then (ε, 0) privacy budget can be saturated by adding doubly geometric noise.
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Alternatively, M is µ-GDP if and only if infD,D′ T [M(D),M(D′)] > Gµ where the infimum of
ROC functions is interpreted pointwise, and the infimum is taken over all neighboring datasets D and
D′. This inequality says M offers more privacy than the corresponding Gaussian mechanism. If the
equality holds, i.e.

inf
D,D′

T [M(D),M(D′)] = Gµ (3)

then it means the mechanism M offers exact the same amount of privacy as the corresponding
Gaussian mechanism. In fact, the CLT to be presented in the next section has this flavor of conclusion.

3 Central Limit Theorem

In the following two sections we turn to addressing (Q2). This section is dedicated to the rigorous
form of the CLT and the discussion.

The experience with the CLT for i.i.d. random variables suggests that the statement for the normalized
special case is usually the most comprehensible. Therefore, we will state the normalized version as
Theorem 3.1 and derive the general case as Corollary 3.2, which is also the rigorous version of our
informal theorem 1.1 mentioned in the introduction.

Consider an n-dimensional query f : X k → Rn. We assume it has `2-sensitivity 1, i.e.
supD,D′ ‖f(D)− f(D′)‖2 = 1. Suppose ϕ : Rn → R is convex and e−ϕ is integrable on Rn. The
log-concave random vector with density ∝ e−ϕ(x) will be denoted by Xϕ. Define the function class

Fn := {ϕ : Rn → R convex | ϕ(x) = ϕ(−x), e−ϕ ∈ L1(Rn),E‖Xϕ‖22 < +∞,E‖∇ϕ(Xϕ)‖22 < +∞}.
The regularity conditions guarantee that Xϕ has finite second moments and Fisher information matrix
defined as Iϕ = E[∇ϕ(Xϕ)∇ϕ(Xϕ)T ]. Furthermore, we also have EXϕ = 0 by symmetry and
E∇ϕ(Xϕ) = 0 by standard theory of Fisher information (e.g. [VdV00]). We will focus on this class
of functions for the rest of paper.

The n-dimensional noise addition mechanism of interest takes the form M(D) = f(D) + tXϕ.
The parameter t is only for the convenience of tuning and can be absorbed into ϕ. In fact, tXϕ has
log-concave density ∝ e−ϕ(x/t), so it is distributed as Xϕ̃ where ϕ̃(x) = ϕ(x/t). For the normalized
CLT, we set t = 1 and assume Iϕ is the n× n identity matrix In×n.

Since what we are going to present is an asymptotic result where the dimension n→∞, the above
objects necessarily appear with an index n, i.e. we have fn, ϕn, Xϕn and Iϕn . The latter two are
often denoted by Xn and In for brevity. With normalization, the n-dimensional mechanism of
interest is Mn(D) = fn(D) +Xn. For clarity, we choose to state the theorem first, and then present
the details of the technical conditions.
Theorem 3.1. If the function sequence ϕn satisfies conditions (D1) and (D2), then there is a sequence
of positive numbers cn with cn → 0 as n→∞ and a subset En ⊆ Sn−1 with Pv∼Sn−1(v ∈ En) >
1− cn such that

‖ inf
D,D′

T [Mn(D),Mn(D′)]−G1‖∞ 6 cn

where the infimum is taken over D,D′ such that fn(D′)−fn(D)
‖fn(D′)−fn(D)‖2 ∈ En.

Here v ∼ Sn−1 means v comes from a uniform distribution of the unit sphere Sn−1 ⊆ Rn. The
conclusion is basically that infD,D′ T [Mn(D),Mn(D′)] → G1, i.e. Mn is asymptotically GDP.
Similar to the interpretation of (3), it means the mechanism Mn provides the same amount of privacy
as a Gaussian mechanism in the limit of n→∞. However, a fraction of neighboring datasets has to be
excluded. More specifically, the limit holds if the direction of the difference fn(D′)− fn(D) falls in
En, an “almost sure” event as the dimension n→∞. As we remarked in the introduction, directions
in En can exhibit low dimensional behavior and hence must be ruled out for any high-dimensional
observation.

For a vector v ∈ Rn and ϕ ∈ Fn, let Pϕv : Rn → R be defined as Pϕv (x) = ϕ(x + v) − ϕ(x) −
1
2v
TIϕv. For two random variables X and Y , their Kolmogorov–Smirnov distance KS(X,Y ) is

defined as the `∞ distance of their CDFs. A sequence of random variables is denoted by oP (1) if
they converge in probability to 0. The technical conditions for the CLT are as follows. Note that each
of them are conditions on the function sequence ϕn.
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(D1) KS
(
Pϕnv (Xn), vT∇ϕn(Xn)

)
= o(1) with probability at least 1− o(1) over v ∼ Sn−1

(D2) ‖∇ϕn(Xn)‖2 =
√
n · (1 + oP (1))

Remark 1. Dropping the cumbersome subscripts n, (D1) roughly asks that

Pϕv (X) = ϕ(X + v)− ϕ(X)− 1
2v
TIϕv ≈ vT∇ϕ(X)

Since Iϕ is the expectation of the Hessian of ϕ, we see that (D1) is basically a regularity condition
stating that the Taylor expansion of ϕ holds on average up to the second order.
Remark 2. Condition (D2) basically says that ∇ϕ(X) mostly falls on a spherical shell of radius

√
n

(as it should since Iϕ = E[∇ϕ(X)∇ϕ(X)T ] is assumed to be identity). A deeper understanding is
provided by an alternative interpretation of condition (D1), using a new notion we propose called
“likelihood projection”.

Likelihood Projection. The function Pϕv defined above is called the “likelihood projection” along
direction v. It is (up to an additive constant) the log likelihood ratio of Xϕ and its translation Xϕ − v.
In fact, Xϕ has density 1

Zϕ
e−ϕ(x) and Xϕ − v has density 1

Zϕ
e−ϕ(x+v) where Zϕ is the common

normalizing constant. The log likelihood ratio is ϕ(x+v)−ϕ(x). This explains the word “likelihood”.
To observe its nature as a “projection”, consider the special case ϕ(x) = 1

2‖x‖22. Straightforward
calculation suggests that Iϕ is identity and Pϕv (x) = vTx. So it is indeed a generalization of the
linear projection along direction v.

The alternative interpretation of condition (D1) is that when the dimension is high, the “likelihood
projection” Pϕv (X) is roughly a linear projection to the direction v. Condition (D2) is then the
“thin-shell” condition proposed in Sudakov’s theorem [Sud78] which we state in the appendix as a
necessary tool for the proof of our CLT.

For the general case, consider Mn(D) = fn(D) + tnXϕn where tn = µ−1 ·
√
‖In‖2. The factor√

‖In‖2 normalizes the Fisher information to the identity, and the factor µ−1 controls the final
privacy level. For this mechanism, we have

Corollary 3.2. If the function sequence ϕ̃n(x) = ϕn(‖In‖−
1
2

2 x) satisfies conditions (D1) and (D2)
and that In = ‖In‖2 · (1 + o(1)) · In×n, then there is a sequence of positive numbers cn → 0 and a
subset En ⊆ Sn−1 for each n with Pv∼Sn−1(v ∈ En) > 1− cn such that

‖ inf
D,D′

T [Mn(D),Mn(D′)]−Gµ‖∞ 6 cn

where the infimum is taken over D,D′ such that fn(D′)−fn(D)
‖fn(D′)−fn(D)‖2 ∈ En.

In particular, when p and α belong to [1,+∞), norm powers ‖x‖αp satisfy the above conditions.

Lemma 3.3. For p ∈ [1,+∞), α ∈ [1,+∞), let cp,α = α−1 · p−α+α
p ·
(

Γ(2− 1
p )

Γ( 1
p )

)−α2
, the sequence

of functions ϕn(x) = n1−αp · cp,α‖x‖αp satisfies conditions (D1) and (D2) and that In = ‖In‖2 ·
(1 + o(1)) · In×n.

The parameter cp,α and the power of n are determined by the Fisher information, which can be found
in Lemma 4.2. More generally, we conjecture that
Conjecture 3.4. All functions in Fn satisfy (D1) and (D2).

Recall that ϕ ∈ Fn lead to log-concave distributions. We limit the scope of our conjecture to
log-concave distributions because of an interesting lemma involved in the proof of the central limit
theorem 3.1. Consider the mechanism M t(D) = f(D) + tX , with the emphasis on the scaling
parameter t. As t increases, M t obviously loses accuracy regardless of log-concavity of X . On the
other hand, when it comes to privacy, we have
Lemma 3.5. WhenX has log-concave distribution and t > 0, the ROC function T [M t(D),M t(D′)]
is (pointwise) monotone increasing in t for any D,D′.

Since larger ROC function means more privacy, this lemma confirms that M t gains privacy as t
increases. In other words, it confirms the existence of “privacy-accuracy trade-off” given the log-
concavity of X . Note that without log-concavity, monotonicity in the lemma need not hold. For a
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one-dimensional example, consider an X that supports on even numbers and f(D) = 0, f(D′) = 2.
When t = 2, T [M t(D),M t(D′)] = T [2X, 2X + 2] = T [X,X + 1]. There is no privacy in
this case as X and X + 1 has completely disjoint support. On the other hand, when t = 1,
T [M t(D),M t(D′)] = T [X,X + 2] and incurs some privacy. That is, more noise does not imply
more privacy, hence violating the conclusion of Lemma 3.5.

In summary, results in this section show that mechanisms adding noise that satisfies (D1) and (D2)
(e.g. densities ∝ e−‖x‖

α
p ) behave like a Gaussian mechanism. Changing the noise in this class does

not change the ROC function by much. Hence we cannot repeat the success at fully utilizing the
(ε, δ) privacy budget as in Section 2.

On the other hand, our CLT involves Fisher information, and hence gives us the opportunity to relate
to the (arguably) most successful tool for constant-sharp lower bound — the Cramer–Rao inequality.
This will be the content of the next section.

4 Privacy-Accuracy Trade-off via Cramer–Rao Inequality

The central limit theorem in the previous section suggests that we use GDP parameter µ to measure
privacy. Adopting this, we will show that the privacy-accuracy trade-off is naturally characterized by
the Cramer–Rao lower bound. The conclusion has a similar flavor to the uncertainty principles.

Recall that the mechanism M(D) = f(D) + tXϕ is determined by two “parameters”: the shape
parameter ϕ ∈ Fn which determines the distribution of Xϕ, and the scale parameter t. If ϕ also
satisfies the conditions of Theorem 3.1, then we can use the desired (asymptotic) GDP parameter
µ to determine the scale parameter, i.e. t = µ−1 ·

√
‖Iϕ‖2. Using the equivalent parametrization

(µ, ϕ), the corresponding mechanism Mµ,ϕ is given by

Mµ,ϕ(D) = f(D) + µ−1 ·
√
‖Iϕ‖2 ·Xϕ. (4)

As we have explained in the introduction, one way to measure the accuracy of the mechanism is the
mean squared error of the noise

err(Mµ,ϕ) = E‖tXϕ‖22 = µ−2 · ‖Iϕ‖2 · E‖Xϕ‖22. (5)

The following theorem characterizes the privacy-accuracy trade-off as the product of the mean squared
error err(Mµ,ϕ) and privacy parameter µ2.

Theorem 4.1 (Restating Theorem 1.2). For any ϕ ∈ Fn and Mµ,ϕ defined as in (4), we have

µ2 · err(Mµ,ϕ) > n.

In addition, the equality holds if the added noise X is n-dimensional standard Gaussian.

Proof of Theorem 4.1. To simplify notations we will drop the subscript ϕ in X . We first claim that it
suffices to show the following uncertainty-principle-like result

Var[X] ·Var[∇ϕ(X)] > n2. (6)

where the notation Var[·] is slightly abused to denote the mean squared distance of a random vector
from its expectation, i.e. Var[X] = E[‖X − EX‖22].

To see why (6) suffices, notice that by (5), the interested quantity can be simplified as

µ2 · err(Mµ,ϕ) = E‖X‖22 · ‖Iϕ‖2. (7)

Recall that we have EX = 0 by symmetry of ϕ and E∇ϕ(X) = 0 by basic Fisher information theory.
So Var[∇ϕ(X)] = E‖∇ϕ(X)‖22 = TrE∇ϕ(X)∇ϕ(X)T = Tr Iϕ. That is, eq. (6) implies

E‖X‖22 · Tr Iϕ > n2. (8)

Since Iϕ is positive semi-definite, by (7) and (8) we have

µ2 · err(Mµ,ϕ) = E‖X‖22 · ‖Iϕ‖2 > E‖X‖22 · 1
nTr Iϕ > n.

8



Table 1: Explicit expressions of Fisher information and mean squared error.

Density ‖Iϕ‖2 E‖X‖22 E‖X‖22 · ‖Iϕ‖2 E‖X‖2∞ E‖X‖2∞ · ‖Iϕ‖2
∝ e−‖x‖1 1 2n 2n ∼ (log n)2 ∼ (log n)2

∝ e−‖x‖2 1
n n(n+ 1) n+ 1 ∼ 2n log n ∼ 2 log n

∝ e−‖x‖
2
2 2 1

2n n ∼ log n ∼ 2 log n

∝ e−‖x‖
α
p Lemma 4.2 Lemma 4.2 ∼ Cp · n Appendix 6 C ′p · (log n)

2
p

Next we focus on the proof of (6). Consider the location family {X + θ : θ ∈ Rn}. The Fisher
information of this family is Iϕ at all θ. The random vector itself is an unbiased estimator of the
location. Therefore, by the Cramer–Rao inequality (c.f. [VdV00]), we have that Cov(X)− I−1

ϕ is
positive semi-definite. As a consequence,

Var[X] = Tr Cov(X) > Tr I−1
ϕ = λ−1

1 + · · ·+ λ−1
n .

where λ1 > · · · > λn > 0 are the eigenvalues of Iϕ. We already see that Var[∇ϕ(X)] = Tr Iϕ, so
by Cauchy–Schwarz inequality,

Var[X] ·Var[∇ϕ(X)] > (λ−1
1 + · · ·+ λ−1

n )(λ1 + · · ·+ λn) > n2

The proof of the inequality is complete. For standard Gaussian, we have Cov(X) = Iϕ = In×n, and
we have µ2 · err(Mµ,ϕ) = E‖X‖22 · ‖Iϕ‖2 = Tr In×n · 1 = n.

Note that although Theorem 4.1 holds true for very general ϕ (only integrability conditions are im-
posed in Fn), the interpretation that µ is the asymptotic privacy parameter only holds for distributions
that satisfy (D1) and (D2). Therefore, let us consider the special case where ϕ(x) = ‖x‖αp . The
corresponding Xϕ will be denoted by Xp,α and Iϕ by Ip,α. In this special case, we can compute the
quantities in (8) exactly. In the following lemma, we write an ∼ bn for the two sequences an and bn
if anbn → 1 as n→∞.

Lemma 4.2. For 1 6 p <∞ and 1 6 α <∞, as n→∞, we have

E‖Xp,α‖22 ∼ n
2
α−

2
p+1 · α− 2

α · p 2
p · Γ( 3

p )
/

Γ( 1
p );

Ip,α ∼ n
2
p−

2
α · α 2

α · p2− 2
p · Γ(2− 1

p )
/

Γ( 1
p ) · In×n.

This result put Theorem 4.1 into a more concrete context. Some important cases with specific values
of p and α are worked out in Table 1. Remarkably, in the last row, the products that characerize
privacy-accuracy trade-off are asymptotically independent of α. As a by-product of this calculation,
we also derive the expression for the isotropic constant of the n-dimensional `p ball, which is an
important concept in convex geometry (c.f. [BGVV14]). See the appendix for more results and
discussion.

Alternatively, we may want to measure the accuracy by the expected squared `∞-norm of the noise.
A similar argument suggests to consider the following quantity E‖Xϕ‖2∞ · ‖Iϕ‖2. By Theorem 4.1
and the fact that ‖x‖∞ > 1√

n
‖x‖2, we have

E‖Xϕ‖2∞ · ‖Iϕ‖2 > 1
nE‖Xϕ‖22 · ‖Iϕ‖2 > 1. (9)

We would like to point out a connection to a recently resolved open problem proposed in [SU17],
asking if there is a DP algorithm that answers a high-dimensional query with `2-sensitivity 1 with
O(1) error in `∞ norm. In particular, the recent solution [DK20, GKM20] provides strong evidence
that the lower bound in (9) is tight up to a constant factor.

An Analogy with Uncertainty Principles There are various mathematical manifestations of the
uncertainty principle. The one behind Hesenberg uncertainty principle is that a function and its
Fourier transform cannot both be localized simultaneously. Specifically, for a function f ∈ L2(Rn),
its Fourier transform is defined as f̂(ξ) =

∫
e−2πi〈ξ,x〉f(x) dx. Fourier transform is unitary, i.e.

‖f‖L2 = ‖f̂‖L2 . In particular, if |f |2 is a probability density, then so is |f̂ |2. Our previous

9



abuse of notation also applies here, for example, Var[|f |2] =
∫

(x − a)T (x − a)|f(x)|2 dx where
a =

∫
x|f(x)|2 dx. For ‖f‖L2 = 1, we have the following result5 (c.f. Corollary 2.8 of [FS97])

Var[|f |2] ·Var[|f̂ |2] > n2

16π2 . (10)

The similarity between (6) and (10) suggests that Theorem 4.1 can be considered as yet another
manifestation of the uncertainty principle.

5 Conclusions and Future Works

In this work, we study constant-sharp optimality of noise addition algorithms for high-dimensional
query answering with differential privacy. We demonstrate that the ROC function offers good
insight in comparing the “actual spend vs budget” of differential privacy and hence in the design
of one-dimensional algorithms. However, when the dimension is high, a CLT shows that (ε, δ)
privacy budget cannot be fully spent for a large class of noise addition mechanisms as they all
behave like a Gaussian mechanism. On the other hand, Fisher information naturally arises in these
high-dimensional mechanisms, and the simple and fundamental quantity “privacy parameter × error”
automatically manifests itself as the quantity “information × error” in the Cramer–Rao lower bound.
Using this, we are able to show an elegant characterization of the precise privacy-accuracy trade-off,
and justify the constant-sharp optimality of the Gaussian mechanism. We believe the insights offer a
novel perspective to the long-lived privacy-accuracy trade-off question.

Various extensions are possible. An immediate one is to extend the CLT to a broader class of noise
distributions, such as log-concave distributions as specified in Conjecture 3.4. Another condition
imposed by Fn (implicitly) is that the noise must be supported on the whole space. The difficulty in
removing the condition lies in the lack of a definition of Fisher information for noise with bounded
support. In particular, one may consider extending the theories to cover the noise used in [DK20]
and prove a corresponding lower bound like (9). For non-log-concave noise, Lemma 3.5 suggests
us to believe that a corresponding log-concave noise with no less privacy and accuracy exists. For
algorithms beyond noise addition or problems beyond query answering, we believe that they still
exhibit some universal behavior as long as the dimension is high. As a circumstantial evidence,
[BDKT12] shows that generic algorithms for query answering can be reduced to a noise addition one
with better accuracy and slightly worse privacy.
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Supplemental Materials

In Appendix A we provide the detail of the numerical experiments. The central limit theorem 3.1
(normalized) and 3.2 (general case) are proved in Appendix B. Appendix C proves Lemma 4.2
and provide some additional results that apply beyond norm powers. The proof of Lemma 3.3,
which verifies that norm powers satisfy the technical conditions (D1) and (D2), requires results in
Appendix C and takes significant effort, so we dedicate the entire Appendix D to it.

Appendix A Numerical Verification of the Central Limit Theorem

This section discusses the details of the numerical experiments shown in Figure 1 (repeated below)
that verifies our central limit theorem.
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Figure 1: Fast convergence to GDP as claimed in Theorem 1.1. Blue solid curves indicate the true
privacy (i.e. ROC functions, see Section 2 for details) of the noise addition mechanism considered
in Theorem 1.1. Red dashed curves are GDP limit predicted by our CLT. In all three panels the
dimension n = 30. In order to show that our theory works for general `p-norm to the power α, we
pick them to be famous mathematical constants, namely p = π, α = e and the coeffcient being the
Euler–Mascheroni constant γ.

The mechanism in consideration is M(D) = f(D) + tX where the n-dimensional random vector
X has density ∝ e−‖x‖

α
p . We want to demonstrate that when t = µ−1 ·

√
‖Ip,α‖2 = µ−1 · n 1

p−
1
α ·

α
1
α · p1− 1

p ·
√

Γ(2− 1
p )

Γ( 1
p )
· 1 + (o(1)) we have

inf
D,D′

T [M(D),M(D′)] ≈ Gµ.

The infimum is taken over D,D′ such that the direction of fn(D)− fn(D′) is in a large subset En of
the unit sphere. It is hard to evaluate the infimum even numerically, but it turns out that the infimum
is equal to infv∈En T [tX, tX + v]. This is the first part of the proof of Theorem 1.1.

Therefore, it suffices to evaluate T (tX, tX + v) and compare with the GDP function Gµ, but the
high-dimensional nature ofX prevents exact evaluation, so we will introduce a Monte Carlo approach.

Empirical ROC Function X has density ∝ e−ϕ(x) and X + v has density ∝ e−ϕ(x−v). The log
likelihood ratio is ϕ(x)−ϕ(x− v). Thresholding it at h yields the following type I and type II errors

α(h) = Px∼X(ϕ(x)− ϕ(x− v) > h) = P(ϕ(X)− ϕ(X − v) > h)

β(h) = Px∼X+v(ϕ(x)− ϕ(x− v) < h) = P(ϕ(X + v)− ϕ(X) < h)

Once we have these, T (X,X + v) can be obtained by eliminating h and express β as a function of α.
These two probabilities can be computed by a simple Monte Carlo approach. First We can sample
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Figure 3: The effect of sample size N . We see that N = 10000 provides a good estimate. The red
dashed curve corresponds to Gaussian noise ϕ(x) = 1

2‖x‖22, which is why we can perform exact
computation. The dimension n = 30.

{x1, . . . , xN} as i.i.d. copies of X . Let

ai = ϕ(xi − v)− ϕ(xi)

bi = ϕ(xi + v)− ϕ(xi)

α̂(h) =
1

N
·#{ai 6 −h}

β̂(h) =
1

N
·#{bi < h}

We only evaluate on a discrete set of h such that the corresponding α forms a uniform grid
{ 1
N , . . . ,

N
N }. Let hj = −a(j) where a(1) 6 · · · 6 a(N) are order statistics of ai, i = 1, 2, . . . , N .

Then for j = 0, 1, 2, . . . , N ,

α̂j = α̂(hj) =
1

N
·#{ai 6 a(j)} =

j

N

β̂j = β̂(hj) =
1

N
·#{bi < a(j)}

Let T̂N (X,X + v) be the function that linearly interpolates the values β̂0, . . . , β̂N at 0
N , . . . ,

N
N . As

a direct consequence of the well-known Glivenko–Cantelli theorem, we have

‖T̂N (X,X + v)− T (X,X + v)‖∞ → 0 almost surely.

We evaluate the effect of the sample size N in Figure 3 and observe that N = 10000 works quite
well when the T [X,X + v] is close to the 1-GDP function G1 (which is true for all experiments in
the paper).

Evaluating the Fisher Information Note that it is numerically infeasible to use the exact expres-
sion in Lemma 4.2, since Gamma function grows extremely fast (of course it does, as an interpolation
of the factorial). In practice, we find the asymptotic expression in Lemma 4.2 works extremely well.

Next we present the algorithm that samples an n-dimensional random vector whose density is
∝ e−‖x‖

α
p .

It is easy to see its correctness from Lemma C.5 and [CDT98].

Appendix B Proof of Theorem 3.1 and 3.2

In this section we first prove the normalized central limit theorem 3.1 and then the general case
theorem 3.2. Recall that in normalized CLT, the mechanism in consideration is Mn(D) = fn(D) +
Xn, where Xn has density ∝ e−ϕn with Fisher information In being the identity matrix In×n.
Theorem 3.1. If the function sequence ϕn satisfies conditions (D1) and (D2), then there is a sequence
of positive numbers cn with cn → 0 as n→∞ and a subset En ⊆ Sn−1 with Pv∼Sn−1(v ∈ En) >
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Algorithm 1 Sample ∝ e−‖x‖
α
p

1: Input: p, α and dimension n
Generate t ∼ Γ(nα + 1, 1)

Generate ξi, i = 1, 2, . . . , n i.i.d. from Γ( 1
p , 1)

Generate random vector x ∈ Rn where xi = εi · ξ
1
p

i , εi are Rademacher random variables
(unbiased coin flips) independent from everything else.
Generate r ∼ U [0, 1]

Let V = r
1
n · x
‖x‖p

2: Output t · V

1− cn such that
‖ inf
D,D′

T [Mn(D),Mn(D′)]−G1‖∞ 6 cn

where the infimum is taken over D,D′ such that fn(D′)−fn(D)
‖fn(D′)−fn(D)‖2 ∈ En.

(D1) KS(Pϕnv (Xn), vT∇ϕn(Xn) = o(1) with probability at least 1− o(1) over v ∼ Sn−1

(D2) ‖∇ϕn(Xn)‖2 =
√
n · (1 + oP (1))

B.1 The Main Proof

Proof of Theorem 3.1. For clarity, in the proof we drop the subscript n unless the limit n → ∞ is
taken. First we show that

inf
D,D′

T [M(D),M(D′)] = inf
v∈En

T [X,X + v].

Notice that

T [M(D),M(D′)] = T [f(D) +X, f(D′) +X] = T [X,X + f(D′)− f(D)]

Consider the vector f(D′)− f(D). Let v = f(D′)−f(D)
‖f(D′)−f(D)‖2 be its direction and r be its length. We

have f(D′)− f(D) = rv. Since f has `2-sensitivity 1, we have r ∈ [0, 1]. The infimum over D,D′
can be taken in two steps: first over v and then over r. That is,

inf
D,D′

T [M(D),M(D′)] = inf
v∈En

inf
r∈[0,1]

T [M(D),M(D′)] = inf
v∈En

inf
r∈[0,1]

T [X,X + rv]

By Lemma 3.5, T [X,X + rv] is pointwise monotone decreasing in r, so for the inner infimum we
have infr∈[0,1] T [X,X + rv] = T [X,X + v]. Back to the limiting conclusion, it suffices to show
that for all v ∈ En,

‖T [Xn, Xn + v]−G1‖∞ 6 cn.

To prove this, we use the following lemma

Lemma B.1. Suppose random vector X has density ∝ e−ϕ where ϕ ∈ Fn. Let Fv be the CDF of
the likelihood projection Pϕv (X) = ϕ(X + v)− ϕ(X)− 1

2v
TIϕv, then for any v ∈ Rn,

T [X,X + v](α) = Fv
(
− F−1

−v (α)− vTIϕv
)
.

Let Hn
v and Fnv be the CDFs of the linear projection vT∇ϕn(Xn) and the likelihood projection

Pϕnv (Xn) = ϕn(Xn + v)−ϕn(Xn)− 1
2v
TInv. When Lemma B.1 is applied to Xn and unit vector

v, we have
T [Xn, Xn + v](α) = Fnv

(
− (Fn−v)

−1(α)− 1
)
. (11)

Recall that G1(α) = Φ
(
− Φ−1(α)− 1

)
where Φ is the CDF of standard normal. Comparing with

(11), it suffices to show Fnv is close to Φ. To prove this and to take care of the set En ⊆ Sn−1, we
use the two conditions (D1) and (D2), which allow us to apply Sudakov’s Theorem (c.f. [Kla10])
stated below as Lemma B.2. In the following, let σn be the uniform measure (with total measure 1)
on the unit sphere Sn−1.
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Lemma B.2. Let Yn be an isotropic random vector in Rn. Assume that there is an → 0 and

P
(∣∣∣∣‖Yn‖2√

n
− 1

∣∣∣∣ > an

)
6 an. (12)

Then, there exists bn → 0 and Θn ⊆ Sn−1 with σn(Θn) > 1− bn, such that for any v ∈ Θn,

sup
t∈R
|P(vTYn 6 t)− Φ(t)| 6 bn.

Let Yn = ϕn(Xn). vT∇ϕn(Xn) = vTYn We know EYn = E∇ϕn(Xn) = 0, and by the normaliza-
tion of the Fisher information,

EYnY Tn = In = In×n.

Therefore, Yn is isotropic. Condition (D2) says ‖Yn‖2 =
√
n · (1 + oP (1)). That is,

∣∣∣‖Yn‖2√
n
− 1
∣∣∣ =

oP (1). This implies the existence of an in (12). Therefore, we can apply Lemma B.2 to Yn = ϕn(Xn)
and conclude that there is bn → 0 and Θn ⊆ Sn−1 with σn(Θn) > 1− bn, such that for any v ∈ Θn,

‖Hn
v − Φ‖∞ 6 bn.

Condition (D1) says, there is b′n → 0 and Ωn ⊆ Sn−1 > b′n with σn(Ωn) such that for all v ∈ Ωn,

‖Fnv −Hn
v ‖∞ 6 b′n

So v ∈ Θn ∩ Ωn implies ‖Hn
v − Φ‖∞ 6 bn and ‖Fnv −Hn

v ‖∞ 6 b′n. Therefore, ‖Fnv − Φ‖∞ 6
bn + b′n. Set En = Θn ∩ (−Θn) ∩ Ωn ∩ (−Ωn). Then v ∈ En implies

‖Fnv − Φ‖∞ 6 bn + b′n and ‖Fn−v − Φ‖∞ 6 bn + b′n

That is, for any x ∈ R,

Φ(x)− bn − b′n 6 Fnv (x) 6 Φ(x) + bn + b′n

Φ(x)− bn − b′n 6 Fn−v(x) 6 Φ(x) + bn + b′n

As a consequence of the second inequality,

Φ−1(α− bn − b′n) 6 (Fn−v)
−1(α) 6 Φ−1(α+ bn + b′n)

Therefore, when v ∈ En, by (11) and the inequalities above,

T [Xn, Xn + v](α) = Fnv
(
− (Fn−v)

−1(α)− 1
)

6 Fnv
(
− Φ−1(α− bn − b′n)− 1

)
6 Φ

(
− Φ−1(α− bn − b′n)− 1

)
+ bn + b′n

= G1(α− bn − b′n) + bn + b′n

6 G1(α) + C
√
bn + b′n + bn + b′n

The final step used the Hölder continuity of Gµ which we state as Lemma B.3 and prove afterwards.

Lemma B.3. Let Gµ = T [N(0, 1), N(µ, 1)] for µ > 0. Then Gµ is α-Hölder continuous for any
α < 1.

It is worth noting that Gµ is not 1-Hölder continuous (i.e. Lipschitz continuous) as long as µ > 0.

Without loss of generality assume C > 1. Let cn = C
√
bn + b′n + bn + b′n. Then cn > 2bn + 2b′n.

The above argument shows T [Xn, Xn + v](α) 6 G1(α) + cn. The lower bound can be obtained
similarly, so for v ∈ En, we have

‖T [Xn, Xn + v]−G1‖∞ 6 cn.

Since all four sets Θn,−Θn,Ωn and −Ωn are large, we have

σn(En) = σn(Θn ∩ (−Θn) ∩ Ωn ∩ (−Ωn)) > 1− (2bn + 2b′n) > 1− cn
This is the conclusion stated in the theorem. The proof is complete.

16



B.2 Proof of Lemmas

Next we provide the proofs of the lemmas used, namely Lemmas 3.5, B.1 and B.3.

Let M t(D) = f(D) + tX .

Lemma 3.5. WhenX has log-concave distribution and t > 0, the ROC function T [M t(D),M t(D′)]
is (pointwise) monotone increasing in t for any D,D′.

Proof of Lemma 3.5. Let 0 6 t1 6 t2 and fi = T [X,X + tiv], i = 1, 2. We need to show f1 > f2.
Fix α ∈ [0, 1], let At ⊆ Rn be the optimal rejection region for the testing of X vs X + tv. That is,

P[X ∈ At] = α and P[X + tv 6∈ At] = T [X,X + tv](α)

In order to show f1(α) > f2(α), consider a translated set At1 + (t2 − t1)v. This set is at the
best suboptimal for the testing of X vs X + t2v. If we denote P[X ∈ At1 + (t2 − t1)v] by α′,
suboptimality means

P[X + t2v 6∈ At1 + (t2 − t1)v] > f2(α′).

If we can show α′ 6 α, then by the monotonicity of ROC functions, we have

f2(α) 6 f2(α′)

= P[X + t2v 6∈ At1 + (t2 − t1)v]

= P[X + t1v 6∈ At1 ]

= f1(α)

So the only thing left is to show α′ 6 α, or equivalently,

P[X ∈ At1 + (t2 − t1)v] 6 P[X ∈ At1 ].

In fact, we will show At1 +(t2− t1)v ⊆ At1 . This is where log-concavity kicks in. To phrase it more
generally, we are going to show thatAt+sv ⊆ At for general t, s > 0. SupposeX has density e−ϕ(x)

where ϕ : Rn → R ∪ {+∞} is a (potentially extended) convex function. By Neyman–Pearson
lemma, At = {x : ϕ(x)−ϕ(x− tv) > h} for some threshold h. We would like to show that x ∈ At
implies x+ sv ∈ At. It suffices to show

ϕ(x+ sv)− ϕ(x+ sv − tv) > ϕ(x)− ϕ(x− tv).

In fact, ϕ(x + sv) − ϕ(x + sv − tv) is monotone increasing as a function of s. This is a direct
consequence of the convexity of ϕ(x+sv) as a function of s. More specifically, let g(s) = ϕ(x+sv).
Its convexity follows from the convexity of ϕ. For t > 0, ϕ(x+sv)−ϕ(x+sv−tv) = g(s)−g(s−t)
is easily seen to be monotone by taking a derivative, or from a more rigorous approach following just
the definition of convex functions.

Recall that ϕ̃n(x) = ϕn( xtn ). The corresponding random vector with density ∝ e−ϕ̃n is X̃n = Xϕ̃n

and has the same distribution as tnXϕn . The scaling factor normalizes its Fisher information to be an
n× n scalar matrix. In fact,

Ĩn := Iϕ̃n = t−2
n Iϕn = µ2 · In×n.

Proof of Lemma B.1. We are interested in the hypothesis testingH0 : X vs H1 : X+v. By definition
of ROC function in Equation (2), we need to find out the optimal type II error at a given level α. By
Neymann–Pearson lemma, it suffices to consider likelihood ratio tests. The log density of the null is
(up to an additive constant) −ϕ(x), while that of the alternative is −ϕ(x− v). So the log likelihood
ratio is ϕ(x) − ϕ(x − v). Under null it is distributed as ϕ(X) − ϕ(X − v) and thresholding at h
yields type I error

α = P(ϕ(X)− ϕ(X − v) > h)

= P(ϕ(X − v)− ϕ(X) < −h)

= P(ϕ(X − v)− ϕ(X)− 1
2v
TIϕv < −h− 1

2v
TIϕv)

= F−v(−h− 1
2v
TIϕv)

17



Under the alternative, the log likelihood ratio is distributed as ϕ(X+v)−ϕ(X), so the corresponding
type II error is

β = P(ϕ(X + v)− ϕ(X) < h)

= P(ϕ(X + v)− ϕ(X)− 1
2v
TIϕv < hh− 1

2v
TIϕv)

= Fv(h− 1
2v
TIϕv)

From the expression of α we can solve for h:

h = −F−1
−v (α)− 1

2v
TIv

Plugging this into the expression of β yields

β = Fv(h− 1
2v
TIϕv)

= Fv
(
− F−1

−v (α)− vTIv
)

The ROC function maps α to the minimal β, so this is exactly the expression of T [X,X + v].

Proof of Lemma B.3. We know thatGµ(x) = Φ
(
−Φ−1(x)−µ

)
. It suffices to show that 1−Gµ(x) =

Φ
(
Φ−1(x) + µ

)
is α-Hölder continuous for any α < 1.

Lemma B.4. Consider f, g : [0, 1]→ R. Suppose f, g and g − f is monotone increasing and g is
α-Hölder continuous, then f is also α-Hölder continuous.

To see this, notice that by monotonicity of g − f , we have g(x) − f(x) 6 g(y) − f(y) for x < y.
Hence

|f(y)− f(x)| = f(y)− f(x) 6 g(y)− g(x) 6 Cxα.

Lemma B.5. For each α < 1, there is an ε = ε(α) > 0 such that xα − (1−Gµ(x)) is monotone
increasing in [0, ε].

Let α = 1 − δ. h(x) = xα − (1 − Gµ(x)) = xα − Φ
(
Φ−1(x) + µ

)
. Let y = Φ−1(x). Then

x = Φ(y)

h′(x) = αxα−1 − d

dx
Φ(y + µ)

= αx−δ − φ(y + µ) · dy

dx

= αx−δ − φ(y + µ)
/ dx

dy

= αx−δ − φ(y + µ)

φ(y)

= αx−δ − e−µy−
1
2µ

2

= eδ log x−1+logα − e−µy−
1
2µ

2

It is known that |Φ−1(x)| = −Φ−1(x) 6
√

2 log x−1. So for fixed α, δ and µ, there is an ε such that
when x ∈ [0, ε], we have

δ log x−1 + logα > µΦ−1(x)− 1

2
µ2 = −µy − 1

2
µ2

Hence,

h′(x) = eδ log x−1+logα − e−µy−
1
2µ

2

> 0

Interestingly, this implies the following result:
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Proposition B.6. For each α ∈ [0, 1), there is a C > 0 such that∫ b+1

a+1

e−x
2

dx 6 C

(∫ b

a

e−x
2

dx

)α
.

For a convex ϕ such that e−ϕ is integrable, let Fϕv be the cdf of Pϕv (Xϕ). Dropping the unnecessary
subscripts and superscripts of ϕ, we have

Appendix C Proof of Lemma 4.2

The major goal of this section is the following extended version of Lemma 4.2. We proceed by
first presenting some general results in Appendix C.1, followed by calculation for norm powers in
Appendix C.2.

Lemma C.1. For 1 6 p <∞ and 1 6 α <∞, as n→∞, we have

E‖Xp,α‖22 =
Γ(nα + 1 + 2

α )

Γ(np + 1 + 2
p )
·

Γ(np + 1)

Γ(nα + 1)
· n ·

Γ( 3
p )

Γ( 1
p )

∼ n 2
α−

2
p+1 · α− 2

α · p 2
p ·

Γ( 3
p )

Γ( 1
p )

Ip,α =α2 · Γ(n+2α−2
α )

Γ(n+2p−2
p )

·
Γ(np )

Γ(nα )
·

Γ(2− 1
p )

Γ( 1
p )

· In×n

∼ n 2
p−

2
α · α 2

α · p2− 2
p ·

Γ(2− 1
p )

Γ( 1
p )

· In×n.

C.1 Regarding Homogeneous ϕ

In this section, in addition to that ϕ ∈ Fn, we further assume that ϕ : Rn → R is positively
homogeneous. Recall that ϕ is (positively) homogeneous of degree α > 0 if ϕ(tx) = |t|αϕ(x) for
t ∈ R, x ∈ Rn. This implies ϕ(0) = 0.

The first result takes care of the normalizer Zϕ defined as
∫

e−ϕ(x) dx.

Lemma C.2. Zϕ = Γ(nα + 1) · vol(Kϕ) where Kϕ = {x : ϕ(x) 6 1}.

Proof of Lemma C.2. We use polar coordinate. For any function f : Rn → R,∫
Rn
f(x) dx =

∫ ∞
0

∫
Sn−1

f(rθ)rn−1 dθ dr

So

Z =

∫
Rn

e−ϕ(x) dx =

∫
Sn−1

∫ ∞
0

e−ϕ(rθ)rn−1 dr dθ

=

∫
Sn−1

∫ ∞
0

e−r
αϕ(θ)rn−1 dr dθ

Let t = rα, r = t
1
α , dr = 1

α t
1
α−1 dt.∫ ∞

0

e−r
αϕ(θ)rn−1 dr =

∫ ∞
0

e−tϕ(θ) · tn−1
α · 1

α t
1
α−1 dt

=
1

α

∫ ∞
0

e−tϕ(θ) · tnα−1 dt

=
1

α
· Γ(nα )

ϕ(θ)
n
α
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So

Z =

∫
Sn−1

1

α
· Γ(nα )

ϕ(θ)
n
α

dθ

On the other hand, consider a set defined with polar coordinate:
K := {(r, θ) : r 6 ρ(θ)}.

Its volume is

vol(K) =

∫
Rn

1K(x) dx

=

∫
Sn−1

∫ ρ(θ)

0

rn−1 dr dθ

=
1

n

∫
Sn−1

ρ(θ)n dθ

We see that

Z =

∫
Sn−1

1

α
· Γ(nα )

ϕ(θ)
n
α

dθ

=
Γ(nα )

α
· n · 1

n

∫
Sn−1

[
ϕ(θ)−

1
α

]n
dθ

= n
α · Γ(nα ) · vol(Kϕ)

where
Kϕ = {(r, θ) : r 6 ϕ(θ)−

1
α } = {(r, θ) : rαϕ(θ) 6 1} = {(r, θ) : ϕ(rθ) 6 1} = {x : ϕ(x) 6 1}.

Noticing Γ(z + 1) = zΓ(z), we have
Z = Γ(nα + 1) · vol(Kϕ)

Lemma C.3. The m-th moment of a Γ(k, 1) distribution is Γ(m+k)
Γ(k) .

Proof of Lemma C.3. The m-th moment of a Γ(k, 1) distribution is
1

Γ(k)

∫ ∞
0

xm · xk−1e−x dx =
Γ(m+ k)

Γ(k)
.

The following result also appears in [Wan05].
Lemma C.4.

vol(Kp) = 2n ·
Γ( 1

p + 1)n

Γ(np + 1)
.

Proof of Lemma C.4. By Lemma C.2, we have

vol(Kp) =
1

Γ(np + 1)
·
∫

e−
∑
|xi|p dx

=
1

Γ(np + 1)
·
(∫ +∞

−∞
e−|x|

p

dx

)n
∫ +∞

−∞
e−|x|

p

dx = 2

∫ +∞

0

e−x
p

dx

= 2

∫ +∞

0

e−y dy
1
p

=
2

p

∫ +∞

0

e−yy
1
p−1 dy

= 2
pΓ( 1

p ) = 2Γ( 1
p + 1)
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Lemma C.5. Let t ∼ Γ(nα + 1, 1). Let Vϕ has uniform distribution over Kϕ where Kϕ = {x :

ϕ(x) 6 1} independently from t. Then t
1
α · V has density 1

Z e−ϕ.

Proof of Lemma C.5. We use a more principled way: assume r has density p(r) over (0,+∞) and
rV has density 1

Z e
−ϕ, find p(r). Let B be a small ball.

P(rV ∈ x+B) =

∫ ∞
0

P(V ∈ x+B

r
) · p(r) dr

P(V ∈ x+B

r
) =


0, if xr /∈ Kϕ

vol(Br )

vol(Kϕ)
, if xr ∈ Kϕ.

x
r ∈ Kϕ ⇔ ϕ(xr ) 6 1⇔ ϕ(x) 6 rα ⇔ r > ϕ(x)1/α. So

P(rV ∈ x+B) =

∫ ∞
0

P(V ∈ x+B

r
) · p(r) dr

=

∫ ∞
ϕ(x)1/α

vol(Br )

vol(Kϕ)
· p(r) dr

= vol(B) ·
∫ ∞
ϕ(x)1/α

p(r)r−n

vol(Kϕ)
dr.

So the density of rV at x is
∫∞
ϕ(x)1/α

p(r)r−n

vol(Kϕ) dr. In order to match it with 1
Z e−ϕ, we have∫ ∞

ϕ(x)1/α

p(r)r−n

vol(Kϕ)
dr =

e−ϕ(x)

Γ(nα + 1) · vol(Kϕ)∫ ∞
ϕ(x)1/α

p(r)r−n dr =
e−ϕ(x)

Γ(nα + 1)

Let ϕ(x)1/α = u, we have ∫ ∞
u

p(r)r−n dr =
1

Γ(nα + 1)
· e−uα .

Taking derivative with respect to u, we have

p(u)u−n =
1

Γ(nα + 1)
· e−uα · αuα−1.

It’s straightforward to show that if t ∼ Γ(nα + 1, 1), then t
1
α has the above density p(u).

A simple but useful corollary of Lemma C.5 is
Corollary C.6. Let t ∼ Γ(nα + 1, 1). Let U has uniform distribution over ∂Kϕ, independently from
t and r with density nxn−1 over [0, 1], independent from t and U . Then t

1
α · r · U has density 1

Z e−ϕ.

We commented that we can compute the isotropic constants for `p balls. The rest of the section is
dedicated to this kind of results.

Let µ be a log-concave probability measure on Rn with density fµ : Rn → R>0. The isotropic
constant of µ is defined by (see e.g. [Gia])

Lµ =
(

supx∈Rn fµ(x)
) 1
n ·
(

det Cov(µ)
) 1

2n .

As a special case, when µ is the uniform distribution over the convex body K, the corresponding
isotropic constant is denoted by LK and has expression

LK = vol(K)−
1
n ·
(

det Cov(µ)
) 1

2n .

For homogeneous and convex ϕ : Rn → R, we use Lϕ to denote the isotropic constant of its
associated probability distribution, i.e. the one with density 1

Zϕ
e−ϕ(x). With the help of Lemma C.5,

we can relate Lϕ to the isotropic constant of its unit ball LKϕ .
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Lemma C.7.

Lϕ =
[Γ(nα + 1 + 2

α )]
1
2

[Γ(nα + 1)]
1
2 + 1

n

· LKϕ

Proof.

Cov(Xϕ) = E[XϕX
T
ϕ ] = E[t

2
α · VϕV Tϕ ] = Et

2
α · E[VϕV

T
ϕ ] = Et

2
α · Cov(Vϕ)

det Cov(Xϕ) = (Et
2
α )n · det Cov(Vϕ)

Lϕ = Z
− 1
n

ϕ · (det Cov(Xϕ))
1
2n

= Z
− 1
n

ϕ · (Et 2
α )

1
2 · (det Cov(Vϕ))

1
2n

= Γ(nα + 1)−
1
n · vol(Kϕ)−

1
n · (Et 2

α )
1
2 · (det Cov(Vϕ))

1
2n (Lemma C.2)

= (Et
2
α )

1
2 · Γ(nα + 1)−

1
n · LKϕ

By Lemma C.3, Et 2
α =

Γ(nα+1+ 2
α )

Γ(nα+1) . So

Lϕ =

(
Γ(nα + 1 + 2

α )

Γ(nα + 1)

) 1
2

· Γ(nα + 1)−
1
n · LKϕ

=
[Γ(nα + 1 + 2

α )]
1
2

[Γ(nα + 1)]
1
2 + 1

n

· LKϕ

The last result is a sufficient condition of the Fisher information being a scalar matrix.
Lemma C.8. If ϕ is invariant under the action of {±1}n and cyclic group of size n, i.e.

1. ϕ(±x1,±x2, . . . ,±xn) = ϕ(x1, x2, . . . , xn)

2. ϕ(x1, x2, . . . , xn−1, xn) = ϕ(x2, x3, . . . , xn, x1)

then Iϕ = 1
nE‖∇ϕ‖22 · I .

Proof of Lemma C.8. First we use the symmetry to show Iϕ = cI for some c.

ϕ(x1, x2, . . . , xn) = ϕ(−x1, x2, . . . , xn)

∂1ϕ(x1, x2, . . . , xn) = −∂1ϕ(−x1, x2, . . . , xn)

∂2ϕ(x1, x2, . . . , xn) = ∂2ϕ(−x1, x2, . . . , xn)

This shows ∂1ϕ · ∂2ϕ is an odd function of x1. On the other hand, we know the density e−ϕ is an
even function of x1. So we conclude that E[∂1ϕ · ∂2ϕ] = 0. Similarly, we can show that for any
i 6= j,E[∂iϕ · ∂jϕ] = 0. This shows that Iϕ is a diagonal matrix.

By cyclic symmetry, we have

ϕ(x1, x2, . . . , xn−1, xn) = ϕ(x2, x3, . . . , xn, x1)

∂1ϕ(x1, x2, . . . , xn−1, xn) = ∂nϕ(x2, x3, . . . , xn, x1)

∂1ϕ(x1, x2, . . . , xn−1, xn)2e−ϕ(x1,x2,...,xn−1,xn) = ∂nϕ(x2, x3, . . . , xn, x1)2e−ϕ(x1,x2,...,xn−1,xn)

= ∂nϕ(y1, y2, . . . , yn−1, yn)2e−ϕ(yn,y1,...,yn−1)

= ∂nϕ(y1, y2, . . . , yn−1, yn)2e−ϕ(y1,y2,...,yn)

This shows E∂1ϕ
2 = · · · = E∂nϕ2. Hence Iϕ = cI for some c.

Tr Iϕ = TrE[∇ϕ∇ϕT ] = E[Tr∇ϕ∇ϕT ] = E[Tr∇ϕT∇ϕ] = E‖∇ϕ‖22.
On the other hand, Tr Iϕ = Tr cI = cn, so c = 1

nE‖∇ϕ‖22.
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C.2 Calculation for Norm Powers

Lemma 4.2. For 1 6 p <∞ and 1 6 α <∞, as n→∞, we have

E‖Xp,α‖22 ∼ n
2
α−

2
p+1 · α− 2

α · p 2
p · Γ( 3

p )
/

Γ( 1
p );

Ip,α ∼ n
2
p−

2
α · α 2

α · p2− 2
p · Γ(2− 1

p )
/

Γ( 1
p ) · In×n.

We divide the proof into two parts, one for each of the equations.

Proof of Lemma 4.2 (variance part). By Lemma C.5, let t ∼ Γ(nα + 1, 1) random variable and Vp
has uniform distribution over the `p unit ball Kp.

E‖Xp,α‖22 = Et
2
α · E‖Vp‖22 =

Γ(nα + 1 + 2
α )

Γ(nα + 1)
· E‖Vp‖22 (13)

Setting α = p yields

E‖Xp,p‖22 =
Γ(np + 1 + 2

p )

Γ(np + 1)
· E‖Vp‖22 (14)

The reason we do this is that E‖Xp,p‖22 can be computed explicitly. In fact,

E‖Xp,p‖22 =
1

Zn

∫ ∑
x2
i · e−

∑
|xi|p dx

=
n

Zn

∫
x2

1 · e−
∑
|xi|p dx

=
n

Zn

∫
x2

1 · e−|x1|p dx1 · Zn−1

where Zn =
∫

e−
∑
|xi|p dx. We know by Lemma C.4 that

Zn = Γ(np + 1) · vol(Kp) = 2n · Γ( 1
p + 1)n

and∫ +∞

−∞
x2 · e−|x|p dx = 2

∫ ∞
0

x2 · e−xp dx = 2

∫ ∞
0

y
2
p · e−y · 1

py
1
p−1

dy = 2
p

∫ ∞
0

y
3
p−1 · e−y dy = 2

p · Γ( 3
p )

So

E‖Xp,p‖22 =
n

Zn

∫
x2

1 · e−|x1|p dx1 · Zn−1

= n · 2
p · Γ( 3

p ) · Zn−1

Zn

=
n · 2

p · Γ( 3
p )

2Γ( 1
p + 1)

=
n · 2

p · Γ( 3
p )

2
pΓ( 1

p )
= n ·

Γ( 3
p )

Γ( 1
p )

Plugging this into (14), we have

E‖Vp‖22 =
Γ(np + 1)

Γ(np + 1 + 2
p )
· E‖Xp,p‖22

=
Γ(np + 1)

Γ(np + 1 + 2
p )
· n ·

Γ( 3
p )

Γ( 1
p )
.
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Using this in (13),

E‖Xp,α‖22 =
Γ(nα + 1 + 2

α )

Γ(nα + 1)
· E‖Vp‖22

=
Γ(nα + 1 + 2

α )

Γ(nα + 1)
·

Γ(np + 1)

Γ(np + 1 + 2
p )
· n ·

Γ( 3
p )

Γ( 1
p )

In order to study the asymptotics of E‖Xp,α‖22 as n→∞, recall Stirling’s formula

Γ(z + 1) ∼
√

2πz
(z

e

)z
.

So we have

Γ(nα + 1 + 2
α )

Γ(nα + 1)
∼

√
n+2
α ·

(
n+2
αe

)n+2
α√

n
α ·
(
n
αe

)n
α

∼
(
n+ 2

αe
· αe

n

)n
α

·
(
n+ 2

αe

) 2
α

=

(
1 +

2

n

)n
2 ·

2
α

·
(
n+ 2

αe

) 2
α

∼
(
n+ 2

α

) 2
α

Hence

E‖Xp,α‖22 ∼
(
n+ 2

α

) 2
α

/

(
n+ 2

p

) 2
p

· n ·
Γ( 3

p )

Γ( 1
p )
∼ n 2

α−
2
p+1 · α− 2

α · p 2
p ·

Γ( 3
p )

Γ( 1
p )

Before we proceed to the proof of the Fisher information part of Lemma 4.2, we derive the isotropic
constants results as promised, using Lemma C.7 and the variance part of Lemma 4.2.

Corollary C.9. The isotropic constant of n-dimensional `p ball is

L2
Kp =

p2

4
·

Γ( 3
p )

[Γ( 1
p )]3
·

[Γ(np + 1)]1+ 2
n

Γ(np + 1 + 2
p )

Proof of Corollary C.9. For a general convex body K, let VK be a random vector with the uniform
distribution over K. Recall that the isotropic constant of K is

LK = vol(K)−
1
n ·
(

det Cov(VK)
) 1

2n .

Now we focus on the unit ball of `p norm Kp. The corresponding random vector is denoted by Vp By
a symmetry argument similar to Lemma C.8, we have that

Cov(Vp) =
1

n
· E‖Vp‖22 · In×n.
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Combining this and Lemma C.4, we have

L2
Kp = vol(Kp)

− 2
n · 1

nE‖Vp‖22

=

(
2n ·

Γ( 1
p + 1)n

Γ(np + 1)

)− 2
n

·
Γ(np + 1)

Γ(np + 1 + 2
p )
·

Γ( 3
p )

Γ( 1
p )

=
1

4
·

Γ(np + 1)
2
n

Γ( 1
p + 1)2

·
Γ(np + 1)

Γ(np + 1 + 2
p )
·

Γ( 3
p )

Γ( 1
p )

=
1

4
·

Γ(np + 1)
2
n

1
p2 Γ( 1

p )2
·

Γ(np + 1)

Γ(np + 1 + 2
p )
·

Γ( 3
p )

Γ( 1
p )

=
p2

4
·

Γ( 3
p )

[Γ( 1
p )]3
·

[Γ(np + 1)]1+ 2
n

Γ(np + 1 + 2
p )

Corollary C.10. When ϕ(x) = ‖x‖αp ,

L2
p,α =

p2

4
·

Γ( 3
p )

[Γ( 1
p )]3
· Γ(nα + 1 + 2

α )

Γ(np + 1 + 2
p )
·
(

Γ(np + 1)

Γ(nα + 1)

)1+ 2
n

Proof of Corollary C.10. Directly follows from the above result and Lemma C.7.

Now we turn our attention back to the proof of Lemma 4.2.

Proof of Lemma 4.2 (variance part). By Lemma C.8, Ip,α = ‖Ip,α‖2 · In×n and ‖Ip,α‖2 =
1
nE‖∇ϕ‖22 where ϕ(x) = ‖x‖αp . In this case the gradient has an explicit expression:

[∇ϕ(x)]i = α ·
(∑

|xi|p
)α
p−1 · |xi|p−1 · sgn(xi) = α‖x‖α−pp · |xi|p−1 · sgn(xi)

‖∇ϕ(x)‖22 = α2
∑
|xi|2p−2 ·

(∑
|xi|p

) 2α
p −2

= α2‖x‖2p−2
2p−2 · ‖x‖2α−2p

p

By Corollary C.6, Xp,α
d
= t

1
α · r · Up, where t ∼ Γ(nα + 1, 1), U has uniform distribution over

∂Kpand r has density nxn−1 over [0, 1].

‖∇ϕ‖22 = α2‖t 1
α rU‖2p−2

2p−2 · ‖t
1
α rU‖2α−2p

p

= α2t
2α−2
α r2α−2 · ‖U‖2p−2

2p−2 · ‖U‖2α−2p
p

Since t, r, Up are independent and ‖Up‖p = 1, we have

‖Ip,α‖2 =
1

n
E‖∇ϕ‖22 =

α2

n
· Et 2α−2

α · Er2α−2 · E‖U‖2p−2
2p−2 (15)

By Lemma C.3,

Et
2α−2
α =

Γ(nα + 1 + 2α−2
α )

Γ(nα + 1)
=

Γ(n+2α−2
α + 1)

Γ(nα + 1)
.

The moment of r can be computed directly

Er2α−2 =

∫ 1

0

r2α−2 · nrn−1 dr =
n

n+ 2α− 2
.
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Plugging into (15), we have

‖Ip,α‖2 =
α2

n
· Et 2α−2

α · Er2α−2 · E‖Up‖2p−2
2p−2

=
α2

n
· Γ(n+2α−2

α + 1)

Γ(nα + 1)
· n

n+ 2α− 2
· E‖Up‖2p−2

2p−2

=
α2

n
·
n+2α−2

α · Γ(n+2α−2
α )

n
α · Γ(nα )

· n

n+ 2α− 2
· E‖Up‖2p−2

2p−2

=
α2

n
· Γ(n+2α−2

α )

Γ(nα )
· E‖Up‖2p−2

2p−2 (∗)

On the other hand, when p = α, we have

‖∇ϕ(x)‖22 = p2
∑
|xi|2p−2.

In this case, x has joint density ∝ e−‖x‖
p
p = e−

∑
|xi|p . Let Y1, Y2, . . . , Yn be i.i.d. random variables

with density ∝ e−|y|
p

. Then we have

‖Ip,p‖2 =
1

n
E‖∇ϕ‖22 =

1

n
· p2 · E

∑
|Yi|2p−2 = p2E

[
|Yi|2p−2

]
Let z =

∫ +∞
−∞ e−|y|

p

dy.

E
[
|Yi|2p−2

]
=

1

z

∫ +∞

−∞
|y|2p−2 · e−|y|p dy

=

∫ +∞
0

y2p−2 · e−yp dy∫ +∞
0

e−yp dy

=

∫ +∞
0

x
2p−2
p · x 1

p−1 · e−x dx∫ +∞
0

x
1
p−1 · e−x dx

=
Γ(2− 1

p )

Γ( 1
p )

Relating to (∗) in the special case of α = p,

p2

n
·

Γ(n+2p−2
p )

Γ(np )
· E‖Up‖2p−2

2p−2 = ‖Ip,p‖2 = p2 ·
Γ(2− 1

p )

Γ( 1
p )

Hence

E‖Up‖2p−2
2p−2 =

n

p2
·

Γ(np )

Γ(n+2p−2
p )

· ‖Ip,p‖2 = n ·
Γ(np )

Γ(n+2p−2
p )

·
Γ(2− 1

p )

Γ( 1
p )

Using (∗) again,

‖Ip,α‖2 =
α2

n
· Γ(n+2α−2

α )

Γ(nα )
· E‖Up‖2p−2

2p−2

=
α2

n
· Γ(n+2α−2

α )

Γ(nα )
· n ·

Γ(np )

Γ(n+2p−2
p )

·
Γ(2− 1

p )

Γ( 1
p )

= α2 · Γ(n+2α−2
α )

Γ(nα )
·

Γ(np )

Γ(n+2p−2
p )

·
Γ(2− 1

p )

Γ( 1
p )
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In order to study the asymptotics, using Stirling’s formula again,

Γ
(

2α−2+n
α

)
Γ(nα + 1)

∼

√
n+α−2

α ·
(
n+α−2
αe

)n+α−2
α√

n
α ·
(
n
αe

)n
α

∼
(
n+ α− 2

αe
· αe

n

)n
α

·
(
n+ α− 2

αe

)α−2
α

=

(
1 +

α− 2

n

)n
α

·
(
n+ α− 2

αe

)α−2
α

∼ e
α−2
α ·

(
n+ α− 2

αe

)α−2
α

∼
(
n+ α− 2

α

)α−2
α

∼ n1− 2
α · α−1+ 2

α

‖Ip,α‖2 = α2 · Γ(n+2α−2
α )

Γ(nα )
·

Γ(np )

Γ(n+2p−2
p )

·
Γ(2− 1

p )

Γ( 1
p )

= α2 · Γ(n+2α−2
α )

Γ(nα + 1)
· n
α
·

Γ(np )

Γ(n+2p−2
p )

· p
n
·

Γ(2− 1
p )

Γ( 1
p )

∼ αp · n1− 2
α · α−1+ 2

α · n−1+ 2
p · p1− 2

p ·
Γ(2− 1

p )

Γ( 1
p )

∼ α 2
α · p2− 2

p ·
Γ(2− 1

p )

Γ( 1
p )

· n 2
p−

2
α

This finishes the entire proof of Lemma 4.2.

Appendix D Proof of Lemma 3.3

Without the loss of generality, we assume µ = 1 in the proof.

By Lemma 4.2, we then have tn = 1
µ ·
√
‖Iϕn‖2 � n

1
α−

1
p , so the rescaled ϕ̃n : Rn → R has the

form
ϕ̃n(x) = cp,αn

1−αp ‖x‖αp ,

where cp,α = α−1 · p−α+α
p ·
(

Γ(2− 1
p )

Γ( 1
p )

)−α2
.

D.1 Lemmas

We first state a few auxiliary lemmas.
Lemma D.1.

‖X‖p = ((
1

α
)1/α + oP (1)) · n 1

p .

Lemma D.2. If p > 1, α > 0, then∑
i:|Xi|62|vi|

(|Xi + vi|p − |Xi|p) = oP (1).

∑
i:|Xi|62|vi|

p sgn(Xi)|Xi|p−1vi = oP (1).

∑
i:|Xi|<2|vi|

p(p− 1)

2
|Xi|p−2v2

i = oP (1)
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D.2 Main proof

We will first prove the case where p > 1. The proof of the corner case where p = 1 will be given in
Section D.5

Verification of Condition D1.

Recall that
ϕ̃n(x) = cp,αn

1−αp ‖x‖αp ,

where cp,α = α−1 · p−α+α
p ·
(

Γ(2− 1
p )

Γ( 1
p )

)−α2
.

We then have

Pϕv (X) =ϕ(X + v)− ϕ(X)− 1

2
vTIϕv

=cp,αn
1−αp (‖X + v‖αp − ‖X‖αp −

1

2
)

∇φ(X) = cp,αn
1−αp · α‖X‖α−pp · sgn(X)�X�(p−1)

Now let us consider

Pϕv (X)− vT∇ϕ(X) = cp,αn
1−αp (‖X+ v‖αp −‖X‖αp −

1

2
−〈α‖X‖α−pp · sgn(X)�X�(p−1), v〉).

Then

‖X + v‖αp − ‖X‖αp − 〈α‖X‖α−pp · sgn(X)�X�(p−1), v〉

�(1 + oP (1))
α‖X‖α−pp

p

(
‖X + v‖pp − ‖X‖pp − p sgn(X)�X�(p−1) � v

)
�1

p
· α p

α · nα−pp
(
‖X + v‖pp − ‖X‖pp − p sgn(X)� ·X�(p−1) � v

)
�1

p
· α p

α · nα−pp
(

n∑
i=1

(|Xi + vi|p − |Xi|p − p sgn(Xi) ·Xp−1
i )vi

)

To prove (1), it suffices to show
(∑n

i=1(|Xi + vi|p − |Xi|p)− p sgn(Xi) ·Xp−1
i vi − 1

2

)
= oP (1).

We expand this expression as
n∑
i=1

(|Xi + vi|p − |Xi|p − p sgn(Xi) ·Xp−1
i vi) =

∑
i:|Xi|>2|vi|

(|Xi + vi|p − |Xi|p − p sgn(Xi) ·Xp−1
i vi)

+
∑

i:|Xi|62|vi|

(|Xi + vi|p − |Xi|p)

−
∑

i:|Xi|62|vi|

p sgn(Xi)|Xi|p−1vi

When |Xi| > 2|vi|, note that

|Xi + vi|p = |Xi|p(1 + vi/Xi)
p = |Xi|p

(
1 + p

vi
Xi

+
p(p− 1)

2

v2
i

X2
i

+O

(
v3
i

X3
i

))
.

Combing with Lemma D.2, we then have
n∑
i=1

(|Xi + vi|p − |Xi|p − p sgn(Xi) ·Xp−1
i vi)

=
∑

i:|Xi|>2|vi|

|Xi|p
(
p(p− 1)

2

v2
i

X2
i

+O

(
v3
i

X3
i

))
+ oP (1)
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In order to verify Condition D1, we need to show: 1).
∑
i:|Xi|>2|vi|

p(p−1)
2 |Xi|p−2v2

i converges to a
constant; 2). Show the third order term is vanishing, that is,

∑
i |Xi|p−3|vi|3 → 0.

We will prove the proposition in the following two steps:

Step 1.

We need to prove that ∑
i:|Xi|>2|vi|

p(p− 1)

2
|Xi|p−2v2

i

converges to a constant.

This can be computed similarly as before. By Lemma D.2∑
i:|Xi|<2|vi|

p(p− 1)

2
|Xi|p−2v2

i = oP (1)

Therefore, we have∑
i:|Xi|>2|vi|

p(p− 1)

2
|Xi|p−2v2

i =
∑
i

p(p− 1)

2
|Xi|p−2v2

i + oP (1).

We further obtain∑
i

p(p− 1)

2
|Xi|p−2v2

i =
p(p− 1)

2

∑
i

v2
i · (

n

α
)
p−2
α · |Ui|p−2.

Again, we also have
n∑
i=1

v2
i |X̃i|p−2 ∼(

n

p
)
p−2
p ·

n∑
i=1

v2
i |Ũi|p−2

=(
n

p
)
p−2
p ·

n∑
i=1

v2
i |Ui|p−2 · n p−2

α −
p−2
p

=n
p−2
α · p 2

p−1 ·
n∑
i=1

v2
i |Ui|p−2.

This implies

n∑
i=1

v2
i |Ui|p−2 = n−

p−2
α · p1− 2

p

∑
i

v2
i |X̃i|p−2 p→ n−

p−2
α · p1− 2

p ·
Γ(1− 1

p )

Γ( 1
p )

.

Then we have ∑
i

p(p− 1)

2
|Xi|p−2v2

i =
p(p− 1)

2
· (n
α

)
p−2
α

∑
i

v2
i · |Ui|p−2

p→1

2
· α− p−2

α · p3− 2
p ·

Γ(2− 1
p )

Γ( 1
p )

.

Step 2. Show the third order term is vanishing

Prove that ∑
i

|Xi|p−3|vi|3 → 0.

∑
i

|Xi|p−3|vi|3 6 n · (
√

log n

n
)3 ·max

i
|Xi|p−3
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According to Theorem C.5, we have

X
d
= t1/α · r · U,

where t ∼ Γ(nα + 1, 1), U has uniform distribution over ∂Kϕ = {x : ‖x‖p = n1/p−1/α}, r has
density nxn−1 over [0, 1], and U, r, t are independent.

As a result, by Corollary C.6

max
i
|Xi| ∼ (

n

α
)

1
α ·max

i
|Ui|.

Consider X̃ ∼ e−‖x‖pp , we then have
X̃

d
= t̃ · r · Ũ ,

where t̃ ∼ Γ(np + 1, 1) and Ũ = n1/α−1/pU .

Therefore,

max
i
|X̃i| ∼(

n

p
)

1
p ·max

i
|Ũi|

=(
n

p
)

1
p ·max

i
|Ui| · n

1
α−

1
p

=n
1
α · p− 1

p ·max
i
|Ui|.

Therefore, we have

max
i
|Ui| ∼ n−

1
α · p 1

p max
i
|X̃i| . n−

1
α · p 1

p (log n)1/p,

and we have
max
i
|Xi| ∼ (

n

α
)

1
α ·max

i
|Ui| . (log n)1/p

As a result,∑
i

|Xi|p−3|vi|3 6 n · (
√

log n

n
)3 ·max

i
|Xi|p−3 = (log n)2.5−3/p · n−1/2 → 0.

Verification of Condition (D2). Use Sudakov’s theorem to prove asymptotic normality.

Note that by Lemma D.2∑
i:|Xi|>2|vi|

p sgn(Xi)|Xi|p−1vi = oP (1) +

n∑
i=1

p sgn(Xi)|Xi|p−1vi.

It suffices to show
∑n
i=1 p sgn(Xi)|Xi|p−1vi is asymptotically a normal random variable.

Firstly, we have
n∑
i=1

(p sgn(Xi)|Xi|p−1)2 = p2
n∑
i=1

|Xi|2(p−1)

According to Theorem C.5, we have

X
d
= t1/α · r · U,

where t ∼ Γ(nα + 1, 1), U has uniform distribution over ∂Kϕ = {x : ‖x‖p = n1/p−1/α}, r has
density nxn−1 over [0, 1], and U, r, t are independent.

As a result, by Corollary C.6
n∑
i=1

|Xi|2(p−1) ∼ (
n

α
)

2p−2
α ·

n∑
i=1

|Ui|2p−2.
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Consider X̃ ∼ e−‖x‖pp , we then have

X̃
d
= t̃ · r · Ũ ,

where t̃ ∼ Γ(np + 1, 1) and Ũ = n1/α−1/pU .

Therefore,
n∑
i=1

|X̃i|2(p−1) ∼(
n

p
)

2p−2
p ·

n∑
i=1

|Ũi|2p−2

=(
n

p
)

2p−2
p ·

n∑
i=1

|Ui|2p−2 · n 2p−2
α − 2p−2

p

=n
2p−2
α · p 2

p−2 ·
n∑
i=1

|Ui|2p−2.

This implies

n∑
i=1

|Ui|2p−2 = n−
2p−2
α · p2−2/p

n∑
i=1

|X̃i|2(p−1) p→ p2−2/pn1− 2p−2
α · E[|X̃i|2p−2],

where

E[|X̃i|2p−2] =
1

2
pΓ( 1

p )

∫ ∞
−∞
|x|2p−2e−|x|

p

dx = 2

∫ ∞
0

x2p−2e−x
p

dx =
Γ(2− 1

p )

Γ( 1
p )

is a constant when p is of constant order.

As a result, let C = p4−2/p · α− 2p−2
α · Γ(2− 1

p )

Γ( 1
p )

, we have

n∑
i=1

(p sgn(Xi)|Xi|p−1)2 = p2
n∑
i=1

|Xi|2(p−1) ∼ p2(
n

α
)

2p−2
α ·

n∑
i=1

|Ui|2p−2 p→ Cn,

satisfying the thin-shell condition of Sudakov’s theorem and therefore
∑n
i=1 p sgn(Xi)|Xi|p−1vi is

asymptotically normal with variance Cn.

D.3 Proof of Lemma 10.1

According to Theorem C.5, we have

X
d
= t1/α · r · U,

where t ∼ Γ(nα + 1, 1), U has uniform distribution over ∂Kϕ = {x : ‖x‖p = n1/p−1/α}, r has
density nxn−1 over [0, 1], and U, r, t are independent.

As a result,

‖X‖p = |t1/α| · |r| · n1/p−1/α ∼ (
1

α
)1/α · n1/p

D.4 Proof of Lemma 10.2

Denote zi = I(|Xi| 6 2|vi|) = I(|t1/α · r · Ui| 6 2|vi|) 6 I(|t1/α · r · Ui| 6 2
√

2 logn
n ).

Consider X̃ ∼ e−‖x‖pp , we then have

X̃
d
= t̃1/p · r · Ũ ,

where t̃ ∼ Γ(np + 1, 1) and Ũ = n1/α−1/pU .
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Since p/n = o(1), we then have t̃ ∼ α
p · t and t̃1/p ∼ n1/p−1/α·α1/α

p1/p
· t1/α, then

1

n

n∑
i=1

I(|t1/α · r · Ui| 6 2

√
2 log n

n
) =

1

n

n∑
i=1

I(|t̃1/p · r · Ũi| 6 2
α1/α

p1/p

√
2 log n

n
)

=
1

n

n∑
i=1

I(|X̃i| 6 2
n1/p−1/α · α1/α

p1/p

√
2 log n

n
)

∼P(|X̃i| 6 2
α1/α

p1/p

√
2 log n

n
),

where X̃i are i.i.d. drawn from the population with density ∝ e−|x|p .

When |x| 6 2α
1/α

p1/p

√
2 logn
n , and 2α

1/α

p1/p

√
2 logn
n = o(1), we then have

P(|X̃i| 6 2
α1/α

p1/p

√
2 log n

n
) � α1/α

p1/p

√
2 log n

n
,

which implies that
1

n

n∑
i=1

I(|Xi| 6 2|vi|) �
α1/α

p1/p

√
log n

n
.

As a result, we have that when p > 1,∑
i:|Xi|62|vi|

(|Xi + vi|p − |Xi|p) .
α1/α

p1/p

√
n log n · ( log n√

n
)p =

α1/α

p1/p
n(1−p)/2(log n)p+1/2 = o(1).

Similarly, for Lemma 5.4, we can use the same idea to show∑
|Xi|<2|vi|

p sgn(Xi)|Xi|p−1vi = oP (1).

In fact, by using the same derivation, we have∑
|Xi|<2|vi|

p sgn(Xi)|Xi|p−1vi .
α1/α

p1/p

√
n log n · ( log n√

n
)p =

α1/α

p1/p
n(1−p)/2(log n)p+1/2 = o(1).

D.5 p = 1

We now study the case where p = 1. Since, for general p, we have

ϕ̃n(x) = cp,αn
1−αp ‖x‖αp ,

where cp,α = α−1 · p−α+α
p ·
(

Γ(2− 1
p )

Γ( 1
p )

)−α2
.

Letting p = 1 we get

ϕ̃n(x) =
1

α
n1−α‖x‖α1 .

We first study the limit of ‖X‖1 when the density of X is given by 1
Z e
−ϕ̃n(x).

According to Theorem C.5, we have

X
d
= t1/α · r · U,

where t ∼ Γ(nα + 1, 1), U has uniform distribution over ∂Kϕ = {x : ‖x‖1 = (αnα−1)1/α}, r has
density nxn−1 over [0, 1], and U, r, t are independent.

As a result,

‖X‖1 = |t1/α| · |r| · (αnα−1)1/α ∼ (
n

α
)1/α · 1 · (αnα−1)1/α = n.
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Now let us consider∇ϕ̃n(x), and we have

∇ϕ̃n(X) =
1

α
n1−α · α · ‖x‖α−1

1 · sgn(X) = sgn(X).

Since X is symmetric, the above expression implies the Condition D3, that is, ‖∇ϕ̃n(X)‖2 ∼
√
n

and therefore v>∇ϕ̃n(X)→ N(0, 1).

To prove Condition D1, since 1
2vIϕv = 1

2 , it suffices to show when ‖v‖2 = 1, α = 1,

‖X + v‖1 − ‖X‖1 → N(
1

2
, 1).

The case where α > 1 can be reduced to this setting by using the following technique. Let us write

X
d
= t1/α · r · U,

where t ∼ Γ(nα + 1, 1), U has uniform distribution over ∂Kϕ = {x : ‖x‖p = n1−1/α}, r has density
nxn−1 over [0, 1], and U, r, t are independent.

X̃
d
= t̃ · r · Ũ ,

where t̃ ∼ Γ(n+ 1, 1) and Ũ = n1/α−1U .

Then ∑
i

(|Xi + vi| − |Xi|) ∼t1/α · r ·
∑
i

(|Ui + (
n

α
)−1/αvi| − |Ui|)

∼t1/α · r · n1−1/α
∑
i

(|Ũi + n−1 · α1/αvi| − |Ũi|)

∼(
1

α
)1/α · t̃1/α · r · n1−1/α

∑
i

(|Ũi + n−1 · α1/αvi| − |Ũi|)

∼(
1

α
)1/α · n1−1/α

∑
i

(|X̃i + n1/α−1 · α1/αvi| − |X̃i|),

which reduces to the α = 1 setting up to some scaling.

Therefore, it suffices to show the asymptotic normality of ‖X + v‖1 − ‖X‖1 when X has density
∝ e−‖X‖1 . We are going to use the Berry-Esseen theorem. Suppose we have n independent random
variables X1, . . . , Xn with EXi = µi,VarXi = σ2

i ,E|Xi − µi|3 = ρ3
i . Consider the normalized

random variable

Sn :=

∑n
i=1Xi − µi√∑n

i=1 σ
2
i

.

Denote its cdf by Fn. Then

Theorem D.3 (Berry-Esseen). There exists a universal constant C > 0 such that

sup
x∈R
|Fn(x)− Φ(x)| 6 C ·

∑n
i=1 ρ

3
i(∑n

i=1 σ
2
i

) 3
2

.

In the following, we proceed to calculating these three moments for the random variableX1, ..., Xn ∼
p with density p(x) = 1

2e
−|x| for x ∈ R.

D.5.1 Expectation

Without loss of generality we assume v > 0.
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E[|X + v|]− E[|X|] =
1

2

∫ ∞
−∞
|x+ v|e−|x| dx− 1

2

∫ ∞
−∞
|x|e−|x| dx

=
1

2
(

∫ −v
−∞
|x+ v|e−|x| dx+

∫ 0

−v
|x+ v|e−|x| dx+

∫ ∞
0

|x+ v|e−|x| dx−
∫ 0

−∞
|x|e−|x| dx−

∫ ∞
0

|x|e−|x| dx)

=
1

2
(

∫ −v
−∞
−(x+ v)ex dx+

∫ 0

−v
(x+ v)ex dx+

∫ ∞
0

(x+ v)e−x dx+

∫ 0

−∞
xex dx−

∫ ∞
0

xe−x dx)

=
1

2
(

∫ ∞
v

xe−x dx−
∫ v

0

xe−x dx−
∫ ∞

0

xe−x dx+ v(−
∫ ∞
v

e−x dx+

∫ v

0

e−x dx+

∫ ∞
0

e−x dx))

=−
∫ v

0

xe−x dx+ v

∫ v

0

e−x dx

=− (1− e−v − ve−v) + v(1− e−v)

=(v − 1 + e−v) =
1

2
v2 + o(v2)

D.5.2 Variance

2E[|X + v| · |X|] =

∫ ∞
−∞
|x+ v| · |x|e−|x| dx

=

∫ −v
−∞
|x+ v| · |x|e−|x| dx+

∫ 0

−v
|x+ v| · |x|e−|x| dx+

∫ ∞
0

|x+ v| · |x|e−|x| dx

=

∫ −v
−∞

(x+ v) · xex dx−
∫ 0

−v
(x+ v)xex dx+

∫ ∞
0

(x+ v) · xe−x dx

=

∫ −v
−∞

x2ex dx−
∫ 0

−v
x2ex dx+

∫ ∞
0

x2e−x dx+ v(

∫ −v
−∞

xex dx−
∫ 0

−v
xex dx+

∫ ∞
0

xe−x dx)

=2

∫ ∞
v

x2e−x dx+ 2v ·
∫ v

0

xe−x dx

=2v2e−v + 4ve−v + 4e−v + 2v · (1− ve−v − e−v)
=2v + 2ve−v + 4e−v ∼ 4 + o(v2)

2E[|X + v|2] =

∫ ∞
−∞

(x+ v)2e−|x| dx

=

∫ ∞
−∞

x2e−|x| dx+ v2

∫ ∞
−∞

e−|x| dx

=2

∫ ∞
0

x2e−x dx+ 2v2

∫ ∞
−∞

e−x dx

=4 + 2v2

2E[|X|2] =

∫ ∞
−∞
|x|2e−|x| dx

=2

∫ ∞
0

x2e−x dx

=4
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2E[(|X + v| − |X|)2] =E[|X + v|2] + E[|X|2]− 2E[|X + v| · |X|]

=
1

2
(8 + 2v2 − 2(4 + o(v2)))

=v2 + o(v2)

D.5.3 Third moment

E[|X|3] =

∫ ∞
−∞
|x|3e−|x| dx

=2

∫ ∞
0

x3e−x dx

=12

2E[|X + v|3] =

∫ ∞
−∞
|x+ v|3e−|x| dx

=

∫ −v
−∞
|x+ v|3e−|x| dx+

∫ 0

−v
|x+ v|3e−|x| dx+

∫ ∞
0

|x+ v|3e−|x| dx

=

∫ −v
−∞
−(x+ v)3ex dx+

∫ 0

−v
(x+ v)3ex dx+

∫ ∞
0

(x+ v)3e−x dx

=6e−v + (−6 + 6e−v + 6v − 3v2 + v3) + (v3 + 3v2 + 6v + 6)

=12e−v + 12v + 2v3

2E[|X + v|2 · |X|] =

∫ ∞
−∞

(x+ v)2 · |x|e−|x| dx

=−
∫ 0

−∞
(x+ v)2xex dx+

∫ ∞
0

(x+ v)2 · xe−x dx

=(v2 − 4v + 6) + (v2 + 4v + 6)

=2v2 + 12

2E[|X + v| · |X|2] =

∫ ∞
−∞
|x+ v| · x2e−|x| dx

=−
∫ −v
−∞

(x+ v) · x2ex dx+

∫ 0

−v
(x+ v)x2ex dx+

∫ ∞
0

(x+ v)x2e−x dx

=e−v(v2 + 4v + 6) + [2v − 6 + e−v(v2 + 4v + 6)] + 2(v + 3)

=4v + 2e−v(v2 + 4v + 6)

E[(|X + v| − |X|)3] =
1

2
(−12 + 12e−v + 12v + 2v3 − 3(2v2 + 12) + 3(4v + 2e−v(v2 + 4v + 6)))

=
1

2
(−48 + 48e−v + 24v + 2v3 − 6v2 + 6v2e−v + 24ve−v)

=
1

2
(48(−v + v2/2 + o(v2)) + 24v + 2v3 − 6v2 + 6v2(1− v + o(v)) + 24v(1− v + o(v)))

=o(v2)
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Combining the pieces, we get
n∑
i=1

E[|Xi + vi| − |Xi|] =
1

2

n∑
i=1

v2
i + o(1) =

1

2
+ o(2)

n∑
i=1

V ar[|Xi + vi| − |Xi|] =

n∑
i=1

v2
i + o(1) = 1 + o(1)

n∑
i=1

E[(|Xi + vi| − |Xi| − E[|Xi + vi| − |Xi|])3] = o(

n∑
i=1

v2
i ) = o(1).

Therefore, by using Theorem D.3, we get the desired result.
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