
Under review as a conference paper at ICLR 2024

A DETAILED PROOFS

A.1 PROOF OF LEMMA 1

Lemma 1. For a graph G with N nodes, C classes, and N/C nodes for each class, if we randomly
connect nodes to form the edge set E , the expected homophily ratio is E(h(G)) = 1

C .

Proof. We first randomly sample a node s from V , assuming its label is ys. Then we sample another
node t. Because the classes are balanced, we have

P(ys = yt) =
1

C
,

P(ys ̸= yt) =
C − 1

C
.

(10)

Therefore, if each node pair in E is sampled randomly, we have

E(h) =
1

|E|
· |E| · 1

C
=

1

C
, (11)

which completes the proof.

A.2 PROOF OF THEOREM 1

Theorem 1. Let G = {V, E} be an undirected graph. 0 ≤ λ1 · · · ≤ λN are eigenval-
ues of its Laplacian matrix L. Let g1 and g2 be two spectral filters satisfying the follow-
ing two conditions: (1) g1(λi) < g2(λi) for 1 ≤ i ≤ m; and g1(λi) > g2(λi) for
m + 1 ≤ i ≤ N , where 1 < m < N ; and (2) They have the same norm of output values
∥[g1(λ1), · · · , g1(λN)]⊤∥22 = ∥[g2(λ1), · · · , g2(λN)]⊤∥22. For a graph signal x, x(1) = g1(L)x
and x(2) = g2(L)x are the corresponding representations after filters g1 and g2. Let ∆s =∑

(s,t)∈E

[
(x

(1)
s − x

(1)
t)2 − (x

(2)
s − x

(2)
t)2

]
be the difference between the total distance of connected

nodes got by g1 and g2, where x1
s denotes the s-th element of x(1)

s . Then we have E[∆s] > 0.

Proof. 1. Given the eigendecomposition of Laplacian L = UΛU⊤, because u0, · · · ,uN−1 are
orthonormal eigenvectors, any unit graph signal x can be expresses as the linear combination of the
eigenvectors:

x =

N∑
i=1

ciui, (12)

where ci = uT
i x are the coefficients of each eigenvector. Then, we have

x(1) = g1(L)x = Ug1(Λ)U⊤x =

(
N∑
i=1

g1(λi)uiu
⊤
i

)(
N∑
i=1

ciui

)
=

N∑
i=1

g1(λi)ciui,

x(2) = g2(L)x = Ug2(Λ)U⊤x =

(
N∑
i=1

g2(λi)uiu
⊤
i

)(
N∑
i=1

ciui

)
=

N∑
i=1

g2(λi)ciui.

(13)

Note that λi and ui are the eigenvalues and eigenvectors of original Laplacian L. Moreover, we have

c = U⊤x ci = u⊤
i x. (14)

Eq. 14 demonstrates that each element of c is determined independently by the product of each
eigenvalue and x. We have −1 = −∥ui∥2∥x∥2 ≤ c2i ≤ ∥ui∥2∥x∥2 = 1. Furthermore, because x
is an arbitrary unit graph signal, it can achieve any value with ∥x∥2 = 1. It’s reasonable for us to
assume that ci’s are independently identically distributed with mean 0.

13

Under review as a conference paper at ICLR 2024

2. For any graph signal x, its smoothness is the total distance between the connected nodes, which is
given by, ∑

(s,t)∈E

(xs − xt)
2 = x⊤Lx,

∑
(s,t)∈E

(x(1)
s − x

(2)
t)2 = x(1)⊤Lx(1),

∑
(s,t)∈E

(x(2)
s − x

(2)
t)2 = x(2)⊤Lx(2).

(15)

Note that the smoothness score of an eigenvector equals the corresponding eigenvalue:

λi = u⊤
i Lui =

∑
(s,t)∈E

(ui,s − ui,t)
2. (16)

Then we plug in Eq. 12 and Eq. 13 into Eq. 15 to get,

∑
(s,t)∈E

(xs − xt)
2 =

(
N∑
i=1

ciu
⊤
i

)(
N∑
i=1

λiuiu
⊤
i

)(
N∑
i=1

ciui

)
=

N∑
i=1

c2iλi, (17)

∑
(s,t)∈E

(x(1)
s − x

(1)
t)2 =

(
N∑
i=1

g1(λi)ciu
⊤
i

)(
N∑
i=1

λiuiu
⊤
i

)(
N∑
i=1

g1(λi)ciui

)
=

N∑
i=1

c2iλig
2
1(λi).

(18)∑
(s,t)∈E

(x(2)
s − x

(2)
t)2 =

(
N∑
i=1

g2(λi)ciu
⊤
i

)(
N∑
i=1

λiuiu
⊤
i

)(
N∑
i=1

g2(λi)ciui

)
=

N∑
i=1

c2iλig
2
2(λi).

(19)

3. For i.i.d. random variables ci and any i < j, we have

E[c2i] = E[c2j]
⇒ λiE[c2i] = E[λic

2
i] ≤ E[λjc

2
j] = λjE[c2j]

(20)

We are interested in the expected difference between the total distance of connected nodes got by g1
and g2. Let ∆s denote difference between the total distance of connected nodes got by g1 and g2, i.e.,

∆s =
∑

(s,t)∈E

[
(x(1)

s − x
(1)
t)2 − (x(2)

s − x
(2)
t)2

]
(21)

Then, the expected difference between the total distance of connected nodes got by g1 and g2 is

E [∆s] = E

 ∑
(s,t)∈E

(x(1)
s − x

(1)
t)2

− E

 ∑
(s,t)∈E

(x(2)
s − x

(2)
t)2

= E

[
N∑
i=1

c2iλig
2
1(λi)

]
− E

[
N∑
i=1

c2iλig
2
2(λi)

]

=

N∑
i=1

{[
g21(λi)− g22(λi)

]
λiE

[
c2i
]}

(22)

4. We assume ∥[g1(λ1), · · · , g1(λN)]⊤∥22 = ∥[g2(λ1), · · · , g2(λN)]⊤∥22 so that g1 and g2 have the
same ℓ2-norms. We make this assumption to avoid some trivial solutions. For example, if we simply
multiply the representation x with a constant, the value in Eq. 17 will also be enlarged and reduced,

14

Under review as a conference paper at ICLR 2024

but the discriminative ability is unchanged. Therefore, we have

N∑
i=1

g21 (λi) =

N∑
i=1

g22 (λi)

⇒
m∑
i=1

g21 (λi) +

N∑
i=m+1

g21 (λi) =

m∑
i=1

g22 (λi) +

N∑
i=m+1

g22 (λi)

⇒ 0 <

m∑
i=1

[
g22 (λi)− g21 (λi)

]
=

N∑
i=m+1

[
g21 (λi)− g22 (λi)

]
,

(23)

because g1(λi) < g2(λi) for 1 ≤ i ≤ m and g1(λi) > g2(λi) for m+ 1 ≤ i ≤ N . By applying the
results in Eq. 23 and Eq. 20, we have

0 <

m∑
i=1

{[
g22 (λi)− g21 (λi)

]
λi

}
< λm

m∑
i=1

[
g22 (λi)− g21 (λi)

]
< λm+1

m∑
i=1

[
g22 (λi)− g21 (λi)

]
= λm+1

N∑
i=m+1

[
g21 (λi)− g22 (λi)

]
<

N∑
i=m+1

{[
g21 (λi)− g22 (λi)

]
λi

}
.

(24)

Then we can derive that
N∑
i=1

{[
g21 (λi)− g22 (λi)

]
λi

}
> 0

⇒
N∑
i=1

{[
g21(λi)− g22(λi)

]
λiE

[
c2i
]}

= E [∆s] > 0

⇒E
[∑
(s,t)∈E

(x(1)
s − x

(1)
t)2

]
> E

[∑
(s,t)∈E

(x(2)
s − x

(2)
t)2

]
(25)

which completes our proof.

A.3 PROOF OF THEOREM 2

Theorem 2. Let G = {V, E} be a balanced undirected graph with N nodes, C classes, and N/C
nodes for each class. Pin is the set of possible pairs of nodes from the same class. Pout is the
set of possible pairs of nodes from different classes. g1 and g2 are two filters same as Theorem 1.
Given an arbitrary graph signal x, let d(1)in =

∑
(s,t)∈Pin

(
x
(1)
s − x

(1)
t

)2
be the total intra-class

distance, d(1)out =
∑

(s,t)∈Pout

(
x
(1)
s − x

(1)
t

)2
be the total inter-class distance, and d̄

(1)
in = d

(1)
in /|Pin|

be the average intra-class distance while d̄
(1)
out = d

(1)
out/|Pout| be the average inter-class distance.

∆d̄(1) = d̄
(1)
out − d̄

(1)
in is the difference between average inter-distance and intra-class distance. d(2)out,

d
(2)
out, d̄

(2)
in , d̄(2)out, and ∆d̄(2) are corresponding values defined similarly on x(2). If E[∆s] > 0, we

have: (1) when h > 1
C , E[∆d̄(1)] < E[∆d̄(2)]; and (2) when h < 1

C , E[∆d̄(1)] > E[∆d̄(2)].

Proof. In graph G, the number of possible homophilous (intra-class) edges (including self-loop) is,

|Pin| =
C

2

N

C

(
N

C

)
=

N2

2C
. (26)

The number of possible heterophilous (inter-class) edges is,

|Pout| =
C

2

N

C

(
C − 1

C
N

)
=

N2

2

(
C − 1

C

)
. (27)

15

Under review as a conference paper at ICLR 2024

Therefore, we have

d̄
(i)
in =

d
(i)
in

|Pin|
=

2Cd
(i)
in

N2
, i ∈ {1, 2} (28)

d̄
(i)
out =

d
(i)
out

|Pout|
=

2Cd
(i)
out

N2(C − 1)
, i ∈ {1, 2} (29)

∆d̄(i) = d̄
(i)
out − d̄

(i)
in

=
2Cd

(i)
out

N2(C − 1)
− 2Cd

(i)
in

N2

=
2C

(C − 1)N2

[
d
(i)
out − (C − 1)d

(i)
in

] (30)

Ein denotes the set of edges connecting nodes from the same class (intra-class edges). Eout denotes
the set of edges connecting nodes from different classes (inter-class edges). There are |E| edges,
h · |E| homophilous edges, and (1− h) · |E| heterophilous edges. In expectation, each edge has the
same difference of the distance of connected nodes got by g1 and g2, i.e.,

E [∆s] = E

 ∑
(s,t)∈E

[
(x(1)

s − x
(1)
t)2 − (x(2)

s − x
(2)
t)2

]
E [h∆s] = E

 ∑
(s,t)∈E
ys=yt

[
(x(1)

s − x
(1)
t)2 − (x(2)

s − x
(2)
t)2

]
E [(1− h)∆s] = E

 ∑
(s,t)∈E
ys ̸=yt

[
(x(1)

s − x
(1)
t)2 − (x(2)

s − x
(2)
t)2

]
(31)

If we solely consider the direct influence of graph convolution on connected nodes, the relationship
between d′ and d can be expressed as follows:

E
[
d̄
(1)
out − d̄

(2)
out

]
= (1− h)E [∆s] and E

[
d̄
(1)
in − d̄

(2)
in

]
= hE [∆s] (32)

E
[
∆d̄(1) −∆d̄(2)

]
= E

[
2C

(C − 1)N2

[
(d

(1)
out − d

(2)
out)− (C − 1)(d

(1)
in − d

(2)
in)
]]

=
2C

(C − 1)N2
[(1− h)E[∆s]− (C − 1)hE[∆s]]

=
2C

(C − 1)N2
[E[∆s](1− Ch)]

(33)

Because 2C
(C−1)N2 > 0, then we have

(1) when h > 1
C , if ∆s < 0, then E[∆d̄(1)] > E[∆d̄(2)]; if ∆s > 0, then E[∆d̄(1)] < E[∆d̄(2)].

(2) when h < 1
C , if ∆s < 0, then E[∆d̄(1)] < E[∆d̄(2)]; if ∆s > 0, then E∆d̄(1)] > E[∆d̄(2)].

B TRAINING ALGORITHM OF NEWTONNET

We show the training algorithm of NewtonNet in Algorithm 1. We first randomly initialize θ, h, and
{t0, · · · , tK}. We update h according to the predicted labels of each iteration. We update the learned
representations and θ, and {t0, · · · , tK} accordingly until convergence or reaching max iteration.

16

Under review as a conference paper at ICLR 2024

Algorithm 1 Training Algorithm of NewtonNet

Input: G = (V, E ,X), YL, K, {q0, · · · , qK}, γ1, γ2, γ3,
Output: θ, h, {t0, · · · , tK}

1: Randomly initialize θ, h, {t0, · · · , tK}
2: repeat
3: Update representations z by Eq. 6
4: Update predicted labels ŷv

5: Update h with predicted labels
6: L ← Eq. 9
7: Update θ and {t0, . . . , tK}
8: until convergence or reaching max iteration

B.1 COMPLEXITY ANALYSIS

Time complexity. According to Blakely et al. (2021), the time complexity of GCN is O(L(EF +
NF 2)), where E is the number of edges, and L is the number of layers. One-layer GCN has the
formula Xl+1 = σ(AXlWl). O(NF 2) is the time complexity of feature transformation, and
O(EF) is the time complexity of neighborhood aggregation. Following GPRGNN, ChebNetII, and
BernNet, NewtonNet uses the "first transforms features and then propagates" strategy. According
to Eq. 6, the feature transformation part is implemented by an MLP with time O(NF 2). And the
propagation part has the time complexity with O(KEF). In other words, NewtonNet has a time
complexity O(KEF +NF 2), which is linear to K. BernNet’s time complexity is quadratic to K.
We summarize the time complexity in Table 2.

Table 2: Time and space complexity.

Method Time Complexity Space Complexity
MLP O(NF 2) O(NF 2)
GCN O(L(EF +NF 2)) O(E + LF 2 + LNF)

GPRGNN O(KEF +NF 2) O(E + F 2 +NF)
ChebNetII O(KEF +NF 2) O(E + F 2 +NF)
BernNet O(K2EF +NF 2) O(KE + F 2 +NF)

NewtonNet O(KEF +NF 2) O(KE + F 2 +NF)

Table 3: Running Time (ms/epoch) of each method.

Method Chameleon Pubmed Penn94 Genius
MLP 1.909 2.283 6.119 10.474
GCN 2.891 3.169 22.043 20.159

Mixhop 3.609 4.299 19.702 27.041
GPRGNN 4.807 4.984 10.572 12.522

ChebNetII (K=5) 4.414 4.871 9.609 12.189
ChebNetII (K=10) 7.352 7.447 13.661 15.346

BernNet (K=5) 8.029 11.730 19.719 20.168
BernNet (K=10) 20.490 20.869 49.592 43.524

NewtonNet (K=5) 6.6135 7.075 17.387 17.571
NewtonNet (K=10) 12.362 13.042 25.194 30.836

To examine our analysis, Table 3 shows the running time of each method. We employ 5 different
masks with 2000 epochs and calculate the average time of each epoch. We observe that (1) For
the spectral methods, NewtonNet, ChebNetII, and GPRGNN run more quickly than BernNet since
their time complexity is linear to K while BernNet is quadratic; (2) NewtonNet cost more time than
GPRGNN and ChebNetII because it calculates a more complex polynomial; (3) On smaller datasets
(Chameleon, Pubmed), GCN runs faster than NewtonNet. On larger datasets (Penn94, Genius),
NewtonNet and other spectral methods are much more efficient than GCN. This is because we only

17

Under review as a conference paper at ICLR 2024

transform and propagate the features once, but in GCN, we stack several layers to propagate to more
neighbors. In conclusion, NewtonNet is scalable on large datasets.

Space complexity. Similarly, GCN has a space complexity O(E + LF 2 + LNF). O(F 2) is for
the weight matrix of feature transformation while O(NF) is for the feature matrix. O(E) is caused
by the sparse edge matrix. NewtonNet has the space complexity O(KE + F 2 + NF) because it
pre-calculates (L− qiI) in Equation 6. We compare the space complexity in Table 2 and the memory
used by each model in Table 4. On smaller datasets, NewtonNet has a similar space consumption with
GCN. However, NewtonNet and other spectral methods are more space efficient than GCN on larger
datasets because we do not need to stack layers. Therefore, NewtonNet has excellent scalability.

Table 4: Memory usage (MB) of each method.

Method Chameleon Pubmed Penn94 Genius
MLP 1024 1058 1862 1390
GCN 1060 1114 3320 2012

Mixhop 1052 1124 2102 2536
GPRGNN 1046 1060 1984 1370
ChebNetII 1046 1080 1982 1474
BernNet 1046 1082 2026 1544

NewtonNet 1048 1084 2292 1868

(a) Approximation. (b) Interpolation.

Figure 6: Difference between approximation and interpolation.

C APPROXIMATION VS INTERPOLATION

Approximation and interpolation are two common curve fitting methods (Hildebrand, 1987).
Given an unknown continuous function f̂(x), and its values at n + 1 known points
{(x0, f̂(x0)), · · · , (xn, f̂(xn))}, we want to use g(x) to fit unknown f̂(x). Approximation methods
aim to minimize the error between the original function and estimated function |f̂(x)− g(x)|; while
interpolation methods aim to fit the data and make f̂(xi) = g(xi), i = 0, · · · , n. In other words,
the interpolation function passes every known point exactly, but the approximation function finds
minimal error among the known points. Fig. 6 shows the difference. The property of interpolation
allows us to learn the function values directly in our model, which is discussed in Section 4.

D EXPERIMENTAL DETAILS

D.1 SYNTHETIC DATASETS

In this paper, we employ contextual stochastic block model (CSBM) (Deshpande et al., 2018) to
generate synthetic datasets. CSBM provides a model to generate synthetic graphs with controllable
inter-class and intra-class edge probability. It assumes features of nodes from the same class conform
to the same distribution. Assume there are two equal-size classes {c0, c1} with n nodes for each class.
CSBM generates edges and features by:

P(Aij = 1) =

{
1
n (d+ σ

√
d) when yi = yj

1
n (d− σ

√
d) when yi ̸= yj

xi =

√
µ

n
viu +

wi√
F

(34)

18

Under review as a conference paper at ICLR 2024

where d is the average node degree, µ is mean value of Gaussian distribution, F is the feature
dimension, entries of wi ∈ Rp has independent standard normal distributions, and u ∼ N (0, IF /F).
We can control homophily ratio h by changing σ =

√
d(2h− 1), −

√
d ≤ σ ≤

√
d. When σ = −

√
d,

it is a totally heterophilous graph; when σ =
√
d, it is a totally homophilous graph. Following (Chien

et al., 2021), we adopt d = 5, µ = 1 in this paper. We vary σ to generate graphs with different
homophily levels. In Fig. 1(b), we adopt 2n = 3000, F = 3000 to generate the synthetic dataset. We
vary the number of nodes 2n and number of features F to generate different CSBM datasets and
show their frequency importance in Fig. 9.

D.2 REAL-WORLD DATASETS

Citation Networks (Sen et al., 2008): Cora, Citeseer, and PubMed are citation network datasets. Cora
consists of seven classes of machine learning papers, while CiteSeer has six. Papers are represented
by nodes, while citations between two papers are represented by edges. Each node has features
defined by the words that appear in the paper’s abstract. Similarly, PubMed is a collection of abstracts
from three types of medical papers.

WebKB (Pei et al., 2020): Cornell, Texas, and Wisconsin are three sub-datasets of WebKB. They are
collected from a set of websites of several universities’ CS departments and processed by (Pei et al.,
2020). For each dataset, a node represents a web page and an edge represents a hyperlink. Node
features are the bag-of-words representation of each web page. We aim to classify the nodes into one
of the five classes, student, project, course, staff, and faculty.

Wikipedia Networks (Rozemberczki et al., 2021): Chameleon, Squirrel, and Crocodile are three
topics of Wikipedia page-to-page networks. Articles from Wikipedia are represented by nodes, and
links between them are represented by edges. Node features indicate the occurrences of specific
nouns in the articles. Based on the average monthly traffic of the web page, the nodes are divided
into five classes.

Social Networks (Lim et al., 2021): Penn94 (Traud et al., 2012) is a social network of friends among
university students on Facebook in 2005. The network consists of nodes representing individual
students, each with their reported gender identified. Additional characteristics of the nodes include
their major, secondary major/minor, dormitory or house, year of study, and high school attended.

Twitch-gamers (Rozemberczki & Sarkar, 2021) is a network graph of Twitch accounts and their
mutual followers. Node attributes include views, creation date, language, and account status. The
classification is binary and to predict whether the channel has explicit content.

Genius (Lim & Benson, 2021) is from the genius.com social network, where nodes represent users
and edges connect mutual followers. Node attributes include expertise scores, contribution counts,
and user roles. Some users are labeled "gone," often indicating spam. Our task is to predict these
marked nodes.

Table 5: Statistics of real-world datasets.

Dataset Citation Wikipedia WebKB Social
Cora Cite. Pubm. Cham. Squi. Croc. Texas Corn. Penn94 Genius Gamer

Nodes 2708 3327 19717 2277 5201 11,631 183 183 41554 421,961 168,114
Edges 5429 4732 44338 36101 217,073 360040 309 295 1,362,229 984,979 6,797,557

Attributes 1433 3703 500 2325 2089 128 1703 1703 4814 12 7
Classes 7 6 3 5 5 5 5 5 2 2 2

h 0.81 0.74 0.80 0.24 0.22 0.25 0.11 0.31 0.47 0.62 0.55

D.3 BASELINES

We compare our method with various state-of-the-art methods for both spatial and spectral methods.
First, we compare the following spatial methods:

• MLP: Multilayer Perceptron predicts node labels using node attributes only without incorporating
graph structure information.

• GCN (Kipf & Welling, 2017): Graph Convolutional Network is one of the most popular MPNNs
using 1-hop neighbors in each layer.

19

Under review as a conference paper at ICLR 2024

• MixHop (Abu-El-Haija et al., 2019): MixHop mixes 1-hop and 2-hop neighbors to learn higher-
order information.

• APPNP (Klicpera et al., 2018): APPNP uses the Personalized PageRank algorithm to propagate
the prediction results of GNN to increase the propagation range.

• GloGNN++ (Li et al., 2022): GloGNN++ is a method for creating node embeddings by aggregating
information from global nodes in a graph using coefficient matrices derived through optimization
problems.

We also compare with recent state-of-the-art spectral methods:

• ChebNet (Defferrard et al., 2016): ChebNet uses Chebyshev polynomial to approximate the filter
function. It is a more generalized form of GCN.

• GPRGNN (Chien et al., 2021): GPRGNN uses Generalized PageRank to learn weights for
combining intermediate results.

• BernNet (He et al., 2021b): ChebNet uses Bernstein polynomial to approximate the filter function.
It can learn arbitrary target functions.

• ChebNetII (He et al., 2022): ChebNet uses Chebyshev interpolation to approximate the filter
function. It mitigates the Runge phenomenon and ensures the learned filter has a better shape.

• JacobiConv (Wang & Zhang, 2022): JacobiConv uses Jacobi basis to study the expressive power
of spectral GNNs.

D.4 SETTINGS

We run all of the experiments with 10 random splits and report the average performance with the stan-
dard deviation. For full-supervised learning, we use 60%/20%/20% splits for the train/validation/test
set. For a fair comparison, for each method, we select the best configuration of hyperparameters
using the validation set and report the mean accuracy and variance of 10 random splits on the test.
For NewtonNet, we choose K = 5 and use a MLP with two layers and 64 hidden units for encoder
fθ. We search the learning rate of encoder and propagation among {0.05, 0.01, 0.005}, the dropout
rate for encoder and propagation among {0, 0.0005}, and γ1, γ2, γ3 among {0, 1, 3, 5}. For other
baselines, we use the original code and optimal hyperparameters from authors if available. Otherwise,
we search the hyperparameters within the same search space of NewtonNet.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 HYPERPARAMETER ANALYSIS

In our hyperparameter sensitivity analysis on the Citeseer and Chameleon datasets, we investigated
the effects of varying the values of γ1, γ2, and γ3 among{0, 0.01, 0.1, 1, 10, 100}. The accuracy
results were plotted in Figure 7. We made the following observations. For the Chameleon dataset,
increasing the value of γ1 resulted in improved performance, as it effectively discouraged low-
frequency components. As for γ2, an initial increase led to performance improvements since it
balanced lower and higher frequencies. However, further increases in γ2 eventually led to a decline in
performance. On the other hand, increasing γ3 had a positive effect on performance, as it encouraged
the inclusion of more high-frequency components.

Regarding the Citeseer dataset, we found that increasing the values of γ1, γ2, and γ3 initially improved
performance. However, there was a point where further increases in these regularization terms caused
a decrease in performance. This can be attributed to the fact that excessively large regularization
terms overshadowed the impact of the cross entropy loss, thus hindering the model’s ability to
learn effectively. We also observe that the change of Chameleon is more than that in Citeseer, so
heterophilous graphs need more regularization.

We also investigate the sensitivity of the parameter K. While keeping the remaining optimal
hyperparameters fixed, we explore different values of K within the set {2, 5, 8, 11, 14}. The
corresponding accuracy results are presented in Fig. 8. In both datasets, we observe a pattern of
increasing performance followed by a decline. This behavior can be attributed to the choice of K.

20

Under review as a conference paper at ICLR 2024

(a) Citeseer (b) Chameleon

Figure 7: Hyperparameter Analysis for γ1, γ2, and γ3

2 5 8 11 14
K

87

88

89

90

Ac
c

(a) Cora

2 5 8 11 14
K

60

65

70

75

Ac
c

(b) Chameleon

Figure 8: Hyperparameter Analysis for K.

If K is set to a small value, the polynomial lacks the necessary power to accurately approximate
arbitrary functions. Conversely, if K is set to a large value, the polynomial becomes susceptible to
the Runge phenomenon (He et al., 2022).

E.2 LEARNED HOMOPHILY RATIO

Table 6 presents the real homophily ratio alongside the learned homophily ratio for each dataset. The
close proximity between the learned and real homophily ratios indicates that our model can estimate
the homophily ratio accurately so that it can further guide the learning of spectral filter.

E.3 MORE RESULTS OF FREQUENCY IMPORTANCE

In Fig. 9, we present more results of frequency importance on CSBM datasets with different numbers
of nodes and features. We fix d = 5 and µ = 1 in Eq. 34 and vary the number of nodes and features
among {800, 1000, 1500, 2000, 3000}. We can get similar conclusions as in Section 3.2.

E.4 LEARNED FILTERS

The learned filters of NewtonNet, BernNet, and ChebNetII for each dataset are illustrated in Fig. 10 to
Fig. 18. Our observations reveal that NewtonNet exhibits a distinct ability to promote or discourage
specific frequencies based on the homophily ratio. In the case of homophilous datasets, NewtonNet
emphasizes low-frequency components while suppressing middle and high frequencies. Conversely,
for heterophilous datasets, the learned spectral filter of NewtonNet emphasis more on high-frequency
components compared to other models.

21

Under review as a conference paper at ICLR 2024

(a) 800 Nodes, 800 Features (b) 800 Nodes, 1000 Features (c) 800 Nodes, 1500 Features

(d) 800 Nodes, 2000 Features (e) 1000 Nodes, 1000 Features (f) 1000 Nodes, 2000 Features

(g) 1000 Nodes, 3000 Features (h) 1500 Nodes, 800 Features (i) 1500 Nodes, 1500 Features

(j) 2000 Nodes, 1000 Features (k) 2000 Nodes, 1500 Features (l) 2000 Nodes, 2000 Features

(m) 2000 Nodes, 3000 Features (n) 3000 Nodes, 1000 Features (o) 3000 Nodes, 2000 Features

Figure 9: Frequency importance on CSBM model with different hyperparameters.

22

Under review as a conference paper at ICLR 2024

Table 6: The real homophily ratio and learned homophily ratio in Table 1

Cora Cite. Pubm. Cham. Squi. Croc. Texas Corn. Penn.
Real 0.81 0.74 0.80 0.24 0.22 0.25 0.11 0.20 0.47

Learned 0.83 0.79 0.83 0.27 0.23 0.28 0.12 0.33 0.51

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 10: Learned filters on Cora.

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 11: Learned filters on Citeseer.

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 12: Learned filters on Pubmed.

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 13: Learned filters on Chameleon.

23

Under review as a conference paper at ICLR 2024

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 14: Learned filters on Squirrel.

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 15: Learned filters on Crocodile.

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 16: Learned filters on Texas.

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 17: Learned filters on Cornell.

(a) NewtonNet (b) ChebNetII (c) BernNet

Figure 18: Learned filters on Penn94.

24

