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Abstract

Skin cancer, a deadly form of cancer, exhibits
a 23% survival rate in the USA with late diag-
nosis. Early detection can significantly increase
the survival rate, and facilitate timely treatment.
Accurate biomedical image classification is vital
in medical analysis, aiding clinicians in disease
diagnosis and treatment. Deep learning (DL) tech-
niques, such as convolutional neural networks
and transformers, have revolutionized clinical
decision-making automation. However, compu-
tational cost and hardware constraints limit the
implementation of state-of-the-art DL architec-
tures. In this work, we explore a new type of neu-
ral network that does not need backpropagation
(BP), namely the Forward-Forward Algorithm
(FFA), for skin lesion classification. While FFA is
claimed to use very low-power analog hardware,
BP still tends to be superior in terms of classi-
fication accuracy. In addition, our experimental
results suggest that the combination of FFA and
BP can be a better alternative to achieve a more
accurate prediction.

1. Introduction

Skin cancer is one of the most common types of cancer
(Linares et al., 2015; Siegel et al., 2023), and early detection
and diagnosis can greatly improve the prognosis of patients
(Miller et al., 2019). Dermatologists use visual inspection
to diagnose skin cancer, which can be challenging because
there are numerous skin lesions and the visual similarity be-
tween different types of them. Therefore, Computer-aided
diagnosis (CAD) systems are required to assist dermatolo-
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gists in the early detection and diagnosis of skin cancer, aim-
ing to ensure timely treatment (Bhinder et al., 2021). In the
past few years, deep learning (DL) has revolutionized the au-
tomation of clinical decisions through computational system
assistance. Techniques such as backpropagation (Rumel-
hart et al., 1985), convolutional neural networks (CNNs)
(LeCun et al., 1998), and recently proposed transformers
(Vaswani et al., 2017) have boosted confidence in the use
of Al in a real clinical setup. However, the computational
cost and hardware constraints related to the implementa-
tion of state-of-the-art DL architectures limit the feasibility
of actual deployment implementation (Imteaj et al., 2022).
The Forward-Forward Algorithm (FFA) (Hinton, 2022) has
been presented as an alternative to optimizing the training
process of neural networks, considering the “mortal com-
putational” cost. Although results reported by the use of
FFA have not outperformed traditional mechanisms such
as backpropagation, the trade-off could be less requirement
in hardware implementation. In this work, we explore the
performance of FFA for skin lesion classification and also
compare it to a backpropagation-based trained model. Fi-
nally, we propose to combine the two techniques during the
training process, where the FFA is used as a feature extractor
and backpropagation to improve model prediction.

2. Related works

Skin lesion classification has been a significant research
area in recent years, and numerous deep-learning techniques
have been designed for this task (Zhang et al., 2019; Mahbod
et al., 2019). Most existing methods use traditional CNNs,
which learn the feature representation through backprop-
agation (Harangi, 2018; Albahar, 2019). However, these
methods can be limited by the quality of the feature rep-
resentation. In order to overcome this limitation, some
researchers have suggested methods that use adversarial
training to improve the feature representation. For example,
GAN-based methods have been implemented for skin lesion
classification, which use a generator network to generate
realistic skin lesion images and a discriminator network to
classify the generated images as real or fake (Rashid et al.,
2019).

In contrast to these methods, we herein propose to combine
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the FFA with traditional backpropagation to enhance fea-
ture representation and improve classification accuracy in
skin lesion classification. Our approach does not require
adversarial training or pre-training on a large dataset, mak-
ing it computationally efficient and suitable for large-scale
datasets. Our approach means to provide a baseline on the
performance of DL architecture using the FFA strategy in
contrast with backpropagation, in addition to exploring the
combination of the two techniques.

3. Methodology

Our proposed framework consists of two stages: feature
representation with FFA and final prediction with backprop-
agation.

3.1. Backpropagation

Introduced by Rumelhart et al. (Rumelhart et al., 1986;
1985), the backpropagation algorithm, utilized for training
artificial neural networks, entails calculating the gradient
of the error function concerning the network weights. This
gradient information is then used to update the weights by
using gradient descent, aiming to minimize the global loss
function of the task. The authors demonstrated that this
algorithm could facilitate the learning of distributed repre-
sentation of input data, enabling effective generalization to
new data.

The backpropagation algorithm consists of two main stages:
the forward pass and the backward pass. During the for-
ward pass, input data is propagated through the network,
generating corresponding predictions. Subsequently, dur-
ing the backward pass, the gradients of the loss function
are calculated with respect to the network’s parameters by
propagating the error backward through the neural network.
These gradients are then utilized to update the parameters
using an optimization algorithm, such as stochastic gradient
descent (SGD) or Adam (Amari, 1993; Bock et al., 2018).

3.2. The Forward-Forward Algorithm

Backpropagation Forward-Forward Algorithm

Local update
— Forward Pass

> Backward Pass

Neural Network layer

Figure 1. A brief illustration of the backpropagation and the
forward-forward algorithm.

Introduced by Geoffrey Hinton (Hinton, 2022), the forward-

forward algorithm (FFA) is an innovative learning procedure
for neural networks. It draws inspiration from the Boltz-
mann machines (Hinton et al., 1986) and Noise Contrastive
Estimation (Gutmann & Hyvirinen, 2010), Its primary ob-
jective is to replace the traditional forward and backward
passes of backpropagation with two parallel forward passes.
The first forward pass uses real data, and the second forward
pass uses negative data, which the network generates itself.
Each layer possesses its individual objective function, which
essentially aims to maximize the goodness for positive data
while minimizing the goodness for negative data. Figure 1
illustrates the main difference between the traditional back-
propagation algorithm and the newer FFA. Mathematically,
the goodness is computed as follows

prob(positive-data) = J(Z yj2 —0)) (D
J

where 7; represents activity of the j** hidden unit, 6 a given
threshold, and ¢ a logistic distribution function. The FFA
has been shown to work well on a few small problems
(Ororbia, 2023), but it has not yet been tested on large-scale
problems. In addition, the FFA has been claimed to be supe-
rior in hardware efficiency, through low power consumption
when compared with the backpropagation and the gradient
computation (Hinton, 2022; Kendall et al., 2020).

3.3. Feature representation in FFA

In the FFA, pairs of data points are created by corrupting
real data points with noise. The network is then trained to
distinguish between the real data points and the corrupted
data points. This training process forces the network to
learn representations that are robust to noise. The proposed
method utilizes the FFA algorithm as the initial stage of
learning, and then the final classification is trained by using
regular backpropagation.

4. Implementation details

The proposed methodology was tested with two skin lesion
classification benchmark datasets: ISIC 2016 and HAM
10000 datasets, details about the dataset are provided in
section 5. The ISIC 2016 provides training and testing
datasets with the correspondent classification ground truth
(i.e. benign or malign skin lesion). However, the HAM
10000 dataset provides only the training dataset with the
corresponding type of skin lesion ground truth. For the last
case, we randomly split the dataset in training and testing
with a ratio of 8:2, respectively. In order to alleviate the
computational constraints all the images, from the aforemen-
tioned datasets, were downsampled to 64 x 64 pixels size,
maintaining the original RGB channels. The inputs were
flattened and normalized prior to the training process. The
architecture for all the experiments was composed of 3 fully
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connected hidden layers (784, 500, 500 units) with ReLLU
activation and batch normalization. A final softmax activa-
tion function provides the probability distribution among
the classes corresponding to the classification task on each
dataset. In the case of the FFA, the positive and negative
data are generated by the network, and the one-hot-encoder
representation of the label is overlying in the first n pixels
of the input image, where n represent the number of classes
available. The positive data embed the original ground truth
in the corresponding input image; meanwhile, the negative
data overlay a wrong label in the same input image. Figure
2 illustrates the overlay technique utilized in this work to
generate the positive and the negative data. The architecture
is implemented within a Tensorflow/Keras 2.9 version en-
vironment. Each experiment is run using a single NVIDIA
GeForce RTX 3070 graphic card with 8GB of dedicated
GPU. All experiments are run for a total of 250 epochs with
checkpoint callback, and batch size of 64 samples per iter-
ation. The mean squared error (MSE) loss was used along
with the Adam optimizer with an initial learning rate of
1x1073.
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Figure 2. Illustration of the generated positive and negative data
when FFA is used over the HAM 10000 dataset. The images
contain embedded label information in the first 7 pixels: (a) sample
with label 1, (b) sample with label 4, and (c) sample with the label
2.

5. Experiments

In this section, we provide more details about the experi-
ments performed to evaluate the proposed method, including
the description of the datasets, performance metrics used
as evaluation criteria, and a discussion of the experimental
results.

5.1. Datasets

In order to evaluate the robustness of the proposed method-
ology, we utilize two widely used and publicly available
benchmark datasets related to skin lesion classification:
ISIC 2016 and HAM 10000 datasets.

5.1.1. ISIC 2016

Presented in the International Skin Imaging Collaboration
(ISIC) 2016 challenge, the ISIC 2016 dataset (Gutman et al.,

Figure 3. Samples from the two benchmark datasets utilized in the
work: (a) The ISIC 2016 and (b) the HAM 10000 dataset.

2016) is a comprehensive collection of dermoscopic images
that is widely used in the field of computer-aided diagnosis
for skin lesions. It consists of 900 training images and
379 test images of dermoscopic skin lesions. The dataset
includes binary masks for both lesion segmentation and
classification purposes, enabling researchers to evaluate
algorithms for these tasks. The dataset encompasses three
main types of skin lesions: melanoma (Malign), seborrheic
keratosis, and nevus (Benign). These lesion types cover a
range of conditions commonly encountered in dermatology
practice. The images in the dataset were obtained from
patients across multiple countries, resulting in a diverse and
challenging dataset.

5.1.2. HAM 10000

The Human Against Machine with 10000 training images
(HAM10000) dataset (Tschandl et al., 2018), widely used
in dermatology and computer vision, comprises 10,015 der-
moscopic images of skin lesions obtained from diverse clin-
ical sources. It was specifically created for the ISIC 2018
challenge initiated by the International Skin Imaging Col-
laboration, with the aim of advancing automated analysis of
skin lesions. Within the HAM10000 dataset, images repre-
sent seven distinct types of skin lesions: melanoma(MEL),
melanocytic nevus(NV), basal cell carcinoma(BCC), ac-
tinic keratosis(AKIEC), benign keratosis(BLK), dermatofi-
broma(DF), and vascular lesions(VASC). Figure 4 shows
the numerical by-class distribution of the samples in the
HAM 100000 dataset. Figure 3 shows samples of the two
mentioned datasets.

5.2. Performance metrics
5.2.1. THE ERROR RATE %:

The error rate is a commonly used performance metric that
measures the accuracy of the model’s predictions. It repre-
sents the proportion of incorrectly classified instances out of
the total number of instances. The error rate, denoted as ¢, is
a straightforward and intuitive metric that provides a simple
measure of the model’s performance in image classification
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Figure 4. Distribution of the samples per class in the HAM 10000
dataset.

tasks and can be mathematically expressed as

FP+FN
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5.2.2. THE ROC-AUC SCORE:

The ROC-AUC measures the classifier’s ability to distin-
guish between positive and negative instances across various
classification thresholds. The ROC curve (receiver operating
characteristic curve) demonstrates the true positive rate (sen-
sitivity) against the false positive rate (1-specificity), and
the ROC-AUC represents the area under this ROC curve.
A higher ROC-AUC indicates better classification perfor-
mance. The ROC-AUC can be mathematically expressed
as

[ee]

ROC AUC score = / TPR(f) - FPR(f)df (3)

— 0o

FPU) are knowing

TP
where TPR(f) = ) and FPR(f) = ¢
as the true positive rate and the false positive rate, respec-

tively

5.2.3. EXPERIMENTAL RESULTS AND DISCUSSION

Experimental results are reported in Table 1 in terms of the
error rate %, and in Table2 in terms of ROC-AUC score.
In both cases, it shows superior performance of the model
when it is trained with the backpropagation method in con-
trast when it is trained with FFA. However, reported results
suggest a better performance can be achieved when both
techniques are combined, and the results are consistent over
the two datasets. It is important to remark on the following
points: (1) The architecture configuration was not intended
to achieve state-of-the-art performance but provides a com-
parative baseline when a DL architecture is trained using
either FFA, backpropagation, or both. (2) The use of only

Table 1. Error rate (%) on skin lesion datasets.
ISIC 2016 HAM 10000
Testing error | Training error | Testing error | Training error
rate % rate % rate % rate %

FFA 29.52 22.48 37.21 20.42
BP 2481 17.33 31.66 13.97
FFA+BP 23.31 16.85 30.44 13.43

Table 2. ROC-AUC on skin lesion classification benchmarks.

ISIC 2016 HAM 10000
Testing Training Testing Training
ROC-AUC | ROC-AUC | ROC-AUC | ROC-AUC
FFA 0.5632 0.6684 0.6912 0.7824
BP 0.6216 0.8240 0.8360 0.9324
FFA+BP 0.6495 0.8472 0.8483 0.9414

fully connected layers limits the size of the architecture due
to computational constraints. Therefore, this is expected to
be addressed through the implementation of convolutional
layers.

6. Conclusion

In this work, we investigated the performance of FFA for the
skin lesion classification task. We compared the prediction
accuracy of the FFA, backpropagation, and the combination
of both. Experimental results showed that the backpropa-
gation algorithm yields better classification accuracy than
FFA. However, our results also suggest promising insights
into the use of the FFA in the neural network as a feature
extractor. A contrastive learning stage with FFA comple-
mented with classification learning using traditional back-
propagation could enhance the performance for skin lesion
classification when comparing the similar architecture setup
using either FFA or the backpropagation method only. One
limitation of our study is that we did not include the re-
sults of the energy efficiency of FFA in terms of hardware
implementation, which will be our future work.
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