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A Technical Appendix

This technical appendix provides additional implementation details, more experimental results, and
further discussions about our proposed MapVR as well as the new rasterization-based evaluation
metric, which are omitted in the main paper due to space limitations.

A.1 Implementation Details of MapVR

Network Architectures. MapVR is a generic training paradigm that is directly applicable to any
map vectorization model. To demonstrate the effectiveness of our proposed rendering-based training
pipeline, we adopt the encoder-decoder-based network architecture from MapTR [4] as the base
prediction model.

The base model takes surround-view images of the ego-vehicle as input. The model’s encoder
firstly extracts 2D image features for each camera view using a conventional convolution-based
backbone. Following MapTR, we leverage GKT [1] to transform multi-view image features to a
unified BEV space feature, which is used by the model’s decoder to predict vectorized map elements.
The decoder network consists of interleaved self-attention and cross-attention layers that progressively
refine a set of queries. Specifically, the self-attention layers are implemented with Multi-Head Self-
Attention (MHSA) [7] to enable the interaction among the queries, and the cross-attention layers are
implemented with Deformable Attention [8] which attend to various locations in the BEV features
[3]. Each query goes through a classification head for the class score prediction and a regression head
for the vectorized point set prediction, respectively.

Training Objectives. Given a set of predicted vectorized map elements and the set of ground truths,
we adopt Hungarian Matching [2] to obtain the optimal assignment. The matching cost between each
pair of prediction and ground truth instances is formulated as

L(Match) = λ1 · L(Match)
render + λ2 · L(Match)

cls + λ3 · L(Match)
reg . (1)

The rendering cost L(Match)
render is implemented with a dice loss [6] between the softly rendered masks

of the prediction and the ground truth. The classification cost L(Match)
cls is computed by applying the

sigmoid function on the prediction’s classification score of the particular class to which the matched
ground-truth instance belongs. We use an L1-based regression loss L(Match)

reg with a small weight λ3 to
facilitate the matching process.

Once the optimal matching is obtained, we compute the final loss to supervise the training of the
prediction model. The final loss for each prediction and its paired ground truth instance is defined as

L = λ1 · Lrender + λ2 · Lcls + λ3 · Ldir + λ4 · Lreg. (2)

The rendering loss Lrender and the regression loss Lreg are defined similarly as the costs in the matching
process. The classification loss Lcls is implemented with a binary classification focal loss [5]. We
further introduce the direction regularization loss Ldir on the predicted point set to regularize the
regression output (See Eq. 4 in the main paper).
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Figure 9: Additional visual comparison of online HD map vectorization results. Our proposed
MapVR demonstrates a superior ability in constructing more accurate maps, particularly for complex
map elements and intricate details.

A.2 Implementation Details of APraster (the Rasterization-Based Evaluation Metric)

Please visit our project page (https://github.com/ZhangGongjie/MapVR) for the implementation
details of the APraster metric.

Furthermore, we offer a standalone package of APraster with simple instructions for us-
age, so that all researchers can adopt this metric for evaluation with ease. Please refer to
https://github.com/jiahaoLjh/MapVectorizationEvalToolkit for the standalone implementation of
the APraster evaluation metric as well as the recommended hyper-parameter setups.

A.3 Additional Experiment Results

As shown in Fig. 9, we provide further visual comparisons of HD map vectorization results. The
results are consistent with our visualizations in the main paper: the proposed MapVR significantly
enhances the model’s capacity to perceive the finer details as well as those map elements with complex
shapes. The results reaffirm the necessity of a rasterization perspective in map vectorization.

Fig. 10 presents more visualization of MapVR’s HD map construction results. Our proposed method
shows strong robustness across various scenes.

A.4 Further Discussions

Regarding Performance on Boundary Class. In reference to the observed performance drop in
APChamfer on the ‘boundary’ class in Table 1 of the main paper, we believe this is related to the
curved nature of the boundary map elements and the lack of geometry awareness in APChamfer. As
shown in Fig. 10, these boundary map elements often embody a high number of curved or folded
instances. As discussed in Section 3, the Chamfer-distance-based metric struggles to offer a fair
evaluation for such scenarios. Therefore, we believe that this inherent limitation of the Chamfer
distance primarily accounts for the performance drop in APChamfer, and our proposed APraster offers
a more reasonable performance evaluation.

Another Way to Understand MapVR. MapVR is not just a training paradigm that bridges
vectorized predictions and fine-grained HD map supervision. If viewed from an optimization
perspective, MapVR is providing an extra dimension of supervision that complements regression-
based losses. Specifically, the rasterization-based loss not only drives the prediction towards the
ground truth, but also provides supervision in the direction that encourages better geometric alignment.
This is verified by the experimental results in Fig. 7 in the main paper that when trained with only the
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Figure 10: Visualization of the HD map construction results from our method (MapTR + MapVR).
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regression-based loss, MapTR only performs well under the regression-based metric (i.e., Chamfer
distance) but much worse under the rendering-based metric since the geometric alignment is not
enforced during training. It further demonstrates that our rendering-based evaluation metric is more
comprehensive compared to the regression-based loss and is better suited for real-world autonomous
driving scenarios.
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