
A Score Matching Estimator483

We provide the proof of the score matching estimator for temporal point processes and spatial point484

processes below, respectively. Generally speaking, the derivation for temporal point processes is more485

complex than spatial point processes because as we can see later there exists some complications486

arising from different limits of integration due to the order constraint on timestamps.487

A.1 Temporal Point Processes488

Given an observation window [0, T ], a sequence from a temporal point process is composed of a489

random number of timestamps arranged in a sequential order S = {tn}Nn=1 where t1 < t2 < . . . <490

tN and tn ∈ [0, T ] is the n-th event timestamp. We assume the ground-truth process generating the491

data has a density p(S) and design a parameterized model with density pθ(S) where θ is the model492

parameter to estimate. Following Sahani et al. [25], we define a Fisher-divergence objective:493

F (θ) = Ep(S)
1

2

N∑
n=1

(
∂ log p(S)

∂tn
− ∂ log pθ(S)

∂tn

)2

. (13)

The above loss can be understood as matching the variational derivatives of log-density w.r.t. the494

counting process N(t) given that the counting process is non-decreasing and piece-wise constant495

with unit steps.496

However, the above loss cannot be minimized directly as it depends on the gradient of the ground-truth497

data distribution which is unknown. Following the derivation of Hyvärinen [12], this dependence can498

be eliminated by using a trick of integration by parts. Let us expand Eq. (13), discard (∂ log p(S)
∂tn

)2499

which does not depend on parameter θ, and examine the cross-term:500
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(14)

where St−n
represents the sequence excluding tn, the fourth line uses integration by parts, the fifth line501

uses delta function to evaluate the limits of tn given the order constraint of timestamps. Therefore,502

the loss in Eq. (13) can be rewritten as:503

F (θ) = Ep(S)

[
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n=1
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)2
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]
+ C1.

(15)

where the constant C1 does not depend on θ and can be discarded. To construct the final empirical504

loss, we replace the expectation by the empirical average, which eliminates the delta functions as any505

two timestamps cannot overlap with each other, and obtain the final version:506

F̂ (θ) =
1
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+ C1, (16)

where we take M sequences {Sm}Mm=1 from p(S), tm,n is the n-th timestamp on the m-th sequence.507
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It is worth noting that Sahani et al. [25] assumed the parametric density satisfies the smoothness508

property: ∂tn log pθ(S)|tn=tn+1 = ∂tn+1 log pθ(S)|tn+1=tn to cancel most delta functions. Here, we509

emphasize that this smoothness assumption is not necessary. In our derivation, we do not utilize this510

smoothness property, but just take advantage of the non-overlapping of timestamps to eliminate all511

delta functions and obtain the same objective.512

A.2 Spatial Point Processes513

Let us consider a planar point process for example. Given a 2-D observation region X ⊆ R2, a514

realization from a 2-D spatial point process is composed of a random number of points S = {xn}Nn=1515

where xn ∈ X is the n-th event location (2-D coordinate). It is worth noting that these points are in516

no order. Similarly, we define a Fisher-divergence objective:517

F (θ) = Ep(S)
1
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, (17)

where xn is any entry in vector xn, i.e., xn ∈ xn.518

Similarly, we use the trick of integration by parts to eliminate the dependence of the loss on the519

gradient of the unknown ground-truth data distribution. Let us expand Eq. (17), discard (∂ log p(S)
∂xn

)2520

which does not depend on parameter θ, and examine the cross-term:521
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where Sx−
n

represents the realization excluding xn, the fourth line uses integration by parts, the fifth522

line assumes a weak regularity condition: p(S)∂xn log pθ(S) goes to zero for any θ when |xn| → ∞.523

It is worth noting that in spatial point processes the limits of xn are no longer constrained because524

there is no order for the points. Therefore, the loss in Eq. (17) can be rewritten as:525
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where the constant C1 does not depend on θ and can be discarded. Replacing the expectation by the526

empirical average, we obtain the final empirical loss:527
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where we take M realizations {Sm}Mm=1 from p(S), xm,n is the n-th variable on the m-th realization.528

A.3 Spatio-temporal Point Processes529

It is interesting to see that both score matching estimators for temporal point processes and spatial530

point processes have the same empirical loss (see Eq. (16) and Eq. (20)) regardless of whether the531

points are sequential or not. Therefore, it is easy to draw the conclusion that for spatio-temporal point532

processes the empirical score matching estimator is:533
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where sm,n is the n-th variable on the m-th sequence, Ñm is the number of equivalent variables on the534

m-th sequence, Ñm = Nm for 1-D point process, e.g., temporal point process; Ñm = 2Nm for 2-D535

point process, e.g., spatial point process; and Ñm = 3Nm for 3-D point process, e.g., spatio-temporal536

point process, etc.537

B Denoising Score Matching Estimator538

In Appendix A, we provide an estimator trying to match the gradient of the log-density of the point539

process model to the log-density of the point process data. However, the estimator requires the second540

derivatives, which is computationally expensive. To avoid this issue, following the derivation of541

Vincent [31], we derive a denoising score matching estimator.542

Differently, the denoising score matching estimator tries to match the gradient of the log-density of543

the model to the log-density of the noisy point process data. We add a small noise to the sequence544

S to obtain a noisy sequence S̃ (we add noise to each variable s̃n = sn + ϵ), which is distributed545

as p(S̃) =
∫
p(S̃ | S)p(S)dS. Therefore, the Fisher divergence between the noisy data distribution546

p(S̃) and model distribution pθ(S̃) is:547
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Ñ∑
n=1

(
∂ log p(S̃)

∂s̃n
− ∂ log pθ(S̃)

∂s̃n

)2

, (22)

where s̃n is any entry in the noisy vector s̃n, i.e., s̃n ∈ s̃n = (t̃n, x̃n), Ñ is the number of equivalent548

variables. Let us expand Eq. (22), discard (∂ log p(S̃)
∂s̃n

)2 which does not depend on parameter θ, and549

examine the cross-term:550
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Therefore, the loss in Eq. (22) can be rewritten as:551
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where the constants C and C2 do not depend on θ and can be discarded. Replacing the expectation552

by the empirical average, we obtain the final empirical loss:553
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(d) Score-DKMPP+

Figure 2: The intensity function at t = 10 estimated by three estimators (MLE-DKMPP, Score-
DKMPP, Score-DKMPP+) with 1,000 Monte Carlo (MC) samples. Three estimators exhibit similar
performance. Score-DKMPP and Score-DKMPP+ do not require Monte Carlo integration, and thus
their estimation remain consistent regardless of MC samples. In contrast, MLE-DKMPP heavily
relies on MC sampling and therefore its performance depends on the number of MC samples.

where we take M clean and noisy sequences {Sm, S̃m}Mm=1 from p(S, S̃), s̃m,n is the n-th variable554

on the m-th noisy sequence, Ñm is the number of equivalent variables on the m-th noisy sequence.555

C Experimental Details556

C.1 Synthetic Data557

Data Simulation We generate a 3-D spatio-temporal point process synthetic dataset. The spatial558

observation x spans the area of [0, 1] × [0, 1], while the temporal observation window covers the559

time interval of [0, 10]. We assume a 1-D covariate function Z(u = (τ, r)) = (N (r1 | 0.5, 0.5) +560

N (r2 | 0.5, 0.5)) on the domain. We set fw1(uj , Z(uj)) = 20Z(uj) + 0.1, kϕ,w2(s,uj) =561

kϕ(gw2
(s), gw2

(uj)) where kϕ is the RBF kernel kϕ(x,x′) = exp (−ϕ∥x− x′∥2) with ϕ = 100562

and gw2
is a linear transformation gw2

(s) = s+0.1. We fix the representative points on a regular grid:563

5 representative points evenly spaced on each axis, so there are 53 = 125 representative points in564

total. We use the thinning algorithm to generate 5,000 sequences according to the intensity function565

specified above. The statistics of the synthetic data are shown in Table 3.566

Training Details We fit a DKMPP model to the synthetic data with the ground-truth representative567

points and an RBF base kernel. Both the kernel mixture weight network f and the non-linear568

transformation g in the deep kernel are implemented using MLPs with ReLU activation functions.569

Therefore, the learnable parameters are w1, w2, ϕ. The intensity functions at t = 10 estimated by570

three different estimators are shown in Fig. 2.571
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Table 3: The statistics of synthetic and real-world datasets.

Dataset Covariate Dimension # of sequences average # of events per sequence

Synthetic 1 5,000 17
Crimes in Vancouver 1 1,096 87

NYC Vehicle Collisions 768 61 327
NYC Complaint Data 768 301 63

C.2 Real-world Data572

Data Preprocessing The preprocessing details of three real-world datasets are shown below. We573

listed the statistics of three real-world datasets after preprocessing in Table 3.574

Crimes in Vancouver This dataset is composed of more than 530 thousand crime records, including575

all categories of crimes committed in Vancouver from 2003 to 2017. Each crime record contains the576

time and location (latitude and longitude) of the crime. We split the data into multiple sequences by577

year, month and day. Then, we select events from 2013 to 2016, drop the NaN value, and scale the578

time and space into a volume of [0, 1]× [0, 1]× [0, 10]. We select the categorical feature ‘Crime Type’579

as the descriptive feature for each event. We convert the categorical feature into the corresponding580

numerical feature as the covariate. Finally, the dimension of covariate Z is 1.581

NYC Vehicle Collisions The New York City vehicle collision dataset contains about 1.05 million582

vehicle collision records. Each collision record includes the time and location (latitude and longitude).583

We split the data into multiple sequences by day. We select the records from 01/01/2019 to 02/03/2019,584

drop the NaN value and scale the time and space into a volume of [0, 1]× [0, 1]× [0, 10]. We select585

‘BOROUGH’, ‘CONTRIBUTING FACTOR VEHICLE 1’, ‘CONTRIBUTING FACTOR VEHICLE586

2’ and ‘VEHICLE TYPE CODE 1’ as the descriptive features for each event. We concatenate several587

textual features and use a pre-trained DistilBERT [26] to extract the textual features, and concatenate588

the textual features with other numerical/categorical features as the covariate. Finally, the dimension589

of covariate Z is 768.590

NYC Complaint Data This dataset contains over 228 thousand complaint records in New York City.591

Each record includes the date, time, and location (latitude and longitude) of the complaint. We split592

the data into multiple sequences by hour. We select the records from 01/11/2022 to 13/11/2022,593

drop the NaN value and scale the time and space into a volume of [0, 1]× [0, 1]× [0, 10]. We select594

‘OFNS_DESC’, ‘JURIS_DESC’, ‘LAW_CAT_CD’, ‘PD_DESC’, ‘VIC_RACE’, ‘VIC_SEX’ and595

‘PREM_TYP_DESC’ as the descriptive features for each event. We concatenate several textual596

features and use a pre-trained DistilBERT [26] to extract the textual features, and concatenate the597

textual features with other numerical/categorical features as the covariate. Finally, the dimension of598

covariate Z is 768.599

Training Details Each dataset is divided into training, validation and test data using a600

50%/40%/10% split ratio based on time. For the real-world data, we fix the representative points601

on a regular grid: 5 representative points evenly spaced on each axis, so there are 53 = 125 repre-602

sentative points in total. We use three different kernel functions for comparisons: the RBF kernel603

kϕ(x,x
′) = exp (−ϕ∥x− x′∥2), the rational quadratic (RQ) kernel kϕ(x,x′) = (1+ϕ∥x−x′∥2)− 1

2 ,604

and the Ornstein-Uhlenbeck (OU) kernel kϕ(x,x′) = exp (−ϕ∥x− x′∥). For the three real-world605

datasets, the kernel mixture weight network f and the non-linear transformation g in the deep kernel606

are implemented using MLPs with ReLU activation functions and we fixed the number of layers in f607

and g as 2.608

Hyperparameters We tested the performance of Score-DKMPP and Score-DKMPP+ with different609

hyperparameters on three real-world datasets. We tested the number of representation points and610

network structures. For the representation points, we tested three different values, 64, 125, and 216,611

respectively. For the network structure, we tested the number of layers of 1, 2, and 4. When we tested612

the effect of representation points, we fix the network with 2 hidden layers and when we tested the613

effect of network structure, we fix the number of representation points as 125.614

For the representation points, the accuracy of Score-DKMPP and Score-DKMPP+ overall have better615

performance when the number of representation points is 125. The accuracy tends to increase when616

17



64 125 216
# of Representation points

30

40

50

60

70

80

90

100

A
C

C

Crimes in Vncouver
NYC Vehicle Collisions
NYC Complaint Data

(a) Score-DKMPP

64 125 216
# of Representation points

30

40

50

60

70

80

90

100

A
C

C

Crimes in Vncouver
NYC Vehicle Collisions
NYC Complaint Data

(b) Score-DKMPP+

1 2 4
# of Layers

30

40

50

60

70

80

90

100

A
C

C

Crimes in Vncouver
NYC Vehicle Collisions
NYC Complaint Data

(c) Score-DKMPP

1 2 4
# of Layers

30

40

50

60

70

80

90

100

A
C

C

Crimes in Vncouver
NYC Vehicle Collisions
NYC Complaint Data

(d) Score-DKMPP+

Figure 3: (a) The ACC performance of Score-DKMPP with the number of representation points of
64, 125 and 216; (b) the ACC performance of Score-DKMPP+ with the number of representation
points of 64, 125 and 216; (c) the ACC performance of Score-DKMPP with the number of layers of
1, 2 and 4; (d) the ACC performance of Score-DKMPP+ with the number of layers of 1, 2 and 4.

the number of representation points increases from 64 to 125, however, except for the performance of617

Score-DKMPP on the complaint dataset, for other real-world datasets, the accuracy starts to drop.618

For the network structure, the accuracy using Score-DKMPP on the Crimes in Vancouver and NYC619

Complaint data tends to increase as the number of layers increases. However, for Score-DKMPP+,620

we only capture a similar trend on the NYC Vehicle Collisions data. Other than those mentioned621

above, we do not observe a significant pattern when increasing the number of layers.622
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