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These appendices provide supplementary details and results of BAST. Appendix A contains additional
details on Bayesian estimation and prediction. Supplementary simulation details and results including
hyperparameter tuning and computation time can be found in Appendix B. Finally, Appendix C
provides the proof of Proposition 1.

Appendix A Details on Bayesian Inference

Appendix A.1 Estimation

This appendix provides details on the Markov chain Monte Carlo (MCMC) algorithm discussed in
Section 3.1. We use gm to denote the n-dimensional vector of fitted values at the training locations S
from the mth RST partition, that is, the ith element of gm is g(si|πm, Tm, km,µm). Let Xπm be an
n× km binary matrix where the (i, j)th element is 1 if and only if si is in the jth cluster under the
partition πm. We write the partial residual term for the mth RST partition as

rm = Y −
∑
` 6=m

g`.

Recall that our MCMC algorithm proceeds by successively sampling (π1, T1, k1,µ1),. . .,
(πM , TM , kM ,µM ), and σ2 from their respective full conditional distributions. To sample from
p(πm, Tm, km,µm|−) for each m = 1, . . . ,M , we first sample the RST partition with µm analyt-
ically integrated out, by performing a birth, a death, a change, or a hyper move with probability
rb(km) = 0.3, rd(km) = 0.3, rc(km) = 0.3, and rh(km) = 0.1, respectively. Adjustments are
made to the probabilities for the boundary cases where km = 1 and km = k̄. This probability
specification works well in our experiments, but one can modify it if desired. For the first three moves,
the Metropolis-Hastings (M-H) acceptance ratio involves the integrated likelihood of Y given by

L(Y|πm, Tm, km,−) ∝ |Pπm |−1/2 exp

(
−1

2
rTmP−1πmrm

)
,

where Pπm = σ2In+σ2
µXπmX

T
πm . The Sherman-Woodbury-Morrison formula is applied to simplify

the computation of P−1πm and |Pπm |−1/2 as XπmX
T
πm has a reduced rank km.

Conditional on a sample of (πm, Tm, km), we sample µm from p(µm|πm, Tm, km,−), which is
given by

[µm|πm, Tm, km,−] ∼ Nkm (Qmbm,Qm) ,

where Qm =
(

1
σ2X

T
πmXπm + 1

σ2
µ
Ikm

)−1
and bm = XT

πmrm/σ
2.
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Finally, we sample σ2 from its inverse-gamma full conditional given by

[σ2|−] ∼ IG

(
n+ ν

2
,

1

2

[
νλs + ‖Y −

M∑
m=1

gm‖2
])

,

where ‖·‖ is the Euclidean norm.

Appendix A.2 Prediction in Two-dimensional Constrained Domains

In this subsection we provide details on specifying the neighbor setNu for prediction at an unobserved
location u in a constrained domainM⊂ R2. A constrained Delaunay triangulation (CDT) mesh can
be constructed onM such that every unobserved location of interest is contained in a triangle. In the
case where at least one triangle vertex is in S , Nu is specified as those triangle vertices that belong to
S. Prediction at u is then performed as stated in Section 3.2.

In the extreme case where no triangle vertex is in S, we choose Nu to be all the triangle vertices
(which lie on the domain boundary). To sample the cluster membership of u, we need to determine
the cluster memberships for vertices on the domain boundary, which can be done by, for instance,
assigning a boundary vertex to the same cluster as its nearest vertex in S with respect to the graph
distance in the CDT mesh (when the number of vertices in the CDT graph is large, we expect this
to well approximate the geodesic distance). Once we obtain the cluster memberships for boundary
vertices, we can sample zm(u) from the cluster memberships of the vertices in Nu as in Section 3.2.

Appendix B Supplementary Simulation Results

We implement BAST in R and fit BART and SFS using R packages BART1 [2] and mgcv2

[3], respectively. The code for inGP is adopted from https://github.com/mu2013/
Intrinsic-GP-on-complex-constrained-domain. Experiments are performed on a Linux
machine with two Intel Xeon E5-2680 v4 processors and 64GB memory.

Appendix B.1 U-shape Example

Appendix B.1.1 Comparison to BART with Larger Numbers of Weak Learners

To demonstrate that BAST is more efficient than its binary treed competitors in recovering irregularly
shaped regions where discontinuities happen in complex domains, we compare BAST with M = 20
to BART with various numbers of weak learners. The experiment setup is the same as in Section 4.1
except for the number of binary decision trees used in BART.

As shown in Table S1, BAST outperforms BART even when BART uses more weak learners,
confirming that BART needs much more rectangular partitions to approximate irregularly shaped
discontinuity boundaries, while BAST can recover them with only a few RST edge cuts.

Appendix B.1.2 Hyperparameter Selection and Sensitivity

We consider selecting hyperparameters of BAST via cross-validation (CV) in the U-shape example
with true noise standard deviation σ = 0.1. More specifically, for each replicate data set, we choose
the number of weak learners M , the maximum number of clusters in each RST partition k̄, and the
shrinkage parameter a that controls prior concentration around zero for µm using 5-fold CV within
the training data based on MSPE. The candidate values for each hyperparameter are summarized in
Table S2, and a total of 18 hyperparameter combinations are considered for BAST. For comparision,
we also choose the number of weak learners and the prior shrinkage parameter of µm for BART
using 5-fold CV, and their candidate values can be also found in Table S2.

Table S3 shows the performance of BAST and BART using the hyperparameters chosen by CV
(referred to as BAST-cv and BART-cv, respectively). As a benchmark, the performance metrics
for BAST and BART using the hyperparameters in Section 4.1 are also included (referred to as
BAST-default and BART-default, respectively). The fine-tuned BAST-cv achieves better performance
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Table S1: Prediction performance of BAST with M = 20 weak learners in the U-shape example.
Results of BART with various larger numbers of weak learners M are included for comparison.
Standard errors are given in parentheses.

BAST (M = 20) BART (M = 50) BART (M = 100) BART (M = 200)

σ = 0.1
MSPE 0.189 (0.001) 1.430 (0.049) 1.302 (0.037) 1.219 (0.036)
MAPE 0.188 (0.001) 0.408 (0.006) 0.382 (0.005) 0.380 (0.004)
Mean CRPS 0.142 (0.001) 0.353 (0.006) 0.324 (0.004) 0.318 (0.003)

σ = 0.5
MSPE 0.464 (0.006) 1.694 (0.051) 1.628 (0.039) 1.532 (0.023)
MAPE 0.491 (0.004) 0.682 (0.007) 0.695 (0.005) 0.711 (0.005)
Mean CRPS 0.371 (0.003) 0.557 (0.006) 0.553 (0.005) 0.554 (0.004)

σ = 1
MSPE 1.283 (0.018) 2.546 (0.054) 2.441 (0.035) 2.429 (0.032)
MAPE 0.888 (0.007) 1.085 (0.007) 1.099 (0.007) 1.120 (0.007)
Mean CRPS 0.693 (0.006) 0.870 (0.007) 0.861 (0.006) 0.870 (0.006)

Table S2: Candidate values of hyperparameters for CV in the U-shape example.

Method Hyperparameter Candidate values

BAST
# of weak learners M 20, 30, 50
Maximum # of clusters per partition k̄ 5, 10
µ-prior shrinkage parameter a 1, 2, 3

BART # of weak learners M 50, 100, 200
µ-prior shrinkage parameter a 1, 2, 3

than BAST-default as expected, but the performance of them is close to each other, suggesting that
BAST is robust to the choices of hyperparameters in this example. Both versions of BAST outperform
BART with and without hyperparameter selection.

Next, we further investigate the sensitivity of the performance of BAST to hyperparameters M , k̄,
and λk (the mean parameter of the truncated Poisson prior for k), and how they interact with each
other. In general, for large M , one may prefer smaller λk and k̄ to prevent overfitting and encourage
better mixing performance; for small M , one may afford larger λk and k̄ which may lead to better
fitting. Below, we show additional simulation results with different values of M , λk, and k̄ using the
data set in Figure 4(b).

Table S4(a) shows the MSPE for various values of M with a fixed λk = 4 and a fixed k̄ = 10. The
prediction performance of BAST appears to be robust to M except for extremely small M . Increasing
M slightly improves the performance until the training data is over-fitted. Next, we fix λk = 4
and examine the MSPEs for different combinations of M and k̄ shown in Table S4(b). Again, the
performance of BAST does not appear to be sensitive to the choices of M or k̄. For a fixed M ,
increasing k̄ improves out-of-sample performance until the model becomes too complex and overfits
the training data. As expected, the optimal k̄ for larger M is smaller. Finally, we consider varying λk
while fixing M = 20 and k̄ = 10. As shown in the Table S4(c), the MSPEs for different values of
λk are comparable to each other, and the optimal MSPE is achieved with a moderate value λk = 4.

Table S3: Prediction performance of BAST and BART with and without CV in the U-shape example
under noise level σ = 0.1. Standard errors are given in parentheses.

BAST-cv BAST-default BART-cv BART-default
MSPE 0.186 (0.001) 0.189 (0.001) 1.277 (0.043) 1.541 (0.075)
MAPE 0.182 (0.001) 0.188 (0.001) 0.390 (0.005) 0.436 (0.010)
Mean CRPS 0.135 (0.002) 0.142 (0.001) 0.331 (0.005) 0.380 (0.009)
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Table S4: MSPE of BAST under different settings of M , k̄, and λk in a U-shape domain data set with
noise level σ = 0.1.

(a) MSPE under different values of M
M = 1 M = 5 M = 10 M = 20 M = 30 M = 50
25.54 0.203 0.196 0.192 0.186 0.188

(b) MSPE under different combinations of M and k̄

k̄ = 5 k̄ = 10 k̄ = 15
M = 20 0.189 0.192 0.184
M = 30 0.188 0.186 0.191
M = 50 0.188 0.188 0.190

(c) MSPE under different values of λk
λk = 2 λk = 4 λk = 6 λk = 8
0.199 0.192 0.193 0.194

Table S5: Average computation time (in seconds) over 50 simulated data sets in the U-shape example
under noise level σ = 0.1.

BAST (in R) BART SFS inGP
651.49 sec. 15.83 sec. 0.68 sec. 787.32 sec.

Appendix B.1.3 Computation Time

Finally, we report in Table S5 the average computation times (in seconds) of BAST and its competing
methods over 50 simulated data sets in Section 4.1 with noise level σ = 0.1. The inference of BAST
and BART is based on MCMC, and we remark that BART in the R package bart is implemented
efficiently in C++ while BAST is implemented in pure R. The inference for SFS in the R package
mgcv is based on an efficient optimization algorithm for point estimations only as opposed to a full
MCMC inference with uncertainty quantifications, and hence achieves the fastest computation time.
The model fitting of inGP requires expensive Brownian motion simulations and thus takes longer
time than BAST does.

A more computationally efficient implementation of BAST is under active investigation. Our
preliminary C++ implementation can reduce the computation time from 651.49 seconds to 53.58
seconds. As mentioned in Section 3.1, computation can be further improved by fixing spanning trees
during MCMC. We refit BAST for the 50 simulated data sets in Section 4.1 with noise level σ = 0.1
by using different but fixed spanning trees for each weak learner. While the average prediction
performance remains comparable (MSPE = 0.190, MAPE = 0.194, and mean CRPS = 0.145; also
see Table 1 for baseline performance), the computation time is reduced to 16.82 seconds using the
C++ implementation, which is comparable to BART.

Appendix B.2 Bitten Torus Example

We consider the bitten torus example in Section 4.2 with two additional noise levels σ = 0.5 and
σ = 1. The results are summarized in Table S6. Consistent to the findings under the noise level
σ = 0.1, BAST performs the best among all three methods.

As in Appendix B.1, we also experiment with choosing hyperparameters via 5-fold CV for the data
sets with true noise level σ = 0.1. In addition to the BAST hyperparameters in Table S2, we also
select K, the size of the predictive neighbor set Nu discussed in Section 3.2, from its candidate
values {3, 4, 5, 6}. As shown in Table S7, BAST outperforms BART in both CV and default settings.
Our results again confirm that BAST performs reasonably well even without hyperparameter tuning.
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Table S6: Prediction performance of BAST and its competing methods in the bitten torus example
under different noise levels. Standard errors are given in parentheses.

BAST BART inGP

σ = 0.5
MSPE 0.754 (0.008) 1.358 (0.038) 2.601 (0.033)
MAPE 0.584 (0.003) 0.682 (0.006) 1.240 (0.010)
Mean CRPS 0.405 (0.003) 0.567 (0.006) —

σ = 1
MSPE 1.568 (0.020) 2.378 (0.050) 4.628 (0.445)*

MAPE 0.960 (0.007) 1.092 (0.009) 1.648 (0.067)*

Mean CRPS 0.706 (0.006) 0.904 (0.009) —
* The results for inGP under σ = 1 are based on 49 replicates due to numerical

errors in one replicate data set.

Table S7: Prediction performance of BAST and BART with and without CV in the bitten torus
example under noise level σ = 0.1. Standard errors are given in parentheses.

BAST-cv BAST-default BART-cv BART-default
MSPE 0.463 (0.008) 0.487 (0.002) 0.850 (0.020) 1.115 (0.041)
MAPE 0.287 (0.004) 0.307 (0.001) 0.370 (0.004) 0.406 (0.009)
Mean CRPS 0.216 (0.003) 0.225 (0.002) 0.310 (0.004) 0.355 (0.008)

Appendix C Proof of Proposition 1

Proof 1 For any spatially continuous partition π(S) with k clusters, it follows from Propositions 2
of Luo et al. [1] that there exists a spanning tree T of G and a set of k − 1 edges in T that induce
π(S). Hence, conditional on T , the conditional probability for π(S) is strictly positive due to (2)
and (4). To show T is within the support of (3), note that T is the MST of G given the edge weights
satisfying ωe ∈ (0, 1/2) if e ∈ ET and ωe ∈ (1/2, 1) if e 6∈ ET . This completes the proof.
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