A Robotic systems

A.1 Heron

' .._ l dtson Xavier

Figure 7: Left the real Kingfisher, right the simulated Heron.

The simulation and the real experiments were performed using similar systems. The real robot
is a Clearpath Robotics Kingfisher, while the simulated robot is a Clearpath Robotics Heron (the
Kingfisher’s new version). In both simulated and real experiments our USV is equipped with a SICK
LMSI111, a 20 meter-range and 270° field of view 2D-LiDAR running at 50Hz. To acquire the pose
of our robot we use a REACH RS+, an RTK GPS from Emlid coupled to a pair of IMU that we use
to get the heading of our robot. These informations are then fused inside an EKF that provides pose
and velocity estimates. The weight distribution of the real and simulated systems are different: our
real system was adapted to carry an NVIDIA Jetson Xavier and the RTK GPS. On the real system,
an Intel Atom is used for low-level computations, while the Jetson Xavier at base clocks is used to
compute and apply the agent policy. Both computers are running ROS with a single master.

The main challenge of this system is its inertia. With its current configuration, our Kingfisher’s
weight is around 35 kg, and it only has two 400 W motors (one left, one right). Hence, if an agent
wants to take turns correctly, it needs to anticipate.

On the real system, the RL agent runs on Ubuntu 18.04 with ROS melodic, CUDA 10.0, python 2.7
and TensorFlow 2.1 [28]. We are using a custom compiled tensorflow wheel on the Xavier, if you
would like to get our tensorflow wheel, feel free to reach out to us. The agent model has not been
converted using Tensor RT or any other DNN compilers and can run easily at 12Hz on the Xavier.

A.2 Husky

The second system we tested our method on is an Un-
manned Ground Vehicle (UGV): a Clearpath Robotics
Husky. This UGV is a four driving wheels robot designed
for outdoor applications. Because our real robot is not
equipped with any GPU yet, we only tested it in simula-
tion. The Husky in simulation is equipped with the same
SICK LMS111 than the Heron.

Figure 8: The simulated Husky.

11

B Task definition

This appendix gives more details on the task the reinforcement learning agent were trained to do.
The task that we solved is a sensor-based navigation task. More precisely, we teached a robot to
follow lake and river shores at a fixed distance and a fixed velocity. This is motivated by applications
involving long-term monitoring of natural environments (for example, to assess that the shores are
not moving over time). To follow the shore, our agent relies on a laser scanner and has access to its
velocities (forward velocity, lateral velocity, angular velocity). Figure 9 shows the robot and the task
it has to accomplish.

10 meters

Laser Horizontal Field of View

' . 4 meters

I shore area I Navigable area 1mm1 Laserpoints
[No-go zone Il 'deal navigation area

Figure 9: The USV and its shore-following task. (Colors are illustrative.)

The reward of our agent is based on two independent metrics: A, the distance of the agent from the
target shore distance d;, and A, the difference between the agent’s velocity v and the target linear
velocity v;. In all our experiments, we set v; = 1.0 and d; = 10. Furthermore, we penalize the agent
if it gets too close to the shore or if it goes backward. The reward R is defined as follows:

R=10xR,+25x Ry

with R, and Ry given by:
Ry = max(—20,1 — 0.5(d; — d)?)

B {M if v > 0.05
=

v 9

—0.625, otherwise

This reward is computed when training the model, and learned as part of it. The agent is trained on the
learned reward (estimated solely from the laser-scan measurements, through the learned embedding).

12

C Algorithms

C.1 Online Learning Algorithm

Algorithm 1: Physics Driven Dreamer

Fill dataset D with N random actions episodes.

Initialize neural network parameters 6, 7, 1) randomly.

if load dynamics then

| Load network parameters ¢.
else

| Initialize neural network parameters ¢ randomly.
while not converged do
if refine dynamics then
for update step i = 1..1 do

// Dynamics learning

Draw B data sequences { (a;, z;)}FtE ~

Compute dynamic states

dyn dyn dyn
Sy N[)r/)(‘ ijlaaf 1, T¢).
Update ¢ using representation learning.

for update step c = 1..C do

// Environment learning

Compute dyn states

S;j!j” po(Sdljn | S(]Jfll a1, rz‘)
Compute env states

S~ py (SE™ | ST, w1, 00).
Update 7 using representation learning.

// Behavior learning
Imagine trajectories

Predict rewards and values
B (g (1 | 8277, 5007)), y (857, 5207),
Update 6 and 1) using behavior learning.

// Environment interaction
01 < env.reset()
for time step t = 1..T do

history.
history.

model.
Add exploration noise to action.
Tt, 0141 < env.step(ay).

D.

Draw B data sequences {(z, 0y, 71, at) i ~ D.

1 1 I
Compute SV ~ po(SPY" | S{YY, ai—1, 0¢) from

Compute S§™ ~ po(S™ | S¢™V, x1—1,0¢) from

Compute a; ~ gg(a; | SE™, S{¥"™) with the action

Add experience to dataset D « D U {(o, az,)i, }.

Model components

Dynamics

D-Transition
Environment
E-Transition

Reward
Action
Value

(vdun ‘ den at»la‘rt)

dyn | S(iyn ay. 1)

q(p(

pn(sem | t 1”@/ 1,0t)

0 (Si™ | SEar)

qn(Tt | Senv SdJ”)
(at | Senv Sdlln)

vw(Sf"”7 Sf)

Hyper parameters

Number of random episodes

Collect interval

Physics train step

Batch size
Sequence length

Imagination horizon

Learning rate

{(Semv, 59 g 2) MHI from each (Semv, STV,

PN ~QZ

13

C.2 Offline Learning Algorithm

Algorithm 2: Offline Learning, and Environment Transfer

Fill dataset D with all the episodes collected on Robot B. Model components

Initialize neural network parameters 6,) randomly. Dynamics P (S| SHM g, my)
Load neural network parameters 7 from robot B. D-Transition q ¢(gdyn | Stdzin, ai1)
Load neural network parameters ¢ from robot A. Environment p,(Senv | Sterlw7 Zi1,0t)
for training step ¢ = 1..C' do E-Transition a(Sen'u | e ay 1)
// Reward Finetuning Reward qn(re | Se’“’ de")
Draw B data sequences { (2, 04,7, a¢) }F-F ~D. Action qolay | Senv, S8
Compute dyn states Value 0y (SE, Sfy”)
dyn dyn dyn
Syt~ pg (S | S a1, @) Hyper parameters
Compute env states training steps C
SEmY e~ py(SE™ | SEY, w1, 04). Batch size B
T~ qp(re | SE, 800 Sequence length L
Update reward g,, using representation learning. Imagination horizon H

// Behavior learning

Imagine trajectories

{(semv, §dvn a2)VEH from each (Semv, SEV™).
Predict rewards and values

B (a4 (rr | sz, S207)), 0y (57, 58m)

Update 6 and v using behavior learning.

14

D Training

To train our robots, we used Gazebo: a robotic simulator, coupled to ROS, a robotic middleware.
The USV dynamics simulation is handled by the uuv-simulator package. Each agent was trained
in TensorFlow [28] for 1000 episodes of 500 steps amounting to 0.5 million interactions with the
simulated environment. All our agents were trained purely in simulation, and were never fine-tuned on
real-data. During the training, we applied a simple fixed-step curriculum learning. At the beginning
of the training, the robot spawned close from the requested distance to the shore. As the training
progressed, the agent spawned farther from that position with different headings. More details about
the hyper-parameters, our training setup, the curriculum and others can be found bellow.

D.1 Code

Training: https://github.com/anon556677/Dreamer-Phy.git
ROS nodes: https://github.com/anon556677/R0OS-Dreamer-Phy.git
Simulation ROS: https://github.com/anon556677/Simulation-Dreamer-Phy.git

D.2 State-Space

In our experiments, our robots are given access to three proprioceptive variables: their linear velocity,
their transversal velocity, and their angular velocity. All these velocities are given in the robot frame,
as illustrated in Fig.10. Regarding the action-space of the robots, the commands are values in the
range [—1, 1]. The Kingfisher has a two-dimensional action space, where each dimension controls
the amount of current sent to the turbine in each of its floats. As for the Husky, the first component of
its action space requests a linear velocity in m/s while the second one requests an angular velocity
rad/s.

Transversal Velocity (m/s) Transversal Velocity (m/s)

Linear Velocity (m/s) Linear Velocity (m/s)

Fehrusterz

Angular Velocity (rad/s)

Fthruster'l
World Frame X World Frame X
(a) Kingfisher/Heron (b) Husky

Figure 10: State-space/Action-space illustration.

15

https://github.com/anon556677/Dreamer-Phy.git
https://github.com/anon556677/ROS-Dreamer-Phy.git
https://github.com/anon556677/Simulation-Dreamer-Phy.git

D.3

Hyper-Parameters

Parameters Values
Initial Dataset Size 2500 steps
Update steps 100
Sequence lenght 50
Training settings Batc;h size 50
Action repeat 4.2
Discount 0.97
Imagination Horizon 15
Interaction steps 0.5M
Episode lenght 500
A 0.95
Deterministic state size 300
Stochastic state size 30
. Dense size 400
Environment RSSM Free. nats 30
KL scale 1.0
Learning rate 6e-4
Physics deterministic state size 50
Stochastic state size 5
. Free_nats 0.5
Dynamics RSSM KL scale 1.0
Dense size 60
Learning rate 2e-4
Number of layers 6
Laser Embedding (1D CNN) | Depth 16,32,64,128,256,512
Activation Elu
Number of layers 4
Actor (MLP) Neurons 400,400,400,2
Activation Elu
Number of layers 4
Value (MLP) Neurons 400,400,400,2
Activation Elu
Number of layers 3
Reward (MLP) Neurons 400,400,2
Activation Elu
Number of layers 3
Physics Decoder (MLP) Depth 60,60,3
Activation Elu
Number of layers 6
Image Decoder (2D CNN) Depth 512,256,128,64,32,3
Activation Elu

Table 1: agent parameters.

16

D.4 ROS & Learning interactions

The way we interact with gazebo can be described as follows:

Algorithm 3: Training Interaction

Start the Gazebo simulation STM .

Start the ROS synchronization node RS.
Start the ROS agent node RA.

Start the training code T'R.

while not converged do

T R.request_new_episode(RS).
RS reset(SIM).

RS refresh_agent(RA).

RA fetch_new_weight(T'R).

R A start_interaction().
RA.done(RS).

RS.done(TR).

T R.fetch_last_episode(RA).

T R.train().

D.5 Curriculum

The curriculum learning of the robot is done by spawning the robot in increasingly difficult positions.

To do so,

we use a normal density probability function f(z) with € [0,1]. The mean of the

probability density function p, starts at 0 and shifts towards 1 as the training progresses. The equation
is given in Eq. 4 and examples of the probability function can be seen in Fig. 11, where o = 0.25.

Figure 11:
a step.

—(z—mu)?

flz) =€ = 4)
Sampling
0.035 -
0.030 -
0.025 1
=y
3 0.020 A
[+
° SO
£ 0.015 \\-\\\
O
0.010 -
0.005 -
0.000 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

normalized distance to perfect position

T T T T
300000 400000 500000 600000 700000 800000 900000 1000000
steps, warmer is harder.

Probability density function depending on the number of steps. Each color corresponds to

17

To spawn the robot, we pick a random position (pigeal_x, Pideal_y ON the ideal trajectory. The heading
Dideal_o associated with this position is set to be tangent to this trajectory. Please note that the ideal
distance is known beforehand as the environment was generated using a cad model of known geometry.
Using the probability density function f we draw d and €, numbers between [0, 1], and then apply the
equations given in eq. S with, max_distance = 44, max_angle = i%”.

Dspawn_x =Pideal_x + COS(pideaLB + 77/2) x d x max_distance
Dspawn_y =Pideal_y 1 Sin(pideaLO + 77/ 2) X d x max_distance &)
Dspawn_9 =DPideal_o + arctan2(—d, 5) + € x max_angle

Eq. 5 moves the spawning position along the normal to the ideal trajectory. Ideally, the boat would
spawn on the perfect trajectory, and its angular position would be computed using the tangent to that
trajectory. However, as the distance to the ideal trajectory becomes large, this angle is no longer ideal.
This is why we introduce the term arctan2(—d, 5), which sets the boat heading such that it reaches
the ideal trajectory after five meters.

Examples of spawn positions generated by the curriculum can be seen in figure 12

" Warmup phase (0-250k steps) 60 Curriculum phase (250k-625k steps)
— spawn position . 1‘ — spawn position
%v “ﬁ
— —65 2
65 65 ¢ %‘«_ e %
-70 -70+4 =y
5 5 \g\‘
G -15 7 751 \‘g‘
g8 8 "
> > |
] ~
—80 -80 ! (
-85 -85 <
=90 T T T T T T =90 T T T T T
220 230 240 250 260 270 220 230 240 250 260 270
x position x position
0.0 0.2 0.4 0.6 08 10 0.0 0.2 0.4 0.6 0.8 10
Difficulty, warmer is harder. Difficulty, warmer is harder.
Curriculum phase (625k-1M steps) Saturation (1M-1.5M steps)
-60
. = “J L} 4 = spawn posiien ‘3\
—65 A SR PR S —-65 - A
S, ‘1/ ,? P il A" v
-70 ' -70
A 4 N : L \
g) £ vl
g -5 ¥ A g -5
a II a ’* \
- >
-80 ‘y -80 - ",”
-85 — - -85 “.{
I SN
90 L — : N . . —90 L — . — A WX .
220 230 240 250 260 270 220 230 240 250 260 270
x position x position
0.0 02 0.4 0.6 08 10 0.0 02 0.4 0.6 0.8 10

Difficulty, warmer is harder. Difficulty, warmer is harder.

Figure 12: Possible spawn positions generated by the curriculum-based spawner. The training was
cut into 4 phases for better readability. The warmer the color of the arrow, the higher the difficulty
setting.

Our curriculum setup is designed such that the agent learns to drive around the lake in a single
direction. To do so, we start by a warm-up phase of 250,000 steps, where the agent always spawns
in the ideal position with the shore of the lake on its right. This creates a lot of samples on which
the shore of the lake is on the right side of the agent. Naturally, this leads to the agent being more
comfortable with the shore on its right side. We observed during field experiments that an agent
trained this way would always fall back to this configuration. Counterintuitively, this behavior is
highly desirable as an agent trained this way will never do u-turns and retrace its steps. During the
rest of the curriculum, between the step 250,000 and 1,000,000, we gradually increase the value of
mu. During this phase, the boat faces increasingly difficult situations. And finally, for the remaining
steps we leave the curriculum at the maximum difficulty setting.

18

D.6 Learning Hardware

In simulation, the RL runs on Ubuntu 18.04 with ROS Melodic, CUDA 11.2, python 2.7 and custom
compiled TensorFlow 2.3 binaries for python 2.7 and CUDA 11.2. If you would like to get access to
our tensorflow wheel, feel free to reach out to us.

To run the simulation, infer (in simulation) and train the RL agents we use servers equipped with 2
NVIDIA RTX 3090, a 12 cores 24 threads Ryzen 9 3900X CPU and 128Gb of RAM.

19

E Real-Results

Figure 13: Original Dreamer trajectory around the lake.

20

Figure 14: Our method trajectory around the lake.

21

