
Learning Syntax Without Planting Trees: Understanding When and Why
Transformers Generalize Hierarchically

Kabir Ahuja 1 Vidhisha Balachandran 2 Madhur Panwar 3 Tianxing He 1 Noah A. Smith 1 4 Navin Goyal 3

Yulia Tsvetkov 1

Abstract

Transformers trained on natural language data
have been shown to exhibit hierarchical gener-
alization without explicitly encoding any struc-
tural bias. In this work, we investigate sources
of inductive bias in transformer models and their
training that could cause such preference for hi-
erarchical generalization. We extensively ex-
periment with transformers trained on five syn-
thetic, controlled datasets using several training
objectives and show that while objectives such
as sequence-to-sequence modeling, classification,
etc., often failed to lead to hierarchical generaliza-
tion, language modeling objective consistently led
to transformers generalizing hierarchically. We
then study how different generalization behaviors
emerge during the training by conducting pruning
experiments that reveal joint existence of subnet-
works within the model implementing different
generalizations. Finally, we take a Bayesian per-
spective to understand transformers’ preference
for hierarchical generalization: We establish a
correlation between whether transformers gener-
alize hierarchically on a dataset and if the simplest
explanation of that dataset is provided by a hierar-
chical grammar compared to regular grammars ex-
hibiting linear generalization. Overall, our work
presents new insights on the origins of hierarchi-
cal generalization in transformers and provides a
theoretical framework for studying generalization
in language models.

1University of Washington, Seattle, WA, USA 2Carnegie Mel-
lon University, Pittsburgh, PA, USA 3Microsoft Research, In-
dia 4Allen Institute for AI, USA. Correspondence to: Kabir
Ahuja <kahuja@cs.washington.edu>, Yulia Tsvetkov <yu-
liat@cs.washington.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Natural language is structured hierarchically: words are
grouped into phrases or constituents, which can be further
grouped to form higher-level phrases up to the full sentence.
How well do neural networks trained on language data learn
this hierarchical structure has been a subject of great interest
(Tenney et al., 2019; Peters et al., 2018; Lin et al., 2019).
A useful tool to understand the model- and dataset-specific
properties that results in aforementioned phenomenon, is
the test for hierarchical generalization, i.e., evaluating the
capability of a model to generalize to novel syntactic forms,
which were unseen during training. A classic problem to
test for hierarchical generalization is question formation,
where given a declarative sentence, e.g., My walrus does
move the dogs that do wait., the task is to transform it into
a question: Does my walrus move the dogs that do wait?
The task is accomplished by moving one auxiliary verb to
the front. The correct choice to move does in this example
(rather than do), is predicted both by a hierarchical rule
based on the phrase-structure syntax of the sentence, and by
a linear rule that prescribes moving the first auxiliary.

Hence, as a test for hierarchical generalization, we can ask:
For neural networks trained from scratch on data consistent
with both hierarchical and linear rules (ambiguous data),
do they learn to generalize hierarchically or do they learn
a linear rule? This question has been well-studied in past
work for different neural network architectures and it has
been shown that RNN and transformer architectures which
lack explicit tree-structure encoding, fail to generalize hi-
erarchically (Frank & Mathis, 2007; McCoy et al., 2018;
2020; Petty & Frank, 2021; Mueller et al., 2022). How-
ever, Murty et al. (2023) showed that, surprisingly, when
trained for a long time after attaining perfect training accu-
racy, transformers do start to generalize hierarchically, and
named this phenomenon Structural Grokking.

In this work, we ask: why do transformers show hierarchical
generalization, despite lacking architectural biases towards
hierarchical structure? We first explore if the choice of
training objective can influence hierarchical generalization
in transformers. Specifically, we consider five objectives –
language modeling, sequence-to-sequence modeling, pre-

1

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

fix language modeling, sequence classification and cloze
completion – and study the generalization behavior of trans-
formers trained from scratch under five synthetic, controlled
settings following prior work – English question formation
(as described above), German question formation (Mueller
et al., 2022); tense-reinflection (McCoy et al., 2020), pas-
sivization (Mueller et al., 2022), and simple agreement,
a task that we construct. We find that only the language
modeling objective consistently obtains strong hierarchical
generalization, while the other objectives often fail, im-
plicating language modeling objective as a source of bias
towards hierarchical generalization. Since our aim is to
understand hierarchical generalization in transformers in
isolation, following prior work, we train transformer mod-
els from scratch, without any pretraining, eliminating the
possibility of these models having any hierarchical bias due
to pretraining on language data (Mueller et al., 2022).

Further, to understand how hierarchical structure is learned
and represented during training we propose two new at-
tention head pruning strategies to discover subnetworks
corresponding to different generalizations. We find that
both hierarchical and linear types of generalizations can be
discovered as subnetworks in the trained model, and these
subnetworks continue to coexist over the course of training,
despite the overall model performing closer to one kind of
generalization over the other. We also find that these dis-
parate subnetworks exist due to the ambiguity in the training
data, as we find different subnetworks to disappear upon
adding disambiguating examples (i.e., only consistent with
the hierarchical rule).

Finally, we attempt to explain why language modeling re-
sults in a preference towards hierarchical structure using the
Bayesian framework from Perfors et al. (2011). Specifically,
we consider generative probabilistic grammars (PCFGs) to
model the simple agreement task data by constructing hi-
erarchical grammars consistent with the hierarchical rule
as well as regular grammars consistent with the linear rule.
We then compare their posterior probabilities to understand
which grammar has a better trade-off for the goodness of fit
(given by the likelihood) and simplicity (given by the prior
on grammars). Our analysis reveal a correlation between
transformer LMs generalizing hierarchically and hierarchi-
cal grammars having higher posterior, compared to regu-
lar grammars, thereby providing a potential explanation to
transformers’ preference for hierarchical generalization.

Our contributions can be summarized as:

1. We show that language modeling training objective acts
as a source of inductive bias towards hierarchical general-
ization in transformers.

2. We show that when trained on ambiguous data, trans-
former LMs learn multiple rules to perform the task that are

encoded as subnetworks, which once formed continue to
co-exist throughout training.

3. Our Bayesian analysis suggests that transformers gen-
eralize hierarchically because the hierarchical grammars
that fit the data are often “simpler” compared to regular
grammars.

2. Background
Hierarchical generalization. Hierarchical generalization
is a form of systematic generalization, where given instances
generated from a hierarchical grammar, we evaluate the
capability of a model to generalize to unseen syntactic forms.
For example, consider the task of converting a declarative
English sentence to a question:

1. (a) Input: My walrus does move the dogs that do wait .

(b) Output: Does my walrus move the dogs that do
wait ?

Notice that the task can be accomplished by moving one
auxiliary verb to the front of the sentence. For sentences
with two auxiliaries like 1a, as English speakers we know
that the auxiliary to move is the one associated with the
head verb in the sentence (i.e., does, which is associated
with move, not do, which is associated with wait). Modeling
this rule requires understanding the phrase structure of the
language. We call this Hierarchical Rule. One can alterna-
tively consider a much simpler explanation, the Linear Rule:
moving the first auxiliary in the sentence to the beginning.
However, if we consider sentences with a different syntax
(relative clause attached to subject instead of object) like the
example below:

2. (a) Input: My walrus who doesn’t sing does move .
(b) Linear rule output: Doesn’t my walrus who sing

does move ?
(c) Hierarchical rule output: Does my walrus who

doesn’t sing move ?

In this case, using the linear rule will result in an ungrammat-
ical sentence, i.e., outputting 2b instead of 2c. We study the
following question in our work: Consider neural networks
trained from scratch on data consistent with both hierar-
chical and linear rules (like example 1). When presented
with sentences such as 2a do they generalize hierarchically
(predicting 2c) or linearly (predicting 2b)?

Tasks and datasets. In our study, we consider five tasks,
including the question formation task above. Examples from
all the tasks are provided in Table 1. All the tasks follow
a common recipe: the training dataset has examples that

2

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

are consistent with both hierarchical and linear rules. For
evaluation, two variants of the test data are considered: an
in-distribution test set, which follows the same distribution
as the training data (i.e., also ambiguous with respect to the
correct rule); and a generalization test set, which consists
of examples which are only consistent with the hierarchical
rule.

Task Examples

QF
(German)

unsere Papageien können meinen Papagei , der
gewartet hat , akzeptieren .
→ können unsere Papageien meinen Papagei , der
gewartet hat , akzeptieren ?
ihr Molch , der gegessen hat , kann lächeln .

→ kann ihr Molch , der gegessen hat , lächeln ?

Passivization

some tyrannosaurus entertained your quail behind
your newt .
→ your quail behind your newt was entertained by
some tyrannosaurus .
the zebra upon the yak confused your orangutans .

→ your orangutans were confused

by the zebra upon the yak .

Tense
reinflection

my zebra by the yak swam .
→ my zebra by the yak swims .
my zebras by the yak swam .

→ my zebras by the yak swim .

Simple
Agreement

my zebra by the yak → swims
my zebras by the yak → swim

Table 1: Examples from the different tasks we study,
highlight indicates examples in the generalization set.

For Question Formation, we use the dataset from McCoy
et al. (2020). We also experiment with Question Forma-
tion in German with the dataset from Mueller et al. (2022).
The dataset here consists of sentences with the modals
können/kann (can) or auxiliaries haben/hat (have/has), to-
gether with infinitival or past participle main verbs as ap-
propriate, which can be moved to the front similar to En-
glish to form questions. We also consider Passivization
from Mueller et al. (2022), where the task is to transform a
sentence in active voice to passive, and Tense Reinflection
(McCoy et al., 2020), which involves converting a sentence
in past tense to present. Finally, we introduce a simplified
version of the tense reinflection task, which we name Simple
Agreement. Unlike others, simple agreement is a single-
sentence task where only the present-tense sentences from
the tense-inflection are considered. In this task, we evaluate
the model’s ability to generate the correct inflection of the
main verb based on the context. Here, the hierarchical rule
requires the verb to agree with the hierarchically-determined
subject and the linear rule requires it to agree with the most
recent noun in the sequence.

For all tasks involving transformation of inputs (i.e., all
except simple agreement), the datasets also include input
identity pairs. E.g., for question formation, the dataset is
augmented with declarative-declarative pairs. Importantly,
the identity pairs in the training data also include input sen-

tences, whose corresponding outputs would disambiguate
the data i.e., are only satisfied by the hierarchical rule, how-
ever, such outputs are not present in the training data and
hence the transformation task remains ambiguous. This
choice was made in McCoy et al. (2020) (and others) to
familiarise the model with at least the input sentences for
which the outputs remain unobserved. We provide full de-
tails of all the datasets in Appendix §A.2. For all tasks
excluding simple agreement, there are 100k training ex-
amples (50k transformation and 50k identity pairs) and 1k
and 10k examples in in-distribution and generalization test
sets respectively. For simple agreement, we generate 50k
training examples (and 1k/10k for test datasets).

Evaluation metrics. Following prior work (McCoy et al.,
2020; Mueller et al., 2023), for evaluating question forma-
tion (both English and German) we consider the first-word
accuracy – given the declarative sentence as the input, evalu-
ate whether the model predicts correct auxiliary for the first
word in the generated question. For passivization, we evalu-
ate using the object noun accuracy, which measures whether
the correct noun was moved to the subject position. Finally,
for tense-reinflection and simple-agreement, we consider
main-verb accuracy, by evaluating if the main-verb (in the
present tense) has the correct inflection i.e. appropriately
singular or plural based on the context. We denote the
metrics as textitin-distribution accuracy and generalization
accuracy depending on the test set used for evaluation.

3. How the Training Objective Influences
Hierarchical Generalization

Prior work by McCoy et al. (2020), Petty & Frank (2021),
and Mueller et al. (2022) used sequence-to-sequence train-
ing objective to train encoder-decoder models and found
that RNNs and transformers do not exhibit hierarchical
generalization. More recently, Murty et al. (2023) used
a language modeling objective to train decoder-only trans-
formers, which they found did generalize when trained for a
sufficiently large number of epochs. To our best knowledge,
this distinction isn’t called out by prior work. Hence we
conduct a systematic study to understand what effect the
training objective has on hierarchical generalization.

3.1. Training Objectives

We consider the following five training objectives:

Language modeling. Given a sequence of tokens, the lan-
guage modeling objective trains the model to predict each to-
ken in a sequence given the preceding tokens. The model is
optimized to minimize the negative log-likelihood of the se-
quences in the training data. For transformers, the language
modeling objective is typically associated with decoder-
only models like GPT (Brown et al., 2020). For the question

3

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

formation task and the declarative-question pair from the
introduction, if s = ⟨s1, s2, . . . , s21⟩ = ⟨my, walrus, does,
move, the, dogs, that, do, wait, ., quest, does, my, walrus,
move, the, dogs, that, do, wait, ?⟩, the cross-entropy loss
is computed over s1 through s21, each given the preceding
tokens: − log p(s) = −∑21

i=2 log p(si | s1, . . . , si−1).

Sequence-to-sequence modeling. The sequence-to-
sequence (seq2seq) modeling objective (Sutskever et al.,
2014), is used to train the model to generate a target se-
quence (⟨s12, . . . , s21⟩ in the above example) given an input
sequence (⟨s1, . . . , s11⟩). This objective, which includes
only the terms from i = 12 to 21 in equation above, is typi-
cally associated with an encoder-decoder model as used in
the original transformer architecture (Vaswani et al., 2017).
Note that the seq2seq objective is more suited for tasks with
an explicit input and output (like question formation and
tense inflection), but is not suitable for the simple agreement
task, hence we skip seq2seq evaluation for this task.

Prefix language modeling. In this objective (Dong et al.,
2019), we again generate the output text given the input (or
“prefix”), but we use a single transformer decoder instead
of an encoder-decoder model. Unlike the original language
modeling objective, here the loss is only computed over the
output text and does not include the prefix.

Sequence classification. Here the model is trained to map
the entire sequence to a discrete label. E.g., for question
formation the model is given the input declarative sentence
and trained to predict the correct auxiliary from the set of
auxiliary verbs (do, does, don’t, doesn’t) that should occur
at the start of the question, i.e., a 4-way classification task.

Cloze completion. Here, the model is given a sequence
of tokens with some tokens masked and trained to predict
the masked tokens. E.g., for the question formation task,
we consider the declarative-interrogative pair and mask out
tokens in the interrogative sentence at all positions where
the auxiliaries could be present. Note that this objective
is similar to masked language modeling as in Devlin et al.
(2019); however, instead of masking tokens randomly, we
mask the specific tokens as described above. 1 For the
passivization task, we do not evaluate the cloze completion
objective, because (unlike other tasks) the output sequence is
significantly different from the input, which makes defining
the masking strategy in this case non-trivial. Please refer to
§A.3.1 for details of each objective for all five tasks.

3.2. Experimental Setup

We train transformer models from scratch with 8 heads and
embedding dimension 512 for all experiments. Following
Murty et al. (2023), for question formation and tense re-

1Our initial experiments with random-masking resulted in sub-
par performance, even on in-distribution test sets.

inflection, we train transformer models with 6 layers and
4 layers respectively, for all objectives excluding seq2seq.
For the remaining tasks, we use 6-layer transformer en-
coder/decoder layers depending on the training objective.
For the seq2seq objective, we use a 6-layer encoder/6-layer
decoder model for all tasks.We also considered other choices
of number of layers for the seq2seq objectives and found
results consistent with our findings (see Appendix Figure 5).
We use Adam optimizer (Kingma & Ba, 2015) for training
the model with a learning rate of 0.0001, following Murty
et al. (2023) and use batch size of 8, training the model
for 300k steps (24 epochs) for all tasks excluding simple
agreement, which we train for 200k steps (32 epochs).

Baselines. By design of the test datasets, a model follow-
ing the linear rule will obtain 100% in-distribution and 0%
generalization accuracy. Only a model consistent with the
hierarchical rule will obtain 100% accuracy on both test sets
for all tasks.

3.3. Results

We compare the five objectives for the five tasks and show
the results in Figure 1. Notice that while all the objec-
tives almost always obtain close to 100% accuracy on the
in-distribution test sets, there is much variation in the gen-
eralization accuracy. Particularly, we observe that only the
language modeling objective consistently obtains high gen-
eralization accuracy on all five tasks, while models trained
with other objectives often struggle. While seq2seq and pre-
fix LM perform well on tense reinflection and passivization
respectively, they perform much worse on the other tasks.

Thus, the choice of the objective is likely the reason behind
the discrepancy in the results of Murty et al. (2023) and of
Petty & Frank (2021) and Mueller et al. (2023). Interest-
ingly, seq2seq and prefix-LM bear the greatest resemblance
to the language modeling objective, as these two also in-
volve generating the whole output sequence. The major
difference between language modeling and these two ob-
jectives is that language modeling involves computing the
loss over all the tokens, including the input tokens, which
indicates that the corresponding loss terms from modeling
the input tokens might be crucial for hierarchical general-
ization. Our hypothesis on why that might be important is
that when considering loss over all the tokens, the model
cannot just simply learn a trivial transformation (e.g., for
question formation, move the first auxiliary to the beginning
and copy rest of the tokens from input) from input sequence
to output sequence to minimize the loss (as it needs to model
the input token distribution as well).2

2This corresponds to the classical difference between a gener-
ative model, i.e., one trained to model the full distribution of the
data (including inputs) and a discriminative one that models the
conditional distribution of outputs given inputs.

4

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

We note that while the LM objective consistently achieves
high generalization performance, it is not perfect as in the
case of question formation and tense reinflection, where
its average performance is roughly 75%. Recall that these
reported numbers are averaged across 5 seeds. For all the
tasks we find that there are seeds for which LMs achieve
100% generalization accuracy, which apart from the two ex-
ceptions discussed above, is not the case for other objectives.
Interestingly, we observe (in Figure 1) that transformer LMs
on average perform better on German question formation
than the English version of the same task. We suspect this
might be because the grammar used for generating German
dataset is structurally richer than the English grammar, as
it also consists of both infinitival and past participle forms
of the main verbs, while only infinitival forms are included
in the English version. As noted in McCoy et al. (2018),
the presence of rich hierarchical cues in the data can aid in
hierarchical generalization.

Takeaways. Overall, our experiments indicate language
modeling as a source of inductive bias for the models to
generalize hierarchically. We hypothesize that the reason
LMs learn the hierarchical rule rather than the linear rule is
that modeling the hierarchical phrase structure is beneficial
for modeling the distribution over full sequence of tokens.
We will explore this hypothesis in more depth in §5.

4. Discovering Subnetworks with Different
Generalization Behaviors

The results from Murty et al. (2023) show that the trans-
former LMs obtain perfect in-domain accuracy much earlier
during training, while generalization comes later. This sug-
gests that the model might be implementing something like
the linear rule early in training and eventually generalizes
to the hierarchical rule. In this section, we explore whether
these rules are implemented as subnetworks in the model
and ask how they evolve over the course of training.

Finding subnetworks. Following Merrill et al. (2023) we
use pruning to find the existence of subnetworks correspond-
ing to different generalizations. In particular, we use the
attention head pruning method from Voita et al. (2019),
which introduces learnable gates for each attention head of
a trained transformer model. Pruning is then performed by
training these learnable gates, while freezing the original
model parameters, to minimize negative log-likelihood ob-
jective, but also adding an L0-penalty as regularization to
ensure sparsity. Since the L0-norm is nondifferentiable, a
stochastic relaxation is used, which considers the gates as
random variables drawn from head-specific hard concrete
distributions (Louizos et al., 2018). After completion
of pruning, all gates are either fully open or closed, and
a closed gate implies that the output of the corresponding
head is zeroed-out in the computation of multi-head self-

attention. Thus the pruning procedure does not modify any
weights of the original model and merely performs subset
selection on attention heads of the model. To find subnet-
works consistent with different generalizations (linear-rule
and hierarchical rule) we introduce three pruning strategies
which differ in the data used for pruning:

1. Train-prune uses the original ambiguous training
dataset to prune the attention heads. The subnetwork thus
found is likely to be a compressed version of the full model.

2. Gen-prune uses a small fraction of the generalization set
(1%) to prune the attention heads. If successful, this would
yield a subnetwork consistent with hierarchical generaliza-
tion – obtaining close to 100% generalization accuracy.

3. Train\Gen-prune involves minimizing the (negative
log-likelihood) loss on the training data and maximizing
it for the (1%) generalization data. In this case, success-
ful pruning should yield a subnetwork that exhibits gen-
eralization consistent with the linear rule, i.e., obtains 0%
generalization accuracy and 100% in-distribution accuracy.

Experimental setup. For pruning, we use a learning rate of
0.05, the L0 penalty coefficient as 0.015, and train for 10k
steps, which we found to work well across different pruning
settings. We report the experiments for the question forma-
tion task and discuss the others in Appendix §A.5 (Figures
6, 7), for which we also obtain consistent results. Since
we are interested in discovering subnetworks implementing
hierarchical and linear rules, while pruning, we only use the
negative log-likelihood of the first auxiliary in the question
for computing the loss. To ensure that the discovered sub-
networks are not just a by-product of the pruning procedure,
we consider control groups, which are obtained by pruning
randomly initialized networks.

Results. In Figure 2, we show the effect of different prun-
ing methods on an intermediate model checkpoint, which
does not yet generalize hierarchically. After Train-prune,
roughly 80% heads of the full model are removed and
in-distribution performance is conserved, though there is a
drop in generalization performance (30% to 23%). After
Gen-prune, we are able to find a subnetwork that achieves
100% generalization accuracy. This is striking, because the
full network performed much worse. After Train\Gen-
prune, we find a subnetwork that achieves 0% generalization
accuracy while having 100% in-distribution performance;
this subnetwork is behaviorally equivalent to the linear rule.
Hence, these pruning experiments reveal the existence of
subnetworks implementing different generalization behav-
iors. For the control groups, we find all the three pruning
methods to be unsuccessful obtaining 25% (i.e., random
performance) on both the in-distribution and generalization
test sets, providing further evidence that these subnetworks
are not introduced by the pruning methods, and behaviors

5

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

0.0

0.5

1.0

In
-D

is
tr

ib
ut

io
n

A
cc

ur
ac

y

Question Formation Question Formation
(German)

Passivization Tense Reinflection Simple Agreement
0.0

0.5

1.0

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

Language Modeling Seq2Seq Modeling Prefix Language Modeling Classification Cloze Completion

Figure 1: Effect of training objective on hierarchical generalization in transformers. The error bars correspond to the
standard errors across 5 seeds.

akin to the two rules are implemented within the model.

Training dynamics. We now consider how these differ-
ent subnetworks evolve over the course of the model train-
ing. To this end, we save checkpoints after every 1000
steps of training and perform the three kinds of pruning on
those checkpoints. As shown in Figure 3(b), the “linear-
rule” subnetwork becomes discoverable through pruning
at roughly 6000 training steps – indicated by the 0% gen-
eralization performance for Train\Gen-prune curve and
100% in-distribution performance in Figure 3(a). Soon af-
ter, we see in Figure 3(b), the formation of a (hierarchical)
generalization subnetwork, at around 9000 training steps,
where the subnetwork obtained using Gen-prune obtains
100% generalization accuracy (the full network at this point
only obtains 5% generalization performance). While there
are occasional spikes in the generalization performance
of subnetworks found using Train\Gen-prune during the
first-thirds of the training, during majority of the training (es-
pecially the latter two-thirds) both the linear and hierarchical
generalization subnetworks continue to be discoverable over
the course of training – as indicated by stable 100% gener-
alization accuracy of subnetworks found by Gen-prune and
0% generalization accuracy for Train\Gen-prune subnet-
works in Figure 3(b) .

Our experiments reveal that, throughout training, there is
competition between the two sub-networks, and while the
behavior of the aggregate model becomes closer to the
hierarchical rule with training, the competing linear-rule
subnetwork does not really disappear. All three pruning
methods are unsuccessful on the control group (randomly
initialized networks), providing further evidence that these
subnetworks are not introduced by the pruning methods,
and behaviors akin to the hierarchical and linear rules are
implemented within the language model.

We hypothesize that the ambiguous training data (with two
plausible generalizations, linear and hierarchical) is the rea-
son for the existence of the subnetworks with very different
generalization behaviors. To evaluate this hypothesis, we
consider the case where the model is trained with disam-
biguated data – we augment the ambiguous training dataset
with examples that are only consistent with the hierarchi-
cal rule (We add 10k such examples to the existing dataset
containing 100k examples). We plot the training dynam-
ics of the model trained with this disambiguated data in
Figure 3(c). The full model without any pruning in this
case, as expected, generalizes perfectly after a few thousand
training steps without any noise, in contrast with generaliza-
tion accuracy of the full-model trained on ambiguous data
in Figure 3(b). More interestingly, Figure 3(c) shows that
Train\Gen-prune fails to yield subnetworks that obtain
0% generalization accuracy, in contrast to the ambiguous
data case in Figure 3(b). To make sure this is not due to
the choice of our pruning hyperparameters, we conduct an
extensive hyperparameter search, consisting of 128 combi-
nations of the pruning learning rate, regularization penalty,
and pruning steps (using Bayesian optimization) and still fail
to find the setting where the Train\Gen-prune succeeds
for the disambiguated data case (see Figure 8 in Appendix).
This strongly suggests that the “linear-rule” subnetwork is
never formed in the language model when it doesn’t have a
reason to be learned – when the alternate generalization be-
havior is no longer applicable to the entire training dataset.

We also experiment with the opposite disambiguation setup,
where we augment the training data with examples only
consistent with the linear rule, and in line with our findings,
we find that the Gen-prune fails to find a subnetwork with
100% generalization accuracy – no subnetwork consistent
with hierarchical rule is formed (Figure 9 in Appendix).

6

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

0 2 4 6

0
1

2
3

4
5

L
ay

er
s

Full Network
ID Acc: 1.0

Gen. Acc: 0.3

0 2 4 6
Heads

0
1

2
3

4
5

Train-prune
ID Acc: 1.0

Gen. Acc: 0.23

0 2 4 6

0
1

2
3

4
5

Gen-prune
ID Acc: 0.99

Gen. Acc: 1.0

0 2 4 6

0
1

2
3

4
5

Train\Gen-prune
ID Acc: 1.0
Gen. Acc: 0

0.0

0.5

1.0

Figure 2: Pruning a transformer LM trained for 15000 steps using the three methods. Dark blocks mean the head is pruned
and light means it is kept.

0 100000 200000 300000
Training Step

0.2

0.4

0.6

0.8

1.0

In
-D

is
tr

ib
ut

io
n

A
cc

ur
ac

y

(a) Original Data

0 100000 200000 300000
Training Step

0.00

0.25

0.50

0.75

1.00

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

(b) Original Data

Prune-Type

Full Network

Train-prune

Gen-prune

Train\Gen-prune

Control Group

False True

0 10000 20000 30000 40000 50000
Training Step

0.00

0.25

0.50

0.75

1.00

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

(c) Disambiguated Data

Figure 3: Tracking training dynamics with respect to the three pruning methods’s subnetworks and the full network. (a) and
(b): in-distribution and generalization accuracies of the LMs trained on the original ambiguous question formation data
after pruning using the three methods, (c): generalization accuracy after pruning the model trained on disambiguated data.
For models trained with original data, we can discover sub-networks consistent with hierarchical rule as well as the linear
rule, while for the models trained with disambiguated data, linear rule subnetwork is not found (indicated by the curve
corresponding to Train\Gen-prune never approaching 0% generalization accuracy).

Hence, ambiguity in the training data appears to drive the
joint existence of these contrasting subnetworks.

5. Why Do Transformer-Based LMs
Generalize Hierarchically?

A useful tool for understanding generalization in neural
networks has been “the simplicity bias”, the inductive bias
towards simpler functions (De Palma et al., 2019) has been
suggested as an explanation for why neural networks tend
to generalize instead of overfitting the training data (Valle-
Perez et al., 2019). Can we explain through “simplicity” the
preference of the model towards hierarchical generalization
over linear? Our main argument is that when considering
transformers trained with the language modeling objective,
since the underlying data-generation process to be modeled
produces each token in the full sequence, modeling the de-
pendencies between the tokens hierarchically as opposed to
learning a linear rule for each dependency, might be simpler.
We leverage the Bayesian framework of Perfors et al. (2011),
utilizing generative grammars to model data-generation pro-
cesses corresponding to the hierarchical and linear rules,
and operationalize the notion of simplicity and goodness of
fit using the posterior probabilities of the grammars given
the observed data (check Appendix §A.4.1 for a detailed
background.) We then show a correlation between trans-
formers’ generalizing hierarchically and the training dataset

being better explained using a hierarchical grammar than a
grammar modeling the linear rule according to the posterior
criterion.

5.1. Method

We now give an overview of how we apply the Bayesian
approach discussed above to explain why transformer lan-
guage models generalize hierarchically. We start by hand-
constructing a probabilistic context-free grammar (PCFG)
to model the hierarchical rule (denoted CFG) and a regu-
lar grammar (Reg) that generates data based on the linear
rule. We then generate data using both grammars – DCFG

from CFG and DReg from Reg. The intersection of the two
datasets, DCFG∩ DReg, contains ambiguous examples con-
sistent with both the linear rule and hierarchical rule. We
will use this as our training corpus Dtrain. Note that given
Dtrain, there can be grammars other than the CFG and Reg
that can generate these datasets. In their analysis, Perfors
et al. (2011) also consider two subsets of the regular gram-
mars: Flat and One-state. Flat grammars have production
rules which are the list of memorized sentences, i.e., of
the form S → a1a2 · · · an. Here a′is are terminal symbols
(words). One-state grammars are equivalent to finite state
automata with a single state and hence permit any terminal
symbol (i.e. any word) to follow any other. We also include
these two grammars in our analysis.

7

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

We then compute the posterior probabilities for the four
grammars given Dtrain and select the one with the higher
posterior: G∗ = argmaxG∈G p(G | Dtrain), where G =
{CFG,Reg,Flat,One-State}. Note that since we are
primarily interested in comparing posteriors of different
grammars, we can estimate the posterior by computing the
likelihood and prior and taking product of the two, i.e.,
p(G|D) ∝ p(D | G) p(G). The prior p(G) is chosen to
encode the simplicity of a grammar, e.g. a grammar with
many rules will have a lower prior probability. The like-
lihood p(D|G) measures how well the grammar G fits D.
Hence by computing the posterior we measure the trade-
off between the simplicity and goodness of fit for different
grammars. We provide the details of how the priors and
likelihood are computed in Appendix A.4.3

We then train a transformer language model on Dtrain, and
check if it generalizes according to G∗. This is done by
constructing generalization test sets by considering the sen-
tence types that are unique to a specific grammar. E.g., we
can have the test set DHier

test = DCFG \ DReg, which con-
tains sentence types that are unique to DCFG and hence only
consistent with the hierarchical rule and not the linear rule.
Similarly, DLin

test = DReg \ DCFG, consists of sentence types
consistent only with the linear rule. We can then evaluate if
the transformer model trained on the ambiguous data Dtrain,
assigns a higher-likelihood to DHier

test or DLin
test. Specifically,

if G∗ = CFG, does the transformer follow the hierarchical
rule, and if G∗ = Reg, does the transformer follow the
linear rule? Note that if G∗ is either a Flat or One-State
grammar, the model should show no preference towards
either linear or hierarchical rule, and assign similar like-
lihoods to both DHier

test and DLin
test. The selection of G∗ is

intended to simulate “idealized” Bayesian learning, and
check to what extent the transformer’s learning behavior
matches G∗ across different scenarios. We provide details
of each of these steps in Appendix §A.4.

Experimental Setup. For this study we consider the sim-
ple agreement task, as constructing hierarchical and linear
grammars for its data is straightforward.3 We also consider
two variants of both context-free and regular grammars, de-
pending on the diversity of the sentence types generated
by them. Recall that a sentence type is a sequence of syn-
tactic categories, e.g., sentences like The walrus sings can
be represented by sentence type determiner singular-noun
intransitive-verb. In particular we construct small grammars
CFG-S and Reg-S, each generating 18 sentence types, out
of which 12 are common between the two and hence am-
biguous. Similarly, we generate large grammars CFG-L and

3Tasks like Question formation involve pairs of sentences,
where the second sentence is a transformed version of the first.
Such sentence pairs would likely require more complex frame-
works like synchronous grammars (Aho & Ullman, 1969), which
we leave to future work.

Reg-L which generate more diverse sentence types – 180
by each grammar, out of which 120 are common between
the two. We denote the training and test sets generated from
these two classes of grammars using the −S and −L suf-
fixes, for small and large grammars – e.g. Dtrain−L denotes
the data generated from CFG-L and Reg-L, and Dtrain−S

denotes the data generated from CFG-S and Reg-S.

We evaluate trained transformers by comparing the negative
log-likelihood (NLL) assigned by the models to the test sets
corresponding to the two grammars. For a more intuitive
metric, we also compute the main-verb accuracy from §3.1.

5.2. Results

Comparing posteriors. The log-probabilities for all the
hand-constructed grammars on the two datasets is provided
in Table 2. On both datasets, the one-state grammar gets the
highest prior, which is expected as it is the simplest gram-
mar that we study, but also has the lowest log-likelihood.
The flat grammars fit both the datasets the best and have the
highest log-likelihood, which is also expected since a flat
grammar memorizes the training data, but it comes at a cost
of increased complexity as indicated by the lowest prior.

For the high diversity dataset Dtrain−L, we observe that the
CFG best balances the tradeoff between the simplicity and
goodness of fit, obtaining the highest posterior. This shows
why it would be more beneficial to model this dataset using
a hierarchical phrase structured grammar than a linear gram-
mar. However, when we consider the low-diversity dataset
Dtrain−S, while the CFG still obtains a better posterior than
the regular grammar, it is the one-state grammar obtains the
highest posterior out of all the grammars. This is consistent
with the findings of Perfors et al. (2011), who found that
for small corpora, one-state grammars often obtain higher
posteriors than the context-free and regular grammars.

Performance of transformer-based LMs. We
train the transformer-based LMs on the two datasets
(Dtrain−L,Dtrain−S) and evaluate their generalization
based on the DHier

test and DLin
test test sets. We use the

same experimental setup as discussed in §3.2. In Figure
4a, we see for the models trained on the low-diversity
dataset Dtrain−S that the model obtains similar negative
log-likelihood values on both test sets, implying that the
model has no preference for generalizing according to
the linear rule or the hierarchical rule. For this dataset,
neither the CFG nor the regular grammar were optimal
in terms of the posterior probabilities, so we observe that
the transformer’s learning behavior is consistent with the
“idealized” setup above. For the models trained on the
Dtrain−L dataset, however, we see that the model learns to
generalize hierarchically, with the NLL on the DHier

test test

8

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

Grammar Dtrain−L (120 types) Dtrain−S (12 types)

log-Prior log-Likelihood log-Posterior log-Prior log-Likelihood log-Posterior

CFG -367 -639 -1006 -169 -34 -203
Reg -619 -616 -1235 -190 -30 -220
Flat -4567 -574 -5141 -281 -30 -311
One-State -58 -2297 -2355 -51 -121 -172

Table 2: Comparing the log-probabilities for the grammars given Dtrain−L and Dtrain−S.

set being significantly lower than that on the DLin
test test set.

We see these findings reflected on the main-verb accuracy
metric as well (Figure 4b), where the model trained on
the Dtrain−L dataset obtains close to 100%, while the one
trained on the Dtrain−S dataset obtains close to 50% gen-
eralization accuracy, again showing no preference for a
hierarchical or linear rule.

Dtrain−L Dtrain−S

Train Dataset

0

1

2

3

4

N
L

L

DHiertest

DLintest

(a) Negative log-
likelihood (NLL)

0 50000 100000 150000 200000
Training Step

0.00

0.25

0.50

0.75

1.00

M
ai

n-
V

er
b

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

Dtrain−L

Dtrain−S

(b) Main-verb generalization accu-
racy

Figure 4: Performance of transformer models trained on the
Dtrain−L and Dtrain−S datasets.

Takeaways. Our results indicate that when transformers-
based LMs exhibit hierarchical generalization, despite being
trained on ambiguous data, under the tested conditions, the
hierarchical grammar not only fits the data well but is also
simpler compared to the regular grammar with linear agree-
ments. For the cases where this condition does not hold, we
observe that the trained transformers exhibit no preference
for hierarchical generalization.

6. Conclusion
In our work, we studied when and why transformers exhibit
hierarchical generalization when trained on an otherwise
ambiguous data consistent with both linear and hierarchical
rules. There are multiple directions that can be explored in
the future. While our results suggest language modeling as
a source of hierarchical bias, it still remains unclear why
hierarchical generalization is delayed (i.e. grokking). While
the experiments concerning our Bayesian interpretation only
involved the simple agreement tasks for which it was possi-
ble to construct CFGs, in future it would be interesting to
explore methods to model the simplicity and goodness of fit
for competing hypotheses for tasks involving transformation

of an input sentence to output sentence. While we show
a correlation between the Bayesian interpretation and the
behavior of transformer LMs, future work can also look at
establishing a causal connection between the two.

References
Aho, A. V. and Ullman, J. D. Syntax directed translations

and the pushdown assembler. J. Comput. Syst. Sci., 3:37–
56, 1969. URL https://api.semanticscholar.
org/CorpusID:205894705.

Baker, J. K. Trainable grammars for speech recogni-
tion. Journal of the Acoustical Society of America,
65, 1979. URL https://api.semanticscholar.
org/CorpusID:121084921.

Bhaskar, A., Friedman, D., and Chen, D. The heuristic core:
Understanding subnetwork generalization in pretrained
language models, 2024.

Bhattamishra, S., Patel, A., Kanade, V., and Blunsom, P.
Simplicity bias in transformers and their ability to learn
sparse Boolean functions. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 5767–5791,
Toronto, Canada, July 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.acl-long.317.
URL https://aclanthology.org/2023.acl-
long.317.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners, 2020.

Chen, A., Shwartz-Ziv, R., Cho, K., Leavitt, M. L., and
Saphra, N. Sudden drops in the loss: Syntax acquisition,
phase transitions, and simplicity bias in MLMs. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=MO5PiKHELW.

9

https://api.semanticscholar.org/CorpusID:205894705
https://api.semanticscholar.org/CorpusID:205894705
https://api.semanticscholar.org/CorpusID:121084921
https://api.semanticscholar.org/CorpusID:121084921
https://aclanthology.org/2023.acl-long.317
https://aclanthology.org/2023.acl-long.317
https://openreview.net/forum?id=MO5PiKHELW
https://openreview.net/forum?id=MO5PiKHELW

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

Chomsky, N. Language and Mind. Cambridge University
Press, 1 edition, 1968.

Chomsky, N. Language and Learning: The Debate Between
Jean Piaget and Noam Chomsky. Harvard University
Press, 1980.

De Palma, G., Kiani, B., and Lloyd, S. Random deep neural
networks are biased towards simple functions. Advances
in Neural Information Processing Systems, 32, 2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 4171–4186, Min-
neapolis, Minnesota, June 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423.

Dong, L., Yang, N., Wang, W., Wei, F., Liu, X., Wang,
Y., Gao, J., Zhou, M., and Hon, H.-W. Unified
language model pre-training for natural language under-
standing and generation. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/
c20bb2d9a50d5ac1f713f8b34d9aac5a-
Paper.pdf.

Frank, R. and Mathis, D. Transformational networks. Mod-
els of Human Language Acquisition, 22, 2007.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Lewis, J. D. and Elman, J. L. Learnability and the statisti-
cal structure of language: Poverty of stimulus arguments
revisited. In Proceedings of the 26th annual Boston Uni-
versity conference on language development, volume 1,
pp. 359–370. Citeseer, 2001.

Lin, Y., Tan, Y. C., and Frank, R. Open sesame: Get-
ting inside BERT’s linguistic knowledge. In Linzen,
T., Chrupała, G., Belinkov, Y., and Hupkes, D. (eds.),
Proceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pp.
241–253, Florence, Italy, August 2019. Association for
Computational Linguistics. doi: 10.18653/v1/W19-4825.
URL https://aclanthology.org/W19-4825.

Liu, Z., Kitouni, O., Nolte, N. S., Michaud, E., Tegmark,
M., and Williams, M. Towards understanding
grokking: An effective theory of representation
learning. In Koyejo, S., Mohamed, S., Agarwal,
A., Belgrave, D., Cho, K., and Oh, A. (eds.), Ad-
vances in Neural Information Processing Systems,
volume 35, pp. 34651–34663. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.
cc/paper_files/paper/2022/file/
dfc310e81992d2e4cedc09ac47eff13e-
Paper-Conference.pdf.

Louizos, C., Welling, M., and Kingma, D. P. Learning
sparse neural networks through l 0 regularization. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=H1Y8hhg0b.

Macwhinney, B. The childes project: tools for analyzing
talk. Child Language Teaching and Therapy, 8, 01 2000.
doi: 10.1177/026565909200800211.

McCoy, R. T., Frank, R., and Linzen, T. Revisiting the
poverty of the stimulus: hierarchical generalization with-
out a hierarchical bias in recurrent neural networks.
ArXiv, abs/1802.09091, 2018. URL https://api.
semanticscholar.org/CorpusID:3580012.

McCoy, R. T., Frank, R., and Linzen, T. Does syntax
need to grow on trees? sources of hierarchical induc-
tive bias in sequence-to-sequence networks. Transactions
of the Association for Computational Linguistics, 8:125–
140, 2020. doi: 10.1162/tacl a 00304. URL https:
//aclanthology.org/2020.tacl-1.9.

Merrill, W., Tsilivis, N., and Shukla, A. A tale of two
circuits: Grokking as competition of sparse and dense
subnetworks. In ICLR 2023 Workshop on Mathemati-
cal and Empirical Understanding of Foundation Models,
2023. URL https://openreview.net/forum?
id=8GZxtu46Kx.

Millidge, B. Grokking ‘grokking’, 2023. URL
http://www.beren.io/2022-01-11-
Grokking-Grokking/.

Mueller, A. and Linzen, T. How to plant trees in language
models: Data and architectural effects on the emergence
of syntactic inductive biases. In Rogers, A., Boyd-Graber,
J., and Okazaki, N. (eds.), Proceedings of the 61st An-
nual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 11237–11252,
Toronto, Canada, July 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.acl-long.629.
URL https://aclanthology.org/2023.acl-
long.629.

10

https://aclanthology.org/N19-1423
https://proceedings.neurips.cc/paper_files/paper/2019/file/c20bb2d9a50d5ac1f713f8b34d9aac5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c20bb2d9a50d5ac1f713f8b34d9aac5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c20bb2d9a50d5ac1f713f8b34d9aac5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c20bb2d9a50d5ac1f713f8b34d9aac5a-Paper.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://aclanthology.org/W19-4825
https://proceedings.neurips.cc/paper_files/paper/2022/file/dfc310e81992d2e4cedc09ac47eff13e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/dfc310e81992d2e4cedc09ac47eff13e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/dfc310e81992d2e4cedc09ac47eff13e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/dfc310e81992d2e4cedc09ac47eff13e-Paper-Conference.pdf
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
https://api.semanticscholar.org/CorpusID:3580012
https://api.semanticscholar.org/CorpusID:3580012
https://aclanthology.org/2020.tacl-1.9
https://aclanthology.org/2020.tacl-1.9
https://openreview.net/forum?id=8GZxtu46Kx
https://openreview.net/forum?id=8GZxtu46Kx
http://www.beren.io/2022-01-11-Grokking-Grokking/
http://www.beren.io/2022-01-11-Grokking-Grokking/
https://aclanthology.org/2023.acl-long.629
https://aclanthology.org/2023.acl-long.629

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

Mueller, A., Frank, R., Linzen, T., Wang, L., and Schus-
ter, S. Coloring the blank slate: Pre-training imparts
a hierarchical inductive bias to sequence-to-sequence
models. In Muresan, S., Nakov, P., and Villavicen-
cio, A. (eds.), Findings of the Association for Com-
putational Linguistics: ACL 2022, pp. 1352–1368,
Dublin, Ireland, May 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.findings-acl.
106. URL https://aclanthology.org/2022.
findings-acl.106.

Mueller, A., Webson, A., Petty, J., and Linzen, T. In-
context Learning Generalizes, But Not Always Robustly:
The Case of Syntax, November 2023. URL http://
arxiv.org/abs/2311.07811. arXiv:2311.07811
[cs].

Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., and
Hutter, F. Transformers can do bayesian inference. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=KSugKcbNf9.

Murty, S., Sharma, P., Andreas, J., and Manning, C.
Grokking of hierarchical structure in vanilla transformers.
In Proceedings of the 61st Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2: Short
Papers), pp. 439–448, Toronto, Canada, July 2023. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/
2023.acl-short.38. URL https://aclanthology.
org/2023.acl-short.38.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mech-
anistic interpretability, January 2023. URL https:
//arxiv.org/abs/2301.05217v2.

Perfors, A., Regier, T., and Tenenbaum, J. B. Poverty of
the stimulus? a rational approach. In Proceedings of
the Annual Meeting of the Cognitive Science Society,
volume 28, 2006.

Perfors, A., Tenenbaum, J. B., and Regier, T. The
learnability of abstract syntactic principles. Cog-
nition, 118(3):306–338, 2011. ISSN 0010-0277.
doi: https://doi.org/10.1016/j.cognition.2010.11.001.
URL https://www.sciencedirect.com/
science/article/pii/S0010027710002593.

Peters, M. E., Neumann, M., Zettlemoyer, L., and Yih,
W.-t. Dissecting contextual word embeddings: Archi-
tecture and representation. In Riloff, E., Chiang, D.,
Hockenmaier, J., and Tsujii, J. (eds.), Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 1499–1509, Brussels, Bel-
gium, October-November 2018. Association for Compu-

tational Linguistics. doi: 10.18653/v1/D18-1179. URL
https://aclanthology.org/D18-1179.

Petty, J. and Frank, R. Transformers Generalize Linearly,
September 2021. URL http://arxiv.org/abs/
2109.12036. arXiv:2109.12036 [cs].

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and
Misra, V. Grokking: Generalization beyond overfitting
on small algorithmic datasets. ArXiv, abs/2201.02177,
2022. URL https://api.semanticscholar.
org/CorpusID:245769834.

Reali, F. and Christiansen, M. H. Structure dependence in
language acquisition: Uncovering the statistical richness
of the stimulus. In Proceedings of the Annual Meeting of
the Cognitive Science Society, volume 26, 2004.

Redington, M., Chater, N., and Finch, S. Distribu-
tional information: A powerful cue for acquiring syn-
tactic categories. Cognitive Science, 22(4):425–469,
1998. doi: https://doi.org/10.1207/s15516709cog2204\
2. URL https://onlinelibrary.wiley.com/
doi/abs/10.1207/s15516709cog2204_2.

Shah, R. [AN #159]: Building agents that know how
to experiment, by training on procedurally generated
games. 2023. URL https://www.lesswrong.
com/posts/zvWqPmQasssaAWkrj/an-159-
building-agents-that-know-how-to-
experiment-by.

Solomonoff, R. A formal theory of induc-
tive inference. part i. Information and Con-
trol, 7(1):1–22, 1964. ISSN 0019-9958. doi:
https://doi.org/10.1016/S0019-9958(64)90223-2.
URL https://www.sciencedirect.com/
science/article/pii/S0019995864902232.

Stolcke, A. and Omohundro, S. Inducing probabilistic gram-
mars by bayesian model merging. In International Collo-
quium on Grammatical Inference, pp. 106–118. Springer,
1994.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. Advances in neural
information processing systems, 27, 2014.

Tenney, I., Xia, P., Chen, B., Wang, A., Poliak, A., McCoy,
R. T., Kim, N., Durme, B. V., Bowman, S., Das, D., and
Pavlick, E. What do you learn from context? probing for
sentence structure in contextualized word representations.
In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=SJzSgnRcKX.

11

https://aclanthology.org/2022.findings-acl.106
https://aclanthology.org/2022.findings-acl.106
http://arxiv.org/abs/2311.07811
http://arxiv.org/abs/2311.07811
https://openreview.net/forum?id=KSugKcbNf9
https://openreview.net/forum?id=KSugKcbNf9
https://aclanthology.org/2023.acl-short.38
https://aclanthology.org/2023.acl-short.38
https://arxiv.org/abs/2301.05217v2
https://arxiv.org/abs/2301.05217v2
https://www.sciencedirect.com/science/article/pii/S0010027710002593
https://www.sciencedirect.com/science/article/pii/S0010027710002593
https://aclanthology.org/D18-1179
http://arxiv.org/abs/2109.12036
http://arxiv.org/abs/2109.12036
https://api.semanticscholar.org/CorpusID:245769834
https://api.semanticscholar.org/CorpusID:245769834
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog2204_2
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog2204_2
https://www.lesswrong.com/posts/zvWqPmQasssaAWkrj/an-159-building-agents-that-know-how-to-experiment-by
https://www.lesswrong.com/posts/zvWqPmQasssaAWkrj/an-159-building-agents-that-know-how-to-experiment-by
https://www.lesswrong.com/posts/zvWqPmQasssaAWkrj/an-159-building-agents-that-know-how-to-experiment-by
https://www.lesswrong.com/posts/zvWqPmQasssaAWkrj/an-159-building-agents-that-know-how-to-experiment-by
https://www.sciencedirect.com/science/article/pii/S0019995864902232
https://www.sciencedirect.com/science/article/pii/S0019995864902232
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

Thilak, V., Littwin, E., Zhai, S., Saremi, O., Paiss, R.,
and Susskind, J. The slingshot mechanism: An em-
pirical study of adaptive optimizers and the grokking
phenomenon, 2022.

Valle-Perez, G., Camargo, C. Q., and Louis, A. A. Deep
learning generalizes because the parameter-function
map is biased towards simple functions. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=rye4g3AqFm.

Varma, V., Shah, R., Kenton, Z., Kramár, J., and Kumar, R.
Explaining grokking through circuit efficiency, Septem-
ber 2023. URL https://arxiv.org/abs/2309.
02390v1.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, , and Polosukhin,
I. Attention is All you Need. In Advances in Neural
Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://papers.
nips.cc/paper_files/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-
Abstract.html.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I.
Analyzing multi-head self-attention: Specialized heads
do the heavy lifting, the rest can be pruned. In Ko-
rhonen, A., Traum, D., and Màrquez, L. (eds.), Pro-
ceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 5797–5808,
Florence, Italy, July 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P19-1580. URL
https://aclanthology.org/P19-1580.

Zhang, E., Lepori, M. A., and Pavlick, E. Instilling inductive
biases with subnetworks, 2024. URL https://arxiv.
org/abs/2310.10899.

A. Appendix
A.1. Related Work

Language acquisition in humans. The problem of ques-
tion formation has been well studied in the linguistics and
cognitive science literature, where it has been observed that
children from a very young age can produce grammatical
output consistent with the hierarchical rule. In particular,
the poverty of stimulus argument (Chomsky, 1968; 1980)
asserts that children are unlikely to observe sufficient data
to rule out order rule during language acquisition, and hence
knowledge of the language being phrase structured must
be innately specified (linguistic nativism). On the other
hand, as a critique to the nativist argument, the empiricist
argument (Redington et al., 1998; Lewis & Elman, 2001;
Reali & Christiansen, 2004) states that distributional and
statistical regularities in the data can be used to explain why
children choose a hierarchical rule over an order-based rule.
A critique of the empiricist argument is that it ignores the
hierarchical phrase structured nature of natural language
(Perfors et al., 2006) . Works like (Perfors et al., 2006;
2011) address this critique to empiricist argument using a
Bayesian perspective on grammar induction and show that
given child-directed corpus, an ideal learner can infer that a
hierarchical grammar is simpler and fits the data as well as
a linear grammar, without having this knowledge specified
innately.

Hierarchical generalization in neural networks. Study-
ing hierarchical generalization in neural networks has had
its roots in empiricist arguments for language acquisition.
Lewis & Elman (2001) showed that a simple recurrent net-
work language model trained on the CHILDES dataset
(Macwhinney, 2000) (designed for studying language of
and directed to young children), would assign higher proba-
bilities to questions constructed using the hierarchical rule
than the order rule. A critique of the above work has been
that it doesn’t model the relation between the declarative
and the question, hence failing to fully address the origi-
nal poverty of stimulus argument. (Frank & Mathis, 2007)
trained simple recurrent networks on the transformational
task (form a question from the declarative) and found some
evidence of the networks generalizing hierarchically, though
the performance was found to depend heavily on the auxil-
iaries.

McCoy et al. (2018) used the setup from (Frank & Mathis,
2007) and performed a more thorough study on hierarchical
generalization in RNNs (trained as seq2seq models), finding
that while these models exhibit limited generalization perfor-
mance, using attention and training on data with additional
syntactic cues can help improve the performance. McCoy
et al. (2020) studied the architectural inductive biases in
RNNs influencing hierarchical generalization, and found

12

https://openreview.net/forum?id=rye4g3AqFm
https://openreview.net/forum?id=rye4g3AqFm
https://arxiv.org/abs/2309.02390v1
https://arxiv.org/abs/2309.02390v1
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/P19-1580
https://arxiv.org/abs/2310.10899
https://arxiv.org/abs/2310.10899

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

that only using a tree-structured model would consistently
lead to hierarchical bias. Petty & Frank (2021); Mueller et al.
(2022) corroborated these findings for transformers, find-
ing networks to generalize linearly instead of hierarchically.
In contrast to these findings, recently (Murty et al., 2023),
showed that transformers, when trained for longer duration –
way beyond saturating in-distribution performance – started
exhibiting hierarchical generalization.

While all of these works train neural network models from
scratch, recently there has been work on understanding hi-
erarchical generalization in transformer models pretrained
on large amounts of naturalistic language data. (Mueller
& Linzen, 2023) found that pretraining encoder-decoder
transformers on corpora like Wikipedia or CHILDES re-
sults in hierarchical bias in these models, though training
on CHILDES was found to be orders of magnitude more
sample-efficient towards imparting this bias. (Mueller et al.,
2023) studied hierarchical generalization during in-context
learning in language models, finding large variance in per-
formance across different models. They found this variance
to be explained by the composition of training data and
particularly found the models trained on code to generalize
better.

Grokking. One puzzle in deep learning generalization is
the phenomenon of “grokking,” where neural network are
observed to start generalizing long after having overfit the
training data (Power et al., 2022). Numerous efforts have
been made to understand grokking and why it occurs. Mil-
lidge (2023) conjecture that for overparameterized networks
the optimal set (i.e., the set of all parameter values resulting
in 0 training loss) corresponds to a manifold in parame-
ter space and stochastic gradient descent essentially acts
as a random walk in this manifold, eventually hitting the
parameters that generalize. The other explanations rely on
simplicity bias, hypothesizing that the solutions that general-
ize are simpler but slower to learn (Shah, 2023; Nanda et al.,
2023; Bhattamishra et al., 2023; Varma et al., 2023). Thilak
et al. (2022) explain grokking from an optimization stand-
point and show it to happen at the onset of a phenomenon
they call as “slingshot mechanism,” identified by spikes in
the training loss which result in increased norm of the final-
layer weights. (Liu et al., 2022) attempt to explain grokking
through the theory of representation learning, identifying
four phases during training and grokking occurring in a
”Goldilocks zone” between two of these phases.

Training dynamics and subnetwork generalization.
Merrill et al. (2023), identify dense and sparse subnetworks
in the transformer models trained on a sparse-parity task
and found the model starting to generalize as the norm of
the sparse subnetwork undergoes rapid norm growth. Chen
et al. (2024) identify emergence of syntactic attention struc-

ture in transformer masked language models, resulting
from sudden drops in the loss, leading to the model subse-
quently acquiring different linguistic capabilities. Zhang
et al. (2024) identifies task-specific subnetworks in a trained
neural network model and use them to instill inductive bi-
ases to models being trained from scratch. In concurrent
work, Bhaskar et al. (2024) find, using pruning, and for
BERT-based models finetuned on NLP tasks like natural lan-
guage inference and paraphrase identification, the existence
of subnetworks that exhibit same in-domain performance
but very different out-of-distribution generalization perfor-
mance. This finding is in line with our observations about
the presence of subnetworks consistent with different gen-
eralization behaviors. However, due to the nature of our
problem, we are further able to show what specific behav-
iors these subnetworks associate with, how each of these
evolves over the course of training, and suggest why these
subnetworks co-exist during training.

A.2. Tasks and Datasets

Below we provide the details of the five tasks.

1. Question formation. As described above, the task is to
transform a declarative sentence into a question. We use the
dataset from McCoy et al. (2020) for this task, which was
constructed from a context-free grammar (CFG) with three
sentence types varying in the existence and position of the
relative clause (RC) in the sentence: (i) no RC, e.g., sentence
The walrus does sing; (ii) RC attached to the object, e.g.,
sentence 1a; and (iii) RC attached to the subject, e.g., sen-
tence 2a. The training data includes (i) declarative-question
pairs where the task is to take a declarative sentence and
generate a question as output and (ii) identity pairs where
the task requires copying an input declarative sentence. The
declarative-question pairs in the training set only contain
sentences without any RC or with RC attached to the object.
Importantly, the identity pairs in the training data also in-
clude sentences with RC on the subject, to expose the model
to sentences of this type (McCoy et al., 2020). During train-
ing a token quest or decl is added to specify whether
to perform question formation or the copy task. Following
past work (e.g. Murty et al. (2023)), we evaluate the model
on the first-word accuracy – given the declarative sentence
as the input, evaluate whether the model predicts correct
auxiliary for the first word in the generated question.

2. Question formation (German). This is the same task as
above, but the sentences are in German instead of English.
We use the dataset from Mueller et al. (2022), consisting of
sentences with the modals können/kann (can) or auxiliaries
haben/hat (have/has), together with infinitival or past par-
ticiple main verbs as appropriate, which can be moved to
the front similar to English to form questions. The dataset
construction and evaluation metrics remain identical to the

13

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

English version.

3. Passivization. The task here is to transform an active sen-
tence to passive. We use the dataset from Müller et al. (2022)
and similar to question formation, active-passive pairs in the
training data are ambiguous – compatible with both rules:
the hierarchical rule which involves identifying the object
in the sentence and moving it to the front, and the linear
rule that moves the second noun in the sentence to front.
Such sentences correspond to ones without a prepositional
phrase (PP) or with a PP on the object. For generalization,
the model is evaluated on sentences with PP on the subject,
for which only hierarchical rule is applicable. The training
data here also is augmented with identity active-active pairs
which consist of sentences of all the three types. For evalu-
ation, following Mueller et al. (2022), we consider object
noun accuracy, which measures whether the correct noun
was moved to the subject position.

4. Tense reinflection. In this task, we are given a sentence
in the past tense, and the task is to transform it into present
tense. While performing the transformation to present tense,
the model has to figure out from the context whether each
verb should be singular or plural (-s suffix) in the present
tense. In this case, the hierarchical rule requires each verb
to agree with the hierarchically-determined subject and the
linear rule requires a verb to agree with the most recent noun
in the sequence. We use the same dataset as McCoy et al.
(2020), where, similar to question formation, the training
dataset contains tense reinflection pairs (past-present) that
are consistent with both rules, and identity pairs (past-past)
for copying. The models are evaluated using main-verb
accuracy, which is calculated as the fraction of examples in
the test set for which the generated present tense sentence
has the correct main verb.

5. Simple agreement. We also introduce a simplified ver-
sion of the tense reinflection task. Unlike others, simple
agreement is a single-sentence task where only the present-
tense sentences from the tense-inflection are considered. In
this task, we evaluate the model’s ability to generate the
correct inflection of the verb at the end of the sentence. The
hierarchical and linear rules are defined in the same way as
tense reinflection. For evaluation, since from the context
it is no longer clear what should be the correct verb, we
use main-verb contrastive accuracy, which is calculated by
considering each sentence in the test dataset (e.g., my zebra
by the yaks swims), forming the prefix (my zebra by the
yaks) and checking if the model assigns the higher probabil-
ity to the correct inflection of the main verb in the original
sentence (swims vs. swim).

A.3. Training Objectives and Hierarchical
Generalization

A.3.1. DETAILS ABOUT TRAINING OBJECTIVES

Here we detail the input-output structure for all objectives
concerning the five tasks that we study.

Language modeling. As discussed in the main
text, for the question formation task we simply con-
sider the sequence s as declarative-question pair
(or declarative-declarative pair for copy task), e.g.,
s = {my,walrus, · · · ,quest, does, · · · ,move, ?}. Simi-
larly, for passivization it is the active-passive sentence pair
(or active-active); for tense reinflection it is the pair of past
and present tense sentence (or past-past), and for simple
agreement it is simply the single input sentence.

Sequence-to-sequence modeling and Prefix language
modeling. The inputs for the two objectives are the declar-
ative sentence (or active sentence for passivization and past
tense sentence for tense reinflection) and the outputs se-
quences are the corresponding questions (or passive sen-
tence/present tense sentence depending on the task). Note
that all four tasks allow identity pairs, hence the outputs
can be the same as the inputs when decl token is provided
at the end of the input. One modification that we make to
how the prefix-LM objective is typically used, is that we use
a causal mask for the prefix tokens as well instead of hav-
ing bi-directional attention over the prefix tokens, since we
found the latter to perform subpar in our initial experiments
(unstable in-distribution performance).

Sequence classification. For question formation, the in-
put is the declarative sentence, and the output is the four
possible auxiliary tokens, {do,does,don′t,doesn′t} for
English and {können, kann,haben,hat} for German. For
passivization task, the input is the sentence in active voice
and the output is the subject of the passive sentence, which
can be any of the 26 nouns in the datasets vocabulary. For
tense reinflection, the input is the sentence in past tense
and the output is the present tense form of the main-verb in
the input sentence (18 classes corresponding to the verbs in
dataset). For simple agreement, the input is the sequence of
tokens until the main verb and the model needs to predict the
main-verb as a multi-label (across vocabulary of 18 verbs)
classification task. The classification head for all tasks ex-
cluding tense reinflection, is attached to the last token in
the sequence. For tense reinflection it is attached to the
main-verb in the input sentence as otherwise the linear-rule
which uses the noun most recent to the main-verb might not
be appropriate. We also use causal mask for all tasks, as
we found the models to perform better on in-distribution
test set in our initial experiments when using it. Also, note
that due to the nature of the objective, identity pairs are not

14

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

supported.

Cloze completion. For the question formation task, we
consider the declarative-interrogative pair and mask out to-
kens in the interrogative sentence at all positions where the
auxiliaries could be present. Specifically, we have mask
tokens where i) the auxiliary is present in the interroga-
tive sentence or ii) the auxiliary was present in the original
declarative sentence. The model is trained to predict the
correct auxiliary at the right positions and <EMPTY> if an
auxiliary is not present at a particular position. Similarly,
for tense reinflection, we consider the past-present sentence
pair, mask out all the verbs in the present tense sentence
and train the model to predict the right form of the verbs.
In the simple agreement task, we consider only the present
tense sentence, mask out all the verbs and train the model to
predict them. Here also we found using causal mask helps
in better in-distribution performance and hence use it in all
our experiments.

A.4. Grammar details

A.4.1. BACKGROUND

Operationalizing the notion of simplicity. Occam’s ra-
zor principle states that when two hypotheses explain the
data equally well, the simpler one of the two is likely to be
the correct one. This notion is mathematically formalised
in Solomonoff’s theory of inductive inference (Solomonoff,
1964) using a Bayesian approach by computing the poste-
rior probabilities of the competing hypotheses and selecting
the one with higher posterior, p(h | D) ∝ p(D | h) · p(h).
Here, p(D | h) denotes the likelihood of the observed data
D based on the hypothesis h, i.e., how well h explains the
data D. p(h) denotes the prior probability of h, which in
Solomonoff’s theory assigned higher values for simpler hy-
potheses h. Hence, by computing the posterior p(h | D),
Bayesian inference balances the tradeoff between the good-
ness of fit of a hypothesis (likelihood) and its simplicity
(prior) – “Bayesian Occam’s razor”.

Probabilistic grammars. Since our training objective is
language modeling, we need to consider hypotheses that
generate the entire sequence of tokens as represented in the
training data. Following Perfors et al. (2011), we use gen-
erative grammars to model the data-generation process for
language generation. For the purposes of this work we con-
sider probabilistic context-free grammars (PCFGs) that can
be represented using a 5-tuple i.e., G = {V,Σ, R, S,Θ}.
Here, V denotes the set of nonterminal symbols that form
phrases or constituents in a sentence, Σ denotes the set of ter-
minal symbols or words in the sentences, R ∈ V ×{V ∪Σ}∗
denotes the set of production rules mapping phrases to sub-
phrases or words, S ∈ V is the start symbol that represents
the whole sentence, and Θ denotes the probabilities on the

production rules given each non-terminal. PCFGs are typ-
ically used to model the hierarchical phrase structure of a
language. We can also apply some constraints to the form
of production rules in R to obtain special cases (subsets)
of CFGs. For example, regular grammars form a subset of
CFGs, whose production rules can be put into a right-linear
form: A → bC, where A and C are nonterminal symbols
and b is a terminal.

We can view the data-generation process for dataset D using
the probabilistic grammar G, and compute the posterior
p(G | D) to measure the simplicity and goodness of fit of a
grammar G.

A.4.2. CONSTRUCTING GRAMMARS AND DATASETS

Constructing grammars for simple agreement. Follow-
ing (Perfors et al., 2011), we hand-construct the CFG and
regular grammars. The CFG is constructed so that each
verb agrees with the hierarchically connected subject, while
the regular grammar is constructed to follow the linear rule
(each verb in the sentence agrees with the most recent noun).
The constructed grammars are assigned uniform probabili-
ties for the production rules i.e., given a nonterminal, all the
productions are equally likely. For an example of produc-
tions from both the grammars see Figures 10 and 11 in the
Appendix. For constructing CFG, we use Chomsky Normal
Form for the productions: Each production rule is of the
form A → BC or A → a, where A,B,C are nontermi-
nals and a is a terminal symbol. Similarly, for the regular
grammar Reg, we use the right-linear form of productions:
Every rule is of the form A → bC or A → a.

Following (Perfors et al., 2011), we adopt a type-based
approach for constructing the grammars: terminal sym-
bols Σ instead of being the word tokens (e.g. walrus,
sing) are syntactic categories (e.g., determiner, singular-
noun, intransitive-verb, etc.), so that we can use these gram-
mars to strictly model abstract syntactic structures and not
vocabulary-type frequencies, and it also gives us a manage-
able number of possible generations by the grammars.

For both context-free and regular grammars we generate two
variants, depending on the diversity of the sentence types
generated by them:

Small grammars CFG-S and Reg-S: Here we construct
CFG and regular grammars that only generate 18 sentence
types. Recall that a sentence type is a sequence of syn-
tactic categories, e.g., sentences like The walrus sings can
be represented by sentence type determiner singular-noun
intransitive-verb. Different sentence types in this case differ
by the plurality of the nouns (singular or plural), type of
verbs (transitive or intransitive), and presence or absence of
prepositional phrases accompanying the nouns. The result-
ing hand-constructed CFG-S in this case has 15 nontermi-

15

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

nals and 21 production rules and Reg-S has 14 nontermi-
nals and 22 production rules. Both grammars have the same
8 terminals. Out of the 18 sentence types generated by both
the grammars, 12 are common between the two (ambiguous)
and 6 remaining in CFG-S that are only consistent with the
hierarchical rule and 6 only consistent with linear rule in
Reg-S.

Large grammars CFG-L and Reg-L: In this case we
consider larger grammars, which can generate much more
diverse sentence types – 180 sentence types. The major
difference with the smaller grammars here is that they are
allowed to generate relative clauses, which can be present
at both the subject and object in the sentence. CFG-L has
25 nonterminals and 38 productions, while Reg-L has 41
nonterminals and 63 productions. Note that based on these
numbers alone it is evident that we need much more complex
regular grammars to generate diverse sentence types. Out of
the 180 sentence types generated by each grammar, 120 are
common between the two, and the remaining sentence types
are only generated by the specific grammars (following
either hierarchical or linear rule).

Generating datasets. We generate the sentence types
from each of the 4 grammars – DCFG-S, DReg-S, DCFG-L,
and DReg-L. As mentioned before, the training dataset is
constructed by considering the sentence types common be-
tween the CFG and corresponding regular grammar. We
have Dtrain−S = DCFG-S ∩ DReg-S for the small grammars,
and Dtrain−L = DCFG-L ∩ DReg-L for the larger ones. Note
that these are the datasets of sentence-types, and transform-
ers are trained on sentences. To generate sentences from
these type corpora, we repeatedly sample sentence types,
and replace the syntactic categories with the allowed tokens
for that category (e.g., determiner can be replaced with the,
our, my, etc.). Using this procedure we generate a corpus
of 50k sentences from Dtrain−S and 50k sentences from
Dtrain−L. Note that the simple agreement experiments in
§3.1, were performed using the latter dataset derived from
Dtrain−L.

The generalization test sets are generated by considering
the sentence types that are unique to a specific grammar.
E.g., we can have the test set DHier

test−S = DCFG-S \ DReg-S,
which contains sentence types that are unique to DCFG-S and
hence only consistent with the hierarchical rule and not the
linear rule. Similarly, DLin

test−S = DReg-S \ DCFG-S, consists
of sentence types consistent only with the linear rule. We
can equivalently define DHier

test−L and DLin
test−L. While talking

about the two datasets in general and not specifically about
the small (S) or large (L) variants, we just use the notation
DHier

test and DLin
test.

A.4.3. POSTERIOR COMPUTATION

Note that, since we are only interested in comparing the pos-
teriors of CFG and regular grammars, we can estimate the
posterior by computing the likelihood and prior and taking
product of the two, i.e., p(G|D) ∝ p(D | G) p(G). Recall
that the prior probability of a grammar can be computed by
calculating the probability of each of the choices that goes
into defining that grammar:

p(G) = p(|V |)
|V |∏
k=1

p(Pk) p(θk)

Pk∏
i=1

p(Rk,i). (1)

Here, |V | is the number of nonterminals, Pk is the number of
productions from the kth nonterminal with the probabilities
of each production given by θk ∈ [0, 1]Pk , and Rk,i denotes
the right hand side of the ith production rule from the kth
nonterminal. Following, Perfors et al. (2011), we use a geo-
metric prior on p(|V |) and p(Pk). Recall that the geometric
distribution is given by p(n; p) = (1− p)n−1p, where p is a
parameter of the geometric distribution, often interpreted as
the probability of success, and a geometric distribution mod-
els the probability of success after n trials. Hence, choosing
a geometric prior penalizes the grammars with a large num-
ber of nonterminals (|V |) and productions per nonterminal
(Pk). In our experiments we use p = 0.5, following Perfors
et al. (2011), but we conduct a sensitivity analysis on the
choice of this parameter . For θk, we use a flat (i.e., α = 1)
Dirichlet prior, a popular choice for modeling probabilities
for categorical distributions (K − 1 simplex). Note that
since the Dirichlet is a continuous distribution, the prob-
ability of any specific θk is zero and we use the discrete
relaxation from (Perfors et al., 2011) to model p(θk). The
probability of the production rule p(Rk,i), depends on the
type of grammar. For CFGs, since we consider them in CNF,
the production rules are of the form A → BC or A → a,
hence the probability of the right hand side can be given by,
p(Rk,i) =

1
2

1
|V |2 1(|Rk,i| = 2) + 1

2
1
|Σ|1(|Rk,i| = 1). Since

the regular grammars are in the right linear form i.e. pro-
ductions of the form A → bC or A → a, we can compute
p(Rk,i) =

1
2

1
|Σ|

1
|V |1(|Rk,i| = 2)+ 1

2
1
|Σ|1(|Rk,i| = 1). One

might notice that we are missing the probability of number
of terminal symbols p(Σ) in the prior equation. We ignore
this because both the CFG and regular grammars have the
same number of terminals in our experiments, and since
we are interested in just comparing the probabilities, the
inclusion or exclusion of p(Σ) doesn’t make a difference.4

The likelihood p(D | G), measures the probability that the
dataset D is generated from the grammar G. For m sentence

4One might also notice that p(G) allows some probability for
generating the same rule more than once; it “leaks” probability
mass. No prior literature, to our knowledge, suggests that this
should pose a problem to our analysis.

16

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

types in the dataset D, the likelihood is given by

p(D | G) =

m∏
i=1

p(Si | G), (2)

where Si’s denote the sentence types in D. p(Si | G) is
computed by taking product of the probabilities of produc-
tion rules used to derive Si using G (including adding the
probabilities when multiple parses are possible for Si). Note
that computing p(Si | G) requires estimating the production
probabilities θk from each nonterminal. We use the Inside-
Outside algorithm (Baker, 1979), to obtain an approximate
maximum likelihood estimate of the production probabil-
ities on the dataset D. Hence, having computed both the
prior p(G) and p(D | G), we can compute the posterior
p(G | D).

A.4.4. LOCAL SEARCH USING BAYESIAN MODEL
MERGING.

The hand-constructed grammars that we consider in our
study might not be optimal in terms of the posterior given
the training data. E.g., there might be some redundant pro-
duction rules or non-terminals, which can be removed by
merging two or more non-terminals. We use the Bayesian
Model Merging (BMM) algorithm from Stolcke & Omohun-
dro (1994); Perfors et al. (2011) to perform a local search
for grammars with higher posteriors starting from the hand-
constructed ones. The algorithm works as follows: We start
from the initial grammar and iterate over all possible merges.
A merge involves replacing two non-terminal symbol by a
single new non-terminal and adding two new productions
mapping the new non-terminal to the older ones. E.g. for
production rules A → BC, A → BD, we can merge C
and D to F , resulting the new production rules: A → BF ,
F → C, and F → D. For each merge, we thus obtain a
new grammar, and compute its posterior. We then select
the grammar with the highest posterior (greedy search) and
repeat the procedure with this new grammar. If no merge
results in a grammar with higher posterior than the initial
grammar, we terminate the search. We denote the context
free grammars after merge as CFG∗ (CFG-S∗ and CFG-L∗)
and regular grammars as Reg∗ (Reg-S∗ and Reg-L∗).

An important detail to note here is that while performing the
merging algorithm, we use the ambiguous corpus Dtrain−L

or Dtrain−S for computing the posteriors and hence search-
ing the right set of merges. The final grammar obtained,
while should assign high likelihood to the ambiguous train-
ing data, it might no longer be consistent with the held out
sentence types, e.g., DHier

test or DLin
test, and hence the final

grammars obtained might not strictly model the linear or
hierarchical rules. To check if such a situation arises in our
case, we compare the set of all generations from a grammar

before and after merging. If the two are same, it implies that
the grammar continues to be consistent with both the am-
biguous and unambiguous sentence types, and hence obey
the linear or order rule of the original hand-constructed
grammar. We find that for CFG-S, after applying the merg-
ing algorithm, the grammar obtained is no longer consistent
with just the hierarchical rule and starts to also generate
sentence types consistent with the linear rule. This implies
that for the low-diversity data case, even using a CFG it
is better to avoid modeling the hierarchical rule given
the ambiguous data. For CFG-L, the grammar remains
consistent with the hierarchical rule even after merging.

The log-probabilities after applying BMM algorithm are
provided in Table 3. For the Dtrain−L dataset, we find
that our results remain consistent with those for hand-
constructed grammars in Table 2: CFG-L∗ obtains a lower
posterior than Reg-L∗. On the other hand for the Dtrain−S

dataset, CFG-S∗ ends up with a higher posterior than the
One-State grammar. However, as noted above after min-
imization CFG-S∗ is no longer consistent with the hier-
archical rule, i.e., doesn’t generate sentences where verbs
only agree with the hierarchically connected nouns. Hence,
our observations that for the lower-diversity case, modeling
the hierarchical rule is not optimal according the posterior
criterion remains consistent here as well.

17

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

A.5. Pruning for Tasks other than Question Formation.

In the main paper under §4 our results on the discovery
of subnetworks with different generalization performances
were performed on question formation task. Here, we pro-
vide the results for tense reinflection and simple agreement.
For tense-reinflection, we slightly modify the pruning pro-
cedure. Since, for tense reinflection, we need to generate
the entire present tense sequence to check if the predicted
main verb is in the correct form, we compute the loss over
all output tokens during pruning unlike question formation,
where only the loss on the first auxiliary in the question
was computed. Due to this, for Train\Gen-prune training
becomes highly unstable as the procedure involves mini-
mizing training and maximizing the test loss. Hence, we
propose an alternate Train\Gen-prune procedure for this
task, where we generate a “linear-rule” version of the gen-
eralization set, where the sentence pairs are generated in
such a way that they are only consistent with the linear-rule.
Note that this can be done by simply taking a past tense sen-
tence in the generalization set and flipping the inflection of
the main-verb based on the agreement with the most recent
noun preceding the verb. Note that similar to Gen-prune,
here also we only use 1% of the total data from the “linear-
rule” generalization set for pruning to avoid the possibility
of overfiting. For simple agreement the procedure remains
same as question formation, with the only difference that the
loss is computed on the main-verb in this case during prun-
ing instead of the auxiliary. Pruning results for the two tasks
are provided in Figures 6 and 7. We find results consistent
with our findings for question formation task here as well,
where the “linear-rule” and “hierarchical-rule” subnetworks
can be found using pruning and continue to co-exist over
the course of training.

18

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

0 100000 200000 300000
0.2

0.4

0.6

0.8

1.0

In
-D

is
tr

ib
ut

io
n

A
cc

ur
ac

y

Lenc =6, Ldec =6

Lenc =2, Ldec =6

Lenc =6, Ldec =2

Lenc =2, Ldec =4

Lenc =4, Ldec =2

0 100000 200000 300000
iteration

0.0

0.2

0.4

0.6

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

(a) Question formation

0 100000 200000 300000

0.00

0.25

0.50

0.75

1.00

In
-D

is
tr

ib
ut

io
n

A
cc

ur
ac

y

Lenc =6, Ldec =6

Lenc =6, Ldec =2

Lenc =4, Ldec =4

Lenc =4, Ldec =2

Lenc =2, Ldec =4

0 100000 200000 300000
iteration

0.00

0.25

0.50

0.75

1.00

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

(b) Tense reinflection

Figure 5: Effect of the depth towards hierarchical generalization in seq2seq models on question formation and tense
inflection tasks. For question formation task, we see that none of the combinations result in high generalization accuracy
and the best combinations that get around 40% generalization accuracy have poor in-distribution performance. For tense
reinflection, only on using 6 encoder and 6 decoder layers (what is reported in the paper), results in high generalization
performance (including seeds that achieve 100% accuracy), but no other combination results in good performance.

0 100000 200000 300000
Training Step

0.0

0.5

1.0

In
-D

is
tr

ib
ut

io
n

A
cc

ur
ac

y

Prune-Type

Full Network

Train-prune

Gen-prune

Train\Gen-prune

Control Group

False

True

(a) In-distribution accuracy for different pruning methods
across training (original question formation training data)

0 100000 200000 300000
Training Step

0.0

0.5

1.0

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

Prune-Type

Full Network

Train-prune

Gen-prune

Train\Gen-prune

Control Group

False

True

(b) Generalization accuracy for different pruning methods
across training (original question formation training data)

Figure 6: Tracking training dynamics w.r.t. to the three pruning methods for tense reinflection task

0 10000 20000 30000 40000 50000
Training Step

0.00

0.25

0.50

0.75

1.00

In
-D

is
tr

ib
ut

io
n

A
cc

ur
ac

y

Prune-Type

Full Network

Train-prune

Gen-prune

Train\Gen-prune

Control Group

False

True

(a) In-distribution accuracy for different pruning methods
across training (original question formation training data)

0 10000 20000 30000 40000 50000
Training Step

0.00

0.25

0.50

0.75

1.00

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

Prune-Type

Full Network

Train-prune

Gen-prune

Train\Gen-prune

Control Group

False

True

(b) Generalization accuracy for different pruning methods
across training (original question formation training data)

Figure 7: Tracking training dynamics w.r.t. to the three pruning methods for simple agreement task

19

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

Figure 8: Performing Train\Gen-prune using different pruning hyperparameters, L0 regularization penalty, pruning
learning rate, and pruning steps. ap test aux denotes the generalization accuracy after pruning. We try 128 combinations
of these parameters using Bayesian optimization and in no case we find a subnetwork obtaining 0% generalization accuracy.
At best case we find subnetworks with 25% accuracy which correspond to a random baseline for this task (since there are 4
choices of the auxiliary verbs).

0 10000 20000 30000 40000 50000
Training Step

0.25

0.50

0.75

1.00

In
-D

is
tr

ib
ut

io
n

A
cc

ur
ac

y

0 10000 20000 30000 40000 50000
Training Step

0.0

0.5

1.0

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

Prune-Type

Full Network

Train-prune

Gen-prune

Train\Gen-prune

Control Group

False

True

Figure 9: Training dynamics of transformer LM trained with question-formation data which is disambiguated with examples
consistent only with the linear rule (by augmenting 10k such examples to the original 100k ambiguous examples). As can be
seen, the full network in this case after a few thousand steps plateaus at 0% generalization performance, which is expected
since only the linear rule is applicable to the entire dataset and hence the model is more likely to learn linear generalization
in this case. Further, even Gen-prune in this case fails to find subnetworks with 100% in-distribution as well as 100%
generalization performance. While further during training, Gen-prune does find subnetworks with higher generalization
performance, the in-distribution performance at these points is very low, meaning the subnetwork isn’t actually consistent
with the hierarchical rule.

Grammar Dtrain−L (120 types) Dtrain−S (12 types)

log-Prior log-Likelihood log-Posterior log-Prior log-Likelihood log-Posterior

CFG∗ -345 -639 -984 -112 -42 -155∗

Reg∗ -393 -658 -1051 -125 -34 -159
Flat -4567 -574 -5141 -281 -30 -311
One-State -58 -2297 -2355 -51 -121 -172

Table 3: Comparing the log-probabilities for each of the 4 grammars after performing BMM on the CFG and Reg grammars
given the training datasets Dtrain−L and Dtrain−S. The super-script ∗ symbol on log-posterior for CFG∗ on Dtrain−S

indicates that while the results show highest posterior for this grammar, after minimization the grammar no longer models
the hierarchical rule and starts to also generate sentence types consistent with the linear rule.

20

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

S

NP S

Det

the

NPP S

N S

walrus

PP

Prep

near

N O

Det

my

N P

orangutans

VP S

V intrans s

sings

Figure 10: Example of production from the CFG with agree-
ment following hierarchical rule

S

det

The

NPPVP S

n s

walrus

PPVP P

prep

near

DNVP P

det

my

NVP P

n p

orangutans

V P

v p intrans

sing

Figure 11: Example of production from the linear grammar
with agreement following order rule

21

Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically

(a) Low diversity data case – Dtrain−S for
hand-constructed grammars.

(b) High diversity data case – Dtrain−L for
hand-constructed grammars.

(c) High diversity data case – Dtrain−L for
BMM minimized grammars.

Figure 12: Sensitivity analysis on varying the geometric distribution parameter p|V | for p(|V |) and pPk
for p(Pk). We plot

the difference between the log-posterior of the CFG and the other grammar with the highest posterior, which is One-State
for Dtrain−S and Reg-L (or Reg-L∗ for BMM minimized case) for Dtrain−L. The values in the heatmaps correspond to
the sign of the difference between the posteriors (1 for positive and -1 for negative). A positive sign implies that the CFG has
the higher posterior than the alternate grammar and negative sign implies otherwise. For each of these combinations, we find
that for Dtrain−S case, consistent with Table 2 the CFG-S always obtain a lower posterior compared to the One-State
grammar. Similarly for the CFG-L and Reg-L, the findings are also consistent across all 49 combinations i.e. CFG-L
always obtain a higher posterior than Reg-L. This holds for the BMM minimized grammars as well, where for Dtrain−L

case CFG-L always obtain a higher posterior than Reg-L. Note that since after minimization on the smaller grammars
(CFG-S and Reg-S), we are left with no grammar obeying the hierarchical rule, we skip sensitivity analysis for that case.

2 4 6 8 12
Transformer Depth

0

2

4

6

8

10

N
L

L

Test Dataset

DHiertest

DLintest

(a) Negative log-likelihood (NLL) on the
DHier

test and DLin
test test datasets.

0 100000 200000 300000
Training Step

0.00

0.25

0.50

0.75

1.00

M
ai

n-
V

er
b

G
en

er
al

iz
at

io
n

A
cc

ur
ac

y

Transformer Depth

2

4

6

8

12

(b) Main-verb generalization accuracy on DHier
test test set.

Figure 13: Do transformer models trained on Dtrain−S ever show hierarchical generalization? We vary the depth of
the transformer-LM (number of decoder layers) and find in no case, transformer exhibiting hierarchical generalization.
Interestingly, for smaller depths, we see the models generalizing according order rule, indicated by lower NLL on DLin

test than
DHier

test and a main-verb accuracy of roughly around 0%/ when transformer depth is 2. For depths greater than 4, we observe
starts to show no preference for either the linear or hierarchical rule.

22

