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ABSTRACT

We study two-player zero-sum imperfect information extensive-form games
(IIEFGs) with linear functional approximation. In particular, we consider lin-
ear IIEFGs in the formulation of partially observable Markov games (POMGs)
with unknown transition and bandit feedback, in which the reward function ad-
mits a linear structure. To tackle the partial observation of this problem, we
propose a linear loss estimator based on the composite features of information
set-action pairs. Through integrating this loss estimator with the online mirror
descent (OMD) framework and delicate analysis of the stability term in the linear
case, we prove the Õ(

√
(d+ 1/ρ)HX2T ) regret upper bound of our algorithm,

where H is the horizon length, X is the cardinality of the information set space, d
is the ambient dimension of the feature mapping, and ρ is the minimum eigenvalue
of the feature covariance matrix generated by the exploration policy. Additionally,
by leveraging the “transitions” over information set-actions, we propose another
algorithm based on the follow-the-regularized-leader (FTRL) framework, attain-
ing a regret bound of Õ(

√
H2dλT ), where λ is a quantity depends on the game

tree structure. Moreover, we prove that our FTRL-based algorithm also achieves
the Õ(

√
HXdT ) regret with a different initialization of parameters. Further, we

provide an Ω(
√
dmin(d,H)T ) regret lower bound for this problem. To the best

of our knowledge, we present the first line of algorithms studying learning IIEFGs
with linear function approximation.

1 INTRODUCTION

In imperfect information games (IIGs), players are limited in their knowledge of the true state of play
when making moves. This opacity allows for intricate strategic maneuvers like bluffing, as players
can hide private information from opponents. In particular, the notion of imperfect-information
extensive-form games (IIEFGs) (Kuhn, 1953) simultaneously enables imperfect information and
sequential play, which thus characterizes a large amount of modeling real-world imperfect informa-
tion games including Poker (Heinrich et al., 2015; Moravčı́k et al., 2017; Brown & Sandholm, 2018),
Bridge (Tian et al., 2020), Scotland Yard (Schmid et al., 2021) and Mahjong (Li et al., 2020; Kurita
& Hoki, 2021; Fu et al., 2022). There has been an extensive line of works on regret minimization or
finding the Nash equilibrium (NE) (Nash Jr, 1950) of IIEFGs. Under perfect recall condition, when
the full knowledge of the game is known, existing works solve this problem by linear programming
(Koller & Megiddo, 1992; Von Stengel, 1996; Koller et al., 1996), first-order optimization methods
(Hoda et al., 2010a; Kroer et al., 2015a; 2018; Munos et al., 2020; Lee et al., 2021; Liu et al., 2022),
and counterfactual regret minimization (Zinkevich et al., 2007; Lanctot et al., 2009; Johanson et al.,
2012; Tammelin, 2014; Schmid et al., 2019; Burch et al., 2019; Liu et al., 2022).

When the full knowledge of the game is not known a priori or only partial knowledge of the game is
revealed, the problem will be much more challenging and is typically tackled through learning from
the random observations accrued during repeated plays of the game. In this line of works, two-player
zero-sum IIEFGs have been addressed via equipping online mirror descent (OMD) or follow-the-
regularized-leader (FTRL) frameworks with loss estimations (Farina et al., 2021; Kozuno et al.,
2021; Bai et al., 2022; Fiegel et al., 2023) and Monte-Carlo counterfactual regret minimization
(Lanctot et al., 2009; Farina et al., 2020; Farina & Sandholm, 2021). Amongst these work, Bai
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et al. (2022) leverage OMD with “balanced exploration policies” to achieve the first Õ(
√
H3XAT )

regret bound, where H is the horizon length, X is the cardinality of the information set space,
A is the cardinality of the action space and T is the number of episodes. Notably, this sample
complexity matches the information-theoretic lower bound on all factors but H up to logarithmic
factors. Subsequently, Fiegel et al. (2023) further improve the bound to Õ(

√
XAT ), with optimal

dependency on all factors up to logarithmic factors, using FTRL with “balanced transitions”.

Though significant advances have emerged in learning two-player zero-sum IIEFGs, the existing
sample complexities of all works depend on X and A. In practice, however, X and/or A might be
very large, particularly in large-scale IIEFGs, which makes the above sample complexities vacuous.
This issue, which is typically called the curse of dimensionality, has also emerged in various prob-
lems beyond IIEFGs. To cope with this issue, a common approach is function approximation, which
approximates the observations on experienced information sets and/or actions with sharing param-
eters and generalizes them onto unseen information sets and/or actions. Indeed, for practitioners in
the area of IIEFGs (e.g., (Moravčı́k et al., 2017; Brown et al., 2019)), function approximation using,
for example, deep neural networks, has made significant progress in solving large-scale IIEFGs. Yet,
the theoretical guarantees of learning algorithms with function approximation for IIEFGs still remain
open and we are still far from understanding them well. On the other hand, in the more amenable
sequential-decision making problems including (single-agent) reinforcement learning (RL) (Ayoub
et al., 2020; Jin et al., 2020; Zhou et al., 2021; He et al., 2023) and Markov games (MGs) with
perfect information (Chen et al., 2022; Ni et al., 2023; Wang et al., 2023; Cui et al., 2023), signifi-
cant advances have emerged in understanding the theoretical guarantees of algorithms with function
approximation. Therefore, the above two facts naturally motivate us to ask the following question:

Does there exist a provably efficient algorithm for IIEFGs in the function approximation setting?

In this paper, we give an affirmative answer to the above question for IIEFGs with linear function
approximation, in the offline setting1. In specific, we consider IIEFGs in the formulation of partially
observable Markov games (POMGs) with unknown transition and unknown rewards while admit-
ting a linear structure over the reward functions. This problem is challenging in that both players are
unaware of the current underlying state since only the current information set rather than the state is
observable, which poses substantial difficulties in exploiting the linear structure of the reward func-
tions, as the current feature corresponding to the current state is unknown. To address this problem
and also establish efficient algorithms for learning IIEFGs with linear function approximation, in
this paper, we make the following contributions:

• To learn the unknown parameter that linearly parameterizes the reward functions, we instead
utilize a kind of composite reward features, weighted by the transitions and opponent’s policy.
Intuitively, composite reward features can be seen as features of corresponding information set-
actions. Equipped with the composite reward features, we further propose the first least-squares
loss estimator for this problem and prove its unbiasedness (see Section 3.1 for details).

• Based on the least-squares loss estimator, we then propose the least-squares online mirror descent
(LSOMD) algorithm that attains the Õ(

√
(d+ 1/ρ)HX2T ) regret bound, where d is the ambient

dimension of the feature mapping and ρ := mint∈[T ],h∈[H] λmin(Qπt,h) with Qπt,h being as the
feature covariance matrix induced by exploration policy πt at step h. Compared to the computa-
tion and regret analysis of OMD in tabular IIEFGs (Kozuno et al., 2021; Bai et al., 2022; Fiegel
et al., 2023) that heavily depends on the sparsity of the importance-weighted loss estimate, how-
ever, our case intrinsically requires new ingredients to solve both aspects, due to the leverage of
the linear structure. The key insight is to solve the computation and also bound the stability term
of LSOMD by the log-partition function logZt

1, which is in turn bounded by the expectation of
the element-wise product of all the random vectors sampled from all the categorical distributions
along paths from the root node (see Section 3.3 for details).

• Via integrating our proposed linear loss estimator, the solution to the optimization prob-
lem based on the log-partition function logZt

1 and the idea of “balanced transition”, which
shares a similar spirit as Bai et al. (2022); Fiegel et al. (2023), we additionally pro-
pose the least-squares follow-the-regularized-leader (LSFTRL) algorithm. Let pν1:h (xh) =

1By “offline” we refer to that the feature vectors of state-action weighted by min-player’s policy νt in
episode t (as well as transitions) are accessible to the max-player before the t-th episode starts. Please see
Section 2 for more discussions.
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Table 1: Comparisons of regret bounds with most related works studying IIEFGs when the full
knowledge of the game is not known a priori.

Algorithm Setting Regret

IXOMD (Kozuno et al., 2021)

Online

Õ(HX
√
AT )

Balanced OMD/CFR (Bai et al., 2022) Õ(
√
H3XAT )

Balanced FTRL (Fiegel et al., 2023) Õ(
√
XAT )

LSOMD (this paper)
Offline1 Õ(

√
(d+ 1/ρ)HX2T ) 2

LSFTRL (this paper) Õ(
√
H2dλT )/Õ(

√
HXdT ) 3

Lower bound (this paper) - Ω(
√
dmin(d,H)T )

1 See Section 2 for the definition of our offline setting.
2 See Assumption 3.2 for the definition of ρ.
3 The λ in the former bound depends on the game tree structure, defined in Assumption 4.1. The latter bound is obtained by

the same algorithm but with a different initiation of parameters.

∑
sh∈xh

p1:h (sh) ν1:h−1 (y (sh−1) , bh−1) be the sequence-form representation of the “transi-
tion” over Xh × A × Xh+1 induced by the environment transition P = {ph}H−1

h=0 and oppo-
nent’s policy ν. Under the assumption that for any t ∈ [T ], h ∈ [H] and x1, x2 ∈ Xh,
pν

t

1:h(x1)/p
⋆
1:h(x2) ≤ λ with p⋆1:h being the sequence-form representation of the chosen “balanced

transition” over Xh × A × Xh+1 in LSFTRL, we prove that the regret upper bound of LSFTRL
is of order Õ(

√
H2dλT ). With a different initialization of “balanced transition” parameter that

is not leveraged in previous works and a refined analysis on the stability term, we also prove that
LSFTRL enjoys a Õ(

√
HXdT ) regret (see Section 4.2 for details).

1.1 RELATED WORK

Partially observable Markov games (POMGs) With perfect information, learning MGs dates
back to the work of Littman & Szepesvári (1996) and has been well-studied (Littman, 2001; Green-
wald & Hall, 2003; Hu & Wellman, 2003; Hansen et al., 2013; Sidford et al., 2018; Lagoudakis &
Parr, 2002; Pérolat et al., 2015; Fan et al., 2020; Jia et al., 2019; Cui & Yang, 2021; Zhang et al.,
2021; Bai & Jin, 2020; Liu et al., 2021; Zhou et al., 2021; Song et al., 2022; Li et al., 2022; Xiong
et al., 2022; Wang et al., 2023; Cui et al., 2023). When only with imperfect information but the
full model of the game (i.e., transitions and rewards) is known, existing works can be categorized
into three lines. The first line uses sequence-form policies to reformulate this problem as a lin-
ear program (Koller & Megiddo, 1992; Von Stengel, 1996; Koller et al., 1996). The second line
considers solving the minimax optimization problem directly by first-order algorithms (Hoda et al.,
2010a; Kroer et al., 2015a; 2018; Munos et al., 2020; Lee et al., 2021; Liu et al., 2022). The last
line of works tackles this problem using counterfactual regret minimization (CFR), which minimizes
counterfactual regrets locally at each information set (Zinkevich et al., 2007; Lanctot et al., 2009;
Johanson et al., 2012; Tammelin, 2014; Schmid et al., 2019; Burch et al., 2019; Liu et al., 2022).
When the model of the game is not known or only partial knowledge of the game is accessible,
the Monte-Carlo CFR algorithm proposed by Lanctot et al. (2009) attains the first ε-NE result in
this problem. Subsequently, this framework is further generalized by Farina et al. (2020); Farina
& Sandholm (2021). Besides, the other line of works considers combining OMD and FTRL with
importance-weighted loss estimator (Farina et al., 2021; Kozuno et al., 2021; Bai et al., 2022; Fiegel
et al., 2023) to tackle this problem. Remarkably, Bai et al. (2022) obtain the Õ(

√
H3XAT ) regret

by using “balanced” dilated KL as the distance metric. With an analogous notion of “balanced”
transition, Fiegel et al. (2023) finally achieve the regret of order Õ(

√
XAT ), matching the lower

bound up to logarithmic factors.

Markov games with Function Approximation To cope with the issue of the curse of dimension-
ality in MGs, there has been growing research interest in learning MGs in the function approximation
setting recently (Xie et al., 2020; Chen et al., 2022; Xiong et al., 2022; Jin et al., 2022; Wang et al.,
2023; Cui et al., 2023; Ni et al., 2023; Zhang et al., 2023). In particular, Xie et al. (2020) assume
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both the transition and the reward functions of the episodic two-player zero-sum MGs are linearly
realizable and achieve an Õ(

√
d3H4T ) regret. More recent works generally fall into two categories.

The first category aims to relax the assumption of linear function approximation by studying MGs
in general function approximation (Xiong et al., 2022; Jin et al., 2022; Ni et al., 2023) and the other
category of works focuses on learning general-sum MGs (Wang et al., 2023; Cui et al., 2023; Ni
et al., 2023; Zhang et al., 2023). However, we note that all these works study perfect information
MGs with function approximation, and (to our knowledge) there are no existing works studying
partially observable MGs with function approximation, which is the main focus of our work.

2 PRELIMINARIES

Following previous works (Kozuno et al., 2021; Bai et al., 2022), in this work, we also study IIEFGs
in the formulation of POMGs, the preliminaries of which are introduced in this section.

Partially Observable Markov Games An episodic, finite-horizon, two-player, zero-sum POMG
is denoted by POMG(S,X ,Y,A,B, H,P, r), in which

• H is the length of the horizon;

• S =
⋃

h∈[H] Sh is a finite state space with cardinality S =
∑H

h=1 Sh and |Sh| = Sh;

• X =
⋃

h∈[H] Xh and Y =
⋃

h∈[H] Yh are the spaces of information sets (short for infosets in the
following paper) for the max-player and min-player, respectively. Specifically, the cardinality X

of X satisfies X :=
∑H

h=1 Xh with |Xh| = Xh and the cardinality Y of Y satisfies Y :=
∑H

h=1 Yh

with |Yh| = Yh;
• A with |A| = A and B with |B| = B are the finite action spaces for the max-player and min-

player, respectively;
• P = {p0(·) ∈ ∆S1

} ∪
{
ph (· | sh, ah, bh) ∈ ∆Sh+1

}
(sh,ah,bh)∈Sh×A×B,h∈[H−1]

are the transi-

tion probability functions2, with p0(·) being the probability distribution of the initial states, and
ph(sh+1|sh, ah, bh) being the probability of transmitting to the next state sh+1 conditioned on
(sh, ah, bh) at step h;

• r = {rh (sh, ah, bh) ∈ [−1, 1]}(sh,ah,bh)∈Sh×A×B are the stochastic reward functions with
r̄h (sh, ah, bh) as means.

Learning Protocol To begin with, we denote by µ := {µh}h∈[H] with µt
h : Xh → ∆A the max-

player’s stochastic policy and by Πmax the set of the policies of the max-player. The min-player’s
stochastic policy ν and the set of the policies of the min-player Πmin are defined similarly. The
game proceeds in T episodes. At the beginning of episode t, the max-player chooses a stochastic
policy µt ∈ Πmax. And similarly, the min-player chooses νt ∈ Πmin. Then, an initial state st1 will
be sampled from p0. At each step h, the max-player, and min-player will observe their infoset xt

h :=
x (sth) and yth := y (sth) respectively, but without observing sth. Conditioned on xt

h, the max-player
will sample and execute an action ath ∼ µt

h (·|xh). Simultaneously, the min-player will take action
bth ∼ νth (·|yh). Subsequently, the game will transit to the next state sth+1, which is drawn from
ph (·|sth, ath, bth). Also, the max-player and min-player will receive rewards rth := rh (s

t
h, a

t
h, b

t
h)

and −rth respectively. The episode will terminate after taking actions atH and btH conditioned on xt
H

and ytH respectively, i.e., the game will terminate in H steps.

Perfect Recall and Tree Structure As in previous works (Kozuno et al., 2021; Bai et al., 2022;
Fiegel et al., 2023), we also suppose that the POMGs satisfy the tree structure and the perfect recall
condition (Kuhn, 1953). In specific, the tree structure indicates that for any h = 2, . . . ,H and
sh ∈ S , there exists a unique trajectory (s1, a1, b1, . . . , sh−1, ah−1, bh−1) leading to sh. Besides,
perfect recall condition holds for each player if for any h = 2, . . . ,H and any infoset xh ∈ Xh of
the max-player, there exists a unique history (x1, a1, . . . , xh−1, ah−1) leading to xh and similarly
for the min-player. In addition, we denote by Ch′(xh, ah) ⊂ Xh′ the descendants of (xh, ah) at
step h′ ≥ h. With slightly abuse of notations, we also let Ch′(xh) := ∪ah∈ACh′(xh, ah) and
C(xh, ah) := Ch+1(xh, ah).

2While in some games, {ph}H−1
h=1 might be time-homogeneous, i.e., {ph}H−1

h=1 does not depend on h, we
retain the dependence on h in our notations as it allows the results to be applicable more broadly without too
much additional efforts in the analysis, following previous works (Bai et al., 2022; Fiegel et al., 2023).
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Sequence-form Representations In addition, for any pair of product policy (µ, ν), the tree struc-
ture and perfect recall condition enable the sequence-form representations of the reaching probabil-
ity of state-action (sh, ah, bh):

Pµ,ν(sh, ah, bh) = p1:h(sh)µ1:h(x(sh), ah)ν1:h(y(sh), bh) , (1)
where p1:h(sh) is the sequence-form transition probability defined as p1:h (sh) =
p0 (s1)

∏
h′≤h−1 ph′ (sh′+1 | sh′ , ah′ , bh′), and µ1:h(·, ·) and ν1:h(·, ·) are the sequence-form poli-

cies satisfying µ1:h (xh, ah) :=
∏h

h′=1 µh′ (ah′ | xh′) and ν1:h (yh, bh) :=
∏h

h′=1 νh′ (bh′ | yh′).
Therefore, we slightly abuse the meanings of µ and ν by viewing µ = {µ1:h}h∈[H] and
ν = {ν1:h}h∈[H] as realization plans (Von Stengel, 1996). Under sequence-form representa-
tions, it is then clear that Πmax is a convex compact subspace of RXA satisfying constraints
µ1:h (xh, ah) ≥ 0 and

∑
ah∈A µ1:h (xh, ah) = µ1:h−1 (xh−1, ah−1) with (xh−1, ah−1) being such

that xh ∈ C(xh−1, ah−1) (understanding µ1:0(x0, a0) = p(∅) = 1).

POMGs with Linear Function Approximation We now introduce the linear realizability as-
sumption over the reward functions of POMGs, detailed as follows.
Assumption 2.1 (Linear Rewards in POMGs). The reward function r in
POMG(S,X ,Y,A,B, H,P, r) is linearly realizable with a known feature mapping
ϕ : S × A × B → Rd if for each h ∈ [H], there exists an unknown parameter vector θh ∈ Rd

such that for any (sh, ah, bh) ∈ Sh ×A× B, it holds that r̄h(sh, ah, bh) = ⟨ϕ(sh, ah, bh),θh⟩. In
addition, we further assume that ∥θh∥2 ≤

√
d, sup(sh,ah,bh)∈Sh×A×B ∥ϕ(sh, ah, bh)∥2 ≤ 1, and

{ϕ(sh, ah, bh)}(sh,ah,bh)∈Sh×A×B spans Rd, for any h ∈ [H].
Similar assumptions imposed over reward functions can also be seen in linear Markov games (Xie
et al., 2020). But, again, as we shall see in Section 3.1, the imperfect information in POMGs brings
significant difficulty in utilizing the linear structure over the reward functions compared with its
fully observable counterpart. We also note that the regularity assumption imposed over ϕ(·, ·, ·) and
θh is only for the purpose of normalization, and the assumption that Rd is spanned by the feature
vectors is for convenience only (Lattimore & Szepesvári, 2020).

Regret Minimization For any product policy (µ, ν), the value function of (µ, ν) is defined as

V µ,ν = E

[
H∑

h=1

rh(sh, ah, bh)
∣∣∣µ, ν,P] , (2)

where the expectation is taken over the randomness of the underlying state transitions and the poli-
cies of both players. In this paper, we consider the learning objective of regret minimization. With-
out loss of generality, we consider the case where the max-player is the learning agent, and the
min-player is the (potentially adversarial) opponent, who might choose her policy νt arbitrarily,
probably based on all the history information (including the knowledge of {µk}t−1

k=1) before episode
t. In specific, the max-player aims to design policies {µt}Tt=1 to minimize the pseudo-regret (regret
for short) compared with the best fixed policy µ† in hindsight, defined as

RT
max = max

µ†∈Πmax

E

[
T∑

t=1

(
V µ†,νt

− V µt,νt
)]

. (3)

In this work, we consider the regret minimization for the max-player in the offline setting, in which
the max-player has access to the feature vectors of state-action weighted by min-player’s policy νt

in episode t (as well as transitions) before the t-th episode starts 3. Note that this is slightly more
general than the “offline” setting (also called self-play) considered by Chen et al. (2022); Xie et al.
(2020), as we neither require the policy νt to be accessible to the max-player nor require both players
to be directly controlled by a central controller.

Additional Notations With sequence-form representations, for any µ ∈ Πmax and a se-
quence of functions f = (fh)h∈[H] with fh : Xh × A → R, we let ⟨µ, f⟩ :=∑

h∈[H]

∑
xh∈Xh,a∈A µ1:h (xh, ah) fh (xh, ah). We denote by F t the σ-algebra generated by

{(skh, akh, bkh, rkh)}h∈[H],k∈[t]. For simplicity, we abbreviate E [· | F t] as Et[·]. The notation Õ(·)
in this paper hides all the logarithmic factors.

3Our second algorithm can work in a more general case where the max-player only receives such features
after the t-th episode ends.
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3 LEAST-SQUARES ONLINE MIRROR DESCENT

In this section, we present our LSOMD algorithm, as well as its theoretical guarantees.

3.1 LINEAR LOSS ESTIMATOR

For a fixed νt, Eq. (1) indicates that the value function V µt,νt

is linear in µt (Kozuno et al., 2021):

V µt,νt

=

H∑
h=1

∑
(xh,ah)∈Xh×A

µt
1:h (xh, ah)×

∑
sh∈xh,bh∈B

p1:h (sh) ν
t
1:h (y (sh) , bh) r̄h (sh, ah, bh) .

Hence, the regret in Eq. (3) can be rewritten as RT
max = maxµ†∈Πmax

∑T
t=1

〈
µt − µ†, ℓt

〉
, where

we define the loss function in round t as

ℓth (xh, ah) := −
∑

sh∈xh,bh∈B

p1:h (sh) ν
t
1:h (y (sh) , bh) r̄h (sh, ah, bh) . (4)

This implies that one can translate the regret minimization problem in Eq. (3) into a linear one.

To utilize the linear structure over the reward function to learn the unknown parameter θh, one
may construct some sort of “linear” loss estimator θ̂h of θh. However, this is more challenging
in our case than it is in the case of linear bandits (Abbasi-Yadkori et al., 2011), linear MDPs (Jin
et al., 2020), and linear perfect-information MGs (Xie et al., 2020), as we do not even know the
underlying state sh and its associated feature vector ϕ(sh, ah, bh), making it impossible to regress
rh(sh, ah, bh) against ϕ(sh, ah, bh). To cope with this issue and build a least-squares loss estimator,
we instead consider using the “feature vector” ϕ(xh, ah) of (xh, ah), which is a composite feature
vector weighted by opponent’s policy ν and transition:

ϕνt

(xh, ah) := −
∑

(sh,bh)∈xh×B

p1:h(sh)ν
t
1:h(y(sh), bh)ϕ(sh, ah, bh) , (5)

which is assumed to be revealed to the max-player after the t-th episode ends in the offline setting
as described in Section 2. Indeed, one can see that ℓth (xh, ah) is linear with ϕνt

(xh, ah) and θh:

ℓth(xh, ah) =

〈
−

∑
(sh,bh)∈xh×B

p1:h(sh)ν
t
1:h(y(sh), bh)ϕ(sh, ah, bh),θh

〉
=
〈
ϕνt

(xh, ah),θh

〉
.

Based on ϕνt

(xh, ah), we further define the least-squares loss estimator θ̂h as

θ̂t
h = Q−1

µt,hϕ
νt

(xh, ah)rh(sh, ah, bh) , (6)

where Qµt,h =
∑

(xh,ah)∈Xh×A µt
1:h (xh, ah)ϕ

νt

(xh, ah)ϕ
νt

(xh, ah)
⊤ is the feature covariance

matrix. Intuitively, this feature covariance matrix shares a similar spirit as its counterpart in the
adversarial linear bandit literature (Lattimore & Szepesvári, 2020). However, we note that µt

1:h(·, ·)
here is not necessarily a distribution over Xh ×A.

This lemma shows θ̂t
h is unbiased, which is critical in our analysis. See Appendix B.1 for its proof.

Lemma 3.1. For any t ∈ [T ] and h ∈ [H], it holds that Et−1
[
θ̂t
h

]
= θh.

3.2 ALGORITHM DESCRIPTION

Our LSOMD algorithm follows the common scheme of OMD framework in that it runs OMD over
Πmax. Particularly, after interacting with the min-player using µt, it computes the loss estimate
ℓ̂th (xh, ah) with θ̂t

h defined in Eq. (6) (Line 6 - Line 10). Subsequently, it updates the policy µ̂t+1

by solving a regularized linear optimization problem:

µ̂t+1 = argmin
µ∈Πmax

η
〈
µ, ℓ̂t

〉
+DΨ(µ∥µ̂t) , (7)
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Algorithm 1 LSOMD (max-player version)
1: Input: Tree-like structure of X ×A ; Learning rate η .
2: for t = 1 to T do
3: for h = 1 to H do
4: Observe infoset xt

h, execute ath ∼ µt
h(·|xt

h) and receive reward rth(s
t
h, a

t
h, b

t
h) .

5: end for
6: for h = 1 to H do
7: Compute Qµt,h =

∑
(xh,ah)∈Xh×A µt

1:h(xh, ah)ϕ
νt

(xh, ah)ϕ
νt

(xh, ah)
⊤ ,

8: Compute θ̂t
h = Q−1

µt,hϕ
νt

(xh, ah)rh(sh, ah, bh) ,
9: end for

10: Construct loss estimate for all (xh, ah) and h ∈ [H]: ℓ̂th(xh, ah) = ⟨ϕνt

(xh, ah), θ̂h⟩ .
11: Receive composite features {ϕνt+1

(x, a)}(x,a)∈X×A .
12: Update policy: µt+1 = (1− γ)µ̂t+1 + γπ with µ̂t+1 computed in Eq. (7).
13: end for

where the potential function Ψ is chosen as Ψ(µ) =∑H
h=1

∑
(xh,ah)∈Xh×A µ1:h(xh, ah) log

(
µ1:h(xh,ah)∑

a′
h
∈A µ1:h(xh,a′

h)

)
. The induced Bregman diver-

gence by Ψ is typically called dilated entropy distance-generating function and is also adopted
by Hoda et al. (2010b); Kroer et al. (2015b); Kozuno et al. (2021). Moreover, we note that the
optimization problem in Eq. (7) can be efficiently solved via a backward update detailed in
Appendix C.1, which turns out to be an extension of it in the tabular case considered by Kozuno
et al. (2021) to our linear case.

However, there is one more caveat. In the analysis of LSOMD, it is required to control the variance
of the loss estimates. To this end, at the end of episode t, after receiving composite feature vectors
{ϕνt+1

(x, a)}(x,a)∈X×A, our LSOMD algorithm will compute µ̂t+1 by solving Eq. (7) and then mix
it with a uniform policy π, i.e., µt+1 = (1−γ)µ̂t+1+γπ and π(a | x) = 1/A for any (x, a) ∈ X×A,
where µt+1 is the policy to be used in the next episode and γ ∈ (0, 1) is the exploration parameter
(Line 12).

3.3 ANALYSIS

Due to leveraging the feature vectors of infoset-actions, we additionally require the following as-
sumption, which essentially guarantees that each direction of the feature space is well explored by
the uniform policy π.

Assumption 3.2. The uniform policy π satisfies λmin(Qπ,h) ≥ ρ > 0, for any h ∈ [H].

The following theorem guarantees the regret upper bound of our LSOMD algorithm. Please see
Appendix D for its proof.

Theorem 3.3. In POMGs with linearly realizable rewards, by setting learning rate η =√
logA

2TH(d+ρ−1) and exploration parameter γ =
√

X2 logA
2HT (1+dρ)ρ , the regret bound of LSOMD in the

offline setting is upper bounded by RT
max ≤ O(

√
(d+ 1/ρ)HTX2 logA).

Remark 3.4. Compared with the regret upper bounds by Kozuno et al. (2021); Bai et al. (2022);
Fiegel et al. (2023), the regret upper bound of our LSOMD does not have dependence on A, im-
proves over Kozuno et al. (2021) by Õ(

√
HA) (omitting the dependence on d) but has an additional

Õ(
√
HX) dependence compared with the minimax optimal result by Fiegel et al. (2023). On the

other hand, as opposed to the high-probability regret guarantees in previous works studying tabu-
lar POMGs (Kozuno et al., 2021; Bai et al., 2022; Fiegel et al., 2023), the regret guarantee of our
LSOMD algorithm only holds in expectation, which currently is not sufficient to be turned into an
PAC algorithm for learning ε-NE. However, we would like to note again that this is the first line of
algorithms that learns POMGs in the linear function approximation setting, with a regret guarantee
independent of A. Also, we believe that it is possible to extend our results to high-probability results
using self-concordant barrier potential functions and an increasing learning rate (Lee et al., 2020),
which we leave as our future study.
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Technique Overview The proof of the regret upper bound of our LSOMD algorithm follows the
common regret decomposition by bounding the penalty term and the stability term respectively.
However, we note that bounding the stability term in our case is more difficult since bounding this
term in the tabular case critically relies on the sparsity of the importance-weighted loss estimates,
i.e., the loss estimates are only non-zero at the experienced infoset-actions {(xt

h, a
t
h)}h∈[H] (Kozuno

et al., 2021). However, this does not apply in our case, where the linear loss estimator is utilized.
To this end, we prove that the stability term in each episode t is (approximately) bounded by the
summation of the log-partition function logZt

1 (x1) for all x1 ∈ X1. We then bound this term by
relating it with the expectation of the inner product between zt and the loss estimate ℓ̂t, in which
zt1:h(xh, ah) is the ah-th value of the element-wise product of the random vectors independently
sampled from categorical distributions specified by µ̂t along the path that leads to xh (cf., Appendix
D.2). Also, the solutions to the update for OMD in previous works (Kozuno et al., 2021; Bai et al.,
2022) are tailored to the tabular case and do not go through our problem, which we addressed by
devising an efficient update for the linear case (cf., Appendix C.1).

4 LEAST-SQUARES FOLLOW-THE-REGULARIZED-LEADER

This section presents the other FTRL-based algorithm, termed as LSFTRL, and its regret guarantees.

4.1 ALGORITHM DESCRIPTION

Our second LSFTRL algorithm uses the same linear loss estimates as LSOMD (Line 7 - Line 12). To
update the policy µt+1 used at episode t+ 1, it computes a linear optimization problem regularized
by potential function {Ψh}h∈[H (Line 14):

µt+1 = argmin
µ∈Πmax

〈
µ, L̂t

〉
+

1

η

H∑
h=1

Ψh (p
⋆
1:h · µ1:h) , (8)

where L̂t =
∑t

k=1 ℓ̂
k is the cumulative loss estimate, p⋆1:h(xh) = p⋆0(x1)

∏h−1
h′=1 p

⋆
h′(xh′+1|xh′ , ah′)

with p⋆h(·|xh, ah) ∈ ∆C(xh,ah) being a kind of “transition probability function” over Xh×A×Xh+1,
and p⋆1:h · µ1:h is defined as [p⋆1:h · µ1:h](xh, ah) = p⋆1:h(xh)µ1:h(xh, ah). Note that such p⋆ is well-
defined due to the perfect recall condition, and p⋆1:h · µ1:h is a probability distribution over the
infoset-action pair Xh × A at step h. We also remark that similar approaches that combine the
FTRL/OMD with p⋆1:h(·) have also been exploited in previous works (e.g., the balanced transition
p⋆ of Bai et al. (2022); Fiegel et al. (2023) and the adversarial transition p⋆,ν

t

of Fiegel et al. (2023)),
but we will choose a different p⋆1:h(·) satisfying

p⋆ = argmax
p̃∈P⋆

min
h∈[H],xh∈Xh

p̃1:h(xh) , (9)

where P⋆ denotes the set of all the valid transitions over infoset-actions. The computation of such p⋆

can be efficiently implemented using backward dynamic programming in O(XA) time, the details
of which are postponed to Appendix E.2.3. As we shall see, the property of such p⋆ will serve as
a key ingredient of the regret upper bound of our LSFTRL algorithm. Besides, LSFTRL chooses
Ψh(wh) =

∑
(xh,ah)∈Xh×A wh(xh, ah) log(wh(xh, ah)) as the negative entropy potential function

(not to be confused with the dilated entropy potential function used in LSOMD). We also note that
the computation of Eq. (8) can also be efficiently solved by reducing the update of LSFTRL to an
OMD-like update, the details of which are deferred to Appendix C.3. The complete pseudo-code
for LSFTRL algorithm is postponed to Appendix C.2.

4.2 ANALYSIS

Let pν1:h (xh) =
∑

sh∈xh
p1:h (sh) ν1:h−1 (y (sh−1) , bh−1), which can be seen as the “probabil-

ity” of reaching xh contributed by environment transition P = {ph}H−1
h=0 and opponent’s policy ν.

Similar to LSOMD, the regret upper bound of LSFTRL also depends on an exploratory assumption,
detailed in the following. Please see Appendix E.1 for additional discussions on this assumption.

Assumption 4.1. For any t ∈ [T ], h ∈ [H] and x1, x2 ∈ Xh, it holds that pν
t

1:h(x1)/p
⋆
1:h(x2) ≤ λ.

We now present the regret upper bound of LSFTRL, with its proof postponed to Appendix E.2.

8
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Theorem 4.2. In POMGs with linearly realizable rewards, by setting learning rate η =
√

2 log(AX)
Tdλ ,

the regret bound of LSFTRL in the offline setting is upper bounded by RT
max ≤ Õ(

√
H2dλT ).

Remark 4.3. LSFTRL obtains the regret guarantee, which eliminates the dependence on both X
and A, in exchange for an exploratory assumption depending on the opponent’s policy νt. Com-
pared with previous results, the regret upper bound in Theorem 4.2 improves over the minimax
optimal regret Õ(

√
XAT ) of Fiegel et al. (2023) by a factor Õ(

√
XA/H2) (omitting the depen-

dence on d and λ). Note that if the max-player does not have access to λ, we can instead set
η =

√
2 log(AX)/(Td) without requiring the knowledge of λ, but at a slight cost of having the re-

gret changing from Õ(
√
H2dλT ) to Õ(λ

√
H2dT ). Besides, in cases where λ is undesirably large

(e.g., λ ≥ X/H), a different choice of p⋆ by setting p⋆1:h(xh) ≡ 1 leads to the following regret
guarantee of LSFTRL.

Theorem 4.4. In POMGs with linearly realizable rewards, by setting learning rate η =
√

2X logA
THd

and p⋆1:h(xh) ≡ 1 for any xh ∈ X and h ∈ [H], the regret bound of LSFTRL in the offline setting is
upper bounded by RT

max ≤ Õ(
√
HXdT ).

Remark 4.5. The proof of Theorem 4.4 is deferred to Appendix E.3. Note that by setting p⋆1:h(xh) ≡
1, p⋆ is no longer a transition function over infoset-actions. Importantly, the regret in Theorem 4.4
improves over the minimax optimal result of Fiegel et al. (2023) by a factor Õ(

√
A/H) (omitting

the dependence on d).

Technique Overview We bound the regret of LSFTRL also by decomposing the regret into the
penalty term and the stability term (Lattimore & Szepesvári, 2020), which is also adopted by Fiegel
et al. (2023). However, we bound the stability term of LSFTRL with particular care such that the
variances of the loss estimates are well-controlled by λ in Assumption 4.1 and d (cf., Appendix E.2).
Moreover, when bounding the penalty of LSFTRLwith p⋆1:h(xh) = 1, we establish a refined analysis
that shaves off an O(

√
A) factor, compared with the direct combination of the original analysis of

Fiegel et al. (2023) and the setting of p⋆1:h(xh) = 1 (cf., Appendix E.3).

4.3 REGRET LOWER BOUND

We also provide a regret lower bound of learning POMGs with linearly realizable rewards in the
following theorem, the proof of which is deferred to Appendix F.
Theorem 4.6. Suppose A ≥ 2, d ≥ 2 and T ≥ 2d2. Then for any algorithm Alg that controls
the max-player, generates and executes policies {µt}t∈[T ], there exists an POMG instance on which
RT

max ≥ Ω(
√
dmin(d,H)T ).

Remark 4.7. We conjecture that the regret lower bound can be further improved to RT
max ≥

Ω(
√
dHT ), and currently our regret upper bounds of LSOMD and LSFTRL with the second ini-

tialization are loose by Õ(X) and Õ(
√
X) factors and regret upper bound of LSFTRL with the

first initialization is loose by an Õ(
√
H) factor (omitting the dependence on ρ and λ). We leave the

investigation into the possible improvements of the upper and lower bounds as our future studies.

5 CONCLUSION

In this work, we make the first step towards provably efficient learning of the two-player, zero-
sum IIEFGs with linear function approximation, in the formulation of POMGs with linearly realiz-
able rewards and unknown transitions. It is proven that, the proposed LSOMD algorithm obtains an
Õ(
√
(d+ 1/ρ)HX2T ) regret, and the LSFTRL algorithm attains regret of orders Õ(

√
H2dλT ) and

Õ(
√
HXdT ). We accomplish this by devising the first least-squares loss estimator for this setting,

along with new ingredients in the analysis for both the LSOMD and LSFTRL algorithms, which may
be of independent interest. Also, we provide an Ω(

√
dmin(d,H)T ) regret lower bound. Besides,

there are also several interesting future directions to be explored. One natural question might be how
to obtain high-probability results in this challenging problem so as to find an ε-NE. The other ques-
tion might be whether it is possible generalize the proposed algorithms and results to multi-player
general-sum POMGs. We hope our results may shed light on better understandings of learning
large-scale POMGs and we leave these extensions as our further studies.
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Tadashi Kozuno, Pierre Ménard, Rémi Munos, and Michal Valko. Learning in two-player zero-
sum partially observable markov games with perfect recall. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pp. 11987–11998, 2021.
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A PROPERTIES OF THE GAME

The lemma below delineates the key property of p⋆ as transition probability functions.

Lemma A.1. For any h ∈ [H], any p⋆ as transition probability function over infoset-actions and
any policy µ ∈ Πmax of the max-player, it holds that∑

(xh,ah)∈Xh×A

p⋆1:h(xh)µ1:h(xh, ah) = 1 .

Proof. By the definition of perfect recall and transition probability functions over infoset-actions,
we have

Pµ,ν(xh, ah) = Pµ,ν(x1, . . . , xh, ah)

= p⋆0(x1)

h−1∏
h′=1

p⋆h′(xh′+1|xh′ , ah′) ·
h∏

h′=1

µh′(ah′ |xh′)

= p⋆(xh)µ1:h(xh, ah) .

The proof is thus concluded by noticing that
∑

(xh,ah)∈Xh×A Pµ,ν(xh, ah) = 1.

B PROPERTIES OF THE LEAST-SQUARES LOSS ESTIMATOR

This section presents the proofs of two key properties of the proposed least-squares loss estimator.

B.1 UNBIASNESS OF THE LOSS ESTIMATOR

Proof of Lemma 3.1.

Et−1
[
θ̂t
h

]
= Eµt,νt

[
θ̂t
h

]
= Eµt,νt

[
Q−1

µt,h · ϕνt

(xh, ah) · rh(sh, ah, bh)
]

= Q−1
µt,h

∑
xh∈Xh

∑
sh∈xh

∑
ah∈A

∑
bh∈B

Pµt,νt

(sh, ah, bh)ϕ
νt

(xh, ah)r̄h(sh, ah, bh)

= Q−1
µt,h

∑
xh∈Xh

∑
ah∈A

µt
1:h(xh, ah)ϕ

νt

(xh, ah)
∑

sh∈xh

∑
bh∈B

p1:h(sh)ν
t
1:h(y(sh), bh)r̄h(sh, ah, bh)

= Q−1
µt,h

∑
xh∈Xh

∑
ah∈A

µt
1:h(xh, ah)ϕ

νt

(xh, ah)
〈
ϕνt

(xh, ah),θh

〉
= Q−1

µt,h

( ∑
xh∈Xh

∑
ah∈A

µt
1:h(xh, ah)ϕ

νt

(xh, ah)ϕ
νt

(xh, ah)
⊤

)
θh

= θh .

B.2 VARIANCE OF THE LOSS ESTIMATOR

Importantly, the following lemma shows that the “variance” of the proposed loss estimator is well
controlled.

Lemma B.1. For any h ∈ [H], it holds that

Et−1

 ∑
(xh,ah)∈Xh×A

µt
1:h(xh, ah)ℓ̂

t
h(xh, ah)

2

 ≤ d . (10)
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Proof.

Et−1

 ∑
(xh,ah)∈Xh×A

µt
1:h(xh, ah)ℓ̂

t
h(xh, ah)

2


=

∑
(xh,ah)∈Xh×A

µt
1:h(xh, ah)ϕ

νt

(xh, ah)
⊤Eµt,νt

[
θ̂t
h

(
θ̂t
h

)⊤]
ϕνt

(xh, ah)

=
∑

(xh,ah)∈Xh×A

µt
1:h(xh, ah)ϕ

νt

(xh, ah)
⊤

· Eµt,νt
[
rh(sh, ah, bh)

2Q−1
µt,hϕ

νt

(xh, ah)ϕ
νt

(xh, ah)
⊤Q−1

µt,h

]
ϕνt

(xh, ah)

≤
∑

(xh,ah)∈Xh×A

µt
1:h(xh, ah)ϕ

νt

(xh, ah)
⊤Eµt,νt

[
Q−1

µt,hϕ
νt

(xh, ah)ϕ
νt

(xh, ah)
⊤Q−1

µt,h

]
ϕνt

(xh, ah)

=
∑

(xh,ah)∈Xh×A

µt
1:h(xh, ah)ϕ

νt

(xh, ah)
⊤Q−1

µt,h

·

 ∑
(xh,ah)∈Xh×A

pν
t

(xh)µ
t
1:h(xh, ah)ϕ

νt

(xh, ah)ϕ
νt

(xh, ah)
⊤

Q−1
µt,hϕ

νt

(xh, ah)

= tr

 ∑
(xh,ah)∈Xh×A

µt
1:h(xh, ah)ϕ

νt

(xh, ah)ϕ
νt

(xh, ah)
⊤Q−1

µt,h


·

 ∑
(xh,ah)∈Xh×A

pν
t

(xh)µ
t
1:h(xh, ah)ϕ

νt

(xh, ah)ϕ
νt

(xh, ah)
⊤Q−1

µt,h


=tr

Id · ∑
(xh,ah)∈Xh×A

pν
t

(xh)µ
t
1:h(xh, ah)ϕ

νt

(xh, ah)ϕ
νt

(xh, ah)
⊤Q−1

µt,h


≤ tr

 ∑
(xh,ah)∈Xh×A

µt
1:h(xh, ah)ϕ

νt

(xh, ah)ϕ
νt

(xh, ah)
⊤Q−1

µt,h


=tr [Id] = d .

C COMPUTATION ISSUE

In this section, we present efficient solutions to the optimization problems of both LSOMD and
LSFTRL.

C.1 EFFICIENT UPDATE FOR LSOMD

To begin with, we first introduce a generalized version of OMD update in Eq. (7), which lever-
ages learning rates adaptive to each infoset. Specifically, given any list of learning rates η :=
(ηh(xh))h∈[H],xh∈X , the potential function is defined as

Ψη(µ) =

H∑
h=1

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

ηh(xh)
log

(
µ1:h(xh, ah)∑

a′
h∈A µ1:h(xh, a′h)

)
.

By the fact that for all positive µ ∈ Πmax, the derivative of Ψη(µ) satisfies

∇xh,ah
Ψη(µ) =

1

ηh(xh)
log(µh(ah|xh)) ,
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one can see that Ψη(µ) induces the dilated distance generating function

DΨη
(µ1∥µ2) =

H∑
h=1

∑
(xh,ah)∈Xh×A

µ1
1:h(xh, ah)

ηh(xh)
log

µ1
h(ah|xh)

µ2
h(ah|xh)

.

The generalized version of OMD update in Eq. (7) is given as follows:

µt+1 = argmin
µ∈Πmax

〈
µ, ℓ̂t

〉
+DΨη (µ∥µt)

= argmin
µ∈Πmax

〈
µ, ℓ̂t

〉
+

H∑
h=1

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

ηh(xh)
log

µh(ah|xh)

µt
h(ah|xh)

. (11)

We remark that η := (ηh(xh))h∈[H],xh∈X also generalizes the of balanced transitions used in Farina
et al. (2020); Bai et al. (2022); Fiegel et al. (2023).

The solution to Eq. (11) is given in the following proposition. Notice that the solution to this opti-
mization problem of previous works (Kozuno et al., 2021; Bai et al., 2022; Fiegel et al., 2023) criti-
cally relies on the sparsity of their importance-weighted loss estimator, which only permits non-zero
loss estimates along the experienced trajectory. However, our solution supports the loss estimator
with non-zero loss estimates for arbitrary infoset-action pairs.

Proposition C.1. The solution to the update rule in Eq. (11) is as followed:

µt+1
h (ah|xh) = µt

h(ah|xh) exp

−ηh(xh)ℓ̂
t
h(xh, ah) +

∑
xh+1∈C(xh,ah)

ηh(xh)

ηh+1(xh+1)
logZt

h+1(xh+1)− logZt
h(xh)

 ,

where

Zt
h(xh) =

∑
ah∈A

µt
h(ah|xh) exp

−ηh(xh)ℓ̂
t
h(xh, ah) +

∑
xh+1∈C(xh,ah)

ηh(xh)

ηh+1(xh+1)
logZt

h+1(xh+1)

 ,

and for notational convenience, we define that ∀xH ∈ XH , it has a unique descendant xH+1 such
that Zt

H+1(xH+1) = 1.

Proof. We first note that〈
µ, ℓ̂t

〉
+DΨη

(µ∥µt)

=

H∑
h=1

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

[
ℓ̂th (xh, ah) +

1

ηh(xh)
log

µh(ah|xh)

µt
h(ah|xh)

]

=

H∑
h=1

∑
xh∈Xh

µ1:h−1(xh)

[〈
µh(·|xh), ℓ̂

t
h (xh, ·)

〉
+

DKL (µh(·|xh)||µt
h(·|xh))

ηh(xh)

]
. (12)

We now prove the proposition through backward induction over h = H, . . . , 1. For h = H,xH ∈
XH , it is easy to see that

µt+1
H (aH |xH) ∝aH

µt
H(aH |xH) exp

{
−ηh(xh)ℓ̂

t
H(xH , aH)

}
= µt

H(aH |xH) exp
{
−ηh(xh)ℓ̂

t
H(xH , aH)− logZt

H(xH)
}
,

where Zt
H(xH) =

∑
aH∈A µt

H(aH |xH) exp
{
−ηh(xH)ℓ̂tH(xH , aH)

}
> 0 is a normalization fac-

tor.
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Suppose the proposition holds from step h + 1 to H and consider the h-th step. Substituting the
induction hypothesis, one can see that Eq. (12) can be expressed as follows:

H∑
h′=1

∑
(xh′ ,ah′ )∈Xh′×A

µ1:h′(xh′ , ah′)

[
ℓ̂th′ (xh′ , ah′) +

1

ηh′(xh′)
log

µh′(ah′ |xh′)

µt
h′(ah′ |xh′)

]

=

H∑
h′=1

∑
xh′∈Xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ℓ̂th′ (xh′ , ·)

〉
+

DKL (µh′(·|xh′)||µt
h′(·|xh′))

ηh′(xh′)

]

=

h∑
h′=1

∑
xh′∈Xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ℓ̂th′ (xh′ , ·)

〉
+

DKL (µh′(·|xh′)||µt
h′(·|xh′))

ηh′(xh′)

]

+

H∑
h′=h+1

 ∑
xh′+1∈Xh′+1

µ1:h′(xh′+1)

ηh′+1(xh′+1)
logZt

h′+1(xh′+1)−
∑

xh′∈Xh′

µ1:h′−1(xh′)

ηh′(xh′)
logZt

h′(xh′)


=

h∑
h′=1

∑
xh′∈Xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ℓ̂th′ (xh′ , ·)

〉
+

DKL (µh′(·|xh′)||µt
h′(·|xh′))

ηh′(xh′)

]

−
∑

xh+1∈Xh+1

µ1:h(xh+1)

ηh+1(xh+1)
logZt

h+1(xh+1)

=

h−1∑
h′=1

∑
xh′∈Xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ℓ̂th′ (xh′ , ·)

〉
+

DKL (µh′(·|xh′)||µt
h′(·|xh′))

ηh′(xh′)

]

+
∑

xh∈Xh

µ1:h−1(xh)


〈
µh(·|xh), ℓ̂

t
h (xh, ·)−

∑
xh+1∈C(xh,·)

logZt
h+1(xh+1)

ηh+1(xh+1)

〉
+

DKL (µh(·|xh)||µt
h(·|xh))

ηh(xh)︸ ︷︷ ︸
♡

 .

By optimizing (♡), one can derive that

µt+1
h (ah|xh) = µt

h(ah|xh) exp

−ηh(xh)ℓ̂
t
h(xh, ah) +

∑
xh+1∈C(xh,ah)

ηh(xh)

ηh+1(xh+1)
logZt

h+1(xh+1)− logZt
h(xh)

 ,

Zt
h(xh) =

∑
ah∈A

µt
h(ah|xh) exp

−ηh(xh)ℓ̂
t
h(xh, ah) +

∑
xh+1∈C(xh,ah)

ηh(xh)

ηh+1(xh+1)
logZt

h+1(xh+1)

 ,

which thus concludes the proof.

Proposition C.1 immediately implies the efficient update procedure for LSOMD, detailed
in Algorithm 2, by setting ηh(xh) ≡ η for all xh ∈ X in Proposition C.1. In
what follows, for notational convenience, we denote J t

h(xh, ah) = −ηh(xh)ℓ̂
t
h(xh, ah) +∑

xh+1∈C(xh,ah)
ηh(xh)

ηh+1(xh+1)
logZt

h+1(xh+1) as the surrogate loss.

C.2 LSFTRL ALGORITHM

C.3 EFFICIENT UPDATE FOR LSFTRL

To solve the update of LSFTRL, we follow the same idea as Fiegel et al. (2023) that translating the
update of FTRL into the update of OMD-like update. In specific, the Proposition F.2 of Fiegel et al.
(2023) shows that the update of Eq. (8) is equivalent to the solution to the following optimization
problem:

µt = argmin
µ∈Πmax

〈
µ, L̂t

〉
+Dη⋆ (µ, µ⋆) , (13)
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Algorithm 2 Update-of-LSOMD
1: Input: Tree-like structure of X × A , µ̂t given by update Eq. (7) ; fixed learning rates η ; the

loss estimates
{
ℓ̂th(xh, ah)

}
(xh,ah)∈X×A

.

2: Initialization: For all xH in XH , initialize Zt(xH+1) = 1 .
3: for h = H to 1 do
4: for xh in Xh do
5: Compute J t

h(xh, ah) = −ηℓ̂th(xh, ah) +
∑

xh+1∈C(xh,ah)
logZt

h+1(xh+1) ,
6: Compute Zt

h(xh) =
∑

ah∈A µ̂t
h(ah|xh) exp (J

t
h(xh, ah)) ,

7: for ah in A do
8: Compute µ̂t+1

h (ah|xh) = µ̂t
h(ah|xh) exp (J

t
h(xh, ah)− logZt

h(xh)) .
9: end for

10: end for
11: end for

Algorithm 3 LSFTRL (max-player version)
1: Input: Tree-like structure of X ×A ; Learning rates η ; p⋆.
2: for t = 1 to T do
3: for h = 1 to H do
4: Observe infoset xt

h .
5: Execute ath ∼ µt

h(·|xt
h) and receive reward rth(s

t
h, a

t
h, b

t
h) .

6: end for
7: Receive composite features

{
ϕνt

(x, a)
}
(x,a)∈X×A

.

8: for h = 1 to H do
9: Compute Qµt,h =

∑
(xh,ah)∈Xh×A µt

1:h(xh, ah)ϕ
νt

(xh, ah)ϕ
νt

(xh, ah)
⊤ ,

10: Compute θ̂t
h = Q−1

µt,hϕ
νt

(xh, ah)rh(sh, ah, bh) ,
11: end for
12: Construct loss estimate for all (xh, ah) and h ∈ [H]: ℓ̂th(xh, ah) =

〈
ϕνt

(xh, ah), θ̂h

〉
.

13: Compute cumulative loss estimate at episode t: L̂t = L̂t−1 + ℓ̂t .
14: Compute update (8) using Update-of-LSFTRL.
15: end for

where η⋆ := (η⋆h(xh))h,xh
is a learning rate adaptive to each infoset, µ⋆ is a base policy and we

define Dη⋆

(
µ1, µ0

)
:=
∑H

h=1

∑
(xh,ah)∈A(Xh)

µ1
1:h(xh,ah)
η⋆
h(xh)

log
µ1
h(ah|xh)

µ0
h(ah|xh)

.

Therefore, to solve Eq. (8), for all xh ∈ X , we first set the adaptive learning rate η⋆ as

η⋆h(xh) =
η

(H − h+ 1)p⋆1:h(xh)
, (14)

and set the base policy µ⋆ as

µ⋆ = argmin
µ⋆∈Πmax

H∑
h=1

Ψh (p
⋆
1:h · µ⋆

1:h) , (15)

which can be computed efficiently via backward dynamic programming in O(XA) time. Then,
combined with the efficient update procedure of LSOMD in Algorithm 2, the solution to the update of
LSFTRL can be obtained by substituting µt with µ⋆, the details of which are presented in Algorithm
4 for completeness.

D PROOF OF REGRET GUARANTEE OF LSOMD

In this section, we present the proof of the regret guarantee of LSOMD.
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Algorithm 4 Update-of-LSFTRL
1: Input: Tree-like structure of X ×A ; fixed learning rates η ; transition probability function p⋆ ;

cumulative loss estimates
{
L̂t
h(xh, ah)

}
(xh,ah)∈X×A

.

2: Initialization: For all xH in XH , initialize Zt(xH+1) = 1 ; Set adaptive learning rates η⋆

according to Eq. (14) ; Set base policy µ⋆ according to Eq. (15) .
3: for h = H to 1 do
4: for xh in Xh do
5: Compute J t

h(xh, ah) = −η⋆h(xh)L̂
t(xh, ah)+

∑
xh+1∈C(xh,ah)

η⋆
h(xh)

η⋆
h+1(xh+1)

logZt
h+1(xh+1) ,

6: Compute Zt
h(xh) =

∑
ah∈A µ⋆

h(ah|xh) exp (J
t
h(xh, ah)) ,

7: for ah in A do
8: Compute µt+1

h (ah|xh) = µ⋆
h(ah|xh) exp (J

t
h(xh, ah)− logZt

h(xh)) .
9: end for

10: end for
11: end for

Proof of Theorem 3.3. First note that〈
µ̂t − µ†, ℓ̂t

〉
= Dη(µ̂

t∥µ̂t+1)−Dη(µ̂
t∥µ̂t)− (Dη(µ

†∥µ̂t+1)−Dη(µ
†∥µ̂t))

= Dη(µ
†∥µ̂t)−Dη(µ

†∥µ̂t+1) +Dη(µ̂
t∥µ̂t+1) .

Taking summation of the above display over t and telescoping the sum, we have

T∑
t=1

〈
µ̂t − µ†, ℓ̂t

〉
≤ Dη(µ

†∥µ̂1)︸ ︷︷ ︸
PENALTY

+

T∑
t=1

Dη(µ̂
t∥µ̂t+1)︸ ︷︷ ︸

STABILITY

. (16)

On the other hand, by the unbiasedness of ℓ̂t and the tower rule, it holds that

E
[〈
µt − µ†, ℓt

〉]
= E

[
Et−1

[〈
µt − µ†, ℓ̂t

〉]]
= E

[〈
µt − µ†, ℓ̂t

〉]
, (17)

where recall that µt = (1− γ)µ̂t + γπt.

Combining Eq. (16) and Eq. (17), along with the definition of regret in Eq. (3), one can deduce that

RT
max ≤ max

µ†∈Πmax

(1− γ)E

Dη(µ
†∥µ̂1)︸ ︷︷ ︸

PENALTY

+

T∑
t=1

Dη(µ̂
t∥µ̂t+1)︸ ︷︷ ︸

STABILITY

+ 2γHT

≤ (1− γ)

(
X logA

η
+ ηTXHd

)
+ 2γHT

≤
(
X logA

η
+ ηTXHd

)
+ 2ηHXTdα−1

=
X logA

η
+ 2ηTXHd(1 + α−1) ,

where the second inequality comes from Lemma D.1 and D.5.

Finally, the proof is concluded by substituting η =
√

logA
2THd(1+α−1) and γ =

√
Xd logAα−1

2HT (1+α−1) .

In our LSOMD, we set the learning rate to be constant, i.e., ηh(xh) ≡ η for all xh ∈ X .
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D.1 BOUNDING THE PENALTY TERM

Lemma D.1. The PENALTY term is bounded by

PENALTY ≤ X logA

η
.

Proof.

Dη(µ
†∥µ̂1) =

H∑
h=1

∑
(xh,ah)∈Xh×A

µ†
1:h(xh, ah)

η
log

µ†
h(ah|xh)

µ̂1
h(ah|xh)

≤
H∑

h=1

∑
(xh,ah)∈Xh×A

µ†
1:h(xh, ah)

η
log µ̂1

h(ah|xh)

= logA

H∑
h=1

∑
(xh,ah)∈Xh×A

µ†
1:h(xh, ah)

η

≤ X logA

η
.

D.2 BOUNDING THE STABILITY TERM

To begin with, we first introduce the following lemma, which is a generalized version of Lemma D.7
by Bai et al. (2022). Intuitively, this lemma states that the one-step stability term can be bounded by
the inner product between µ̂ and ℓ̂t as well as the summation of log-partition function logZt

1.

Lemma D.2. For given η and any µ ∈ Πmax, we have

Dη(µ∥µ̂t+1)−Dη(µ∥µ̂t) =
〈
µ, ℓ̂t

〉
+
∑

x1∈X1

1

η1(x1)
logZt

1(x1) . (18)

Proof.

Dη(µ∥µ̂t+1)−Dη(µ∥µ̂t)

=

H∑
h=1

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

ηh(xh)
log

µ̂t
h(ah|xh)

µ̂t+1
h (ah|xh)

=

H∑
h=1

∑
(xh,ah)∈Xh×A

µt
1:h(xh, ah)

ηh(xh)

ηh(xh)ℓ̂
t
h(xh, ah)−

∑
xh+1∈C(xh,ah)

ηh(xh)

ηh+1(xh+1)
logZt

h+1(xh+1)


+

H∑
h=1

∑
xh∈Xh

µ1:h−1(xh)

ηh(xh)
logZt

h(xh)

=
〈
µ, ℓ̂t

〉
+

H∑
h=1

− ∑
xh+1∈Xh+1

µ1:h(xh+1)

ηh+1(xh+1)
logZt

h+1(xh+1) +
∑

xh∈Xh

µ1:h−1(xh)

ηh(xh)
logZt

h(xh)


=
〈
µ, ℓ̂t

〉
+
∑

x1∈X1

1

η1(x1)
logZt

1(x1) .
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From Lemma D.2 and setting ηh(xh) ≡ η, we have

Dη(µ̂
t∥µ̂t+1) =

〈
µ̂t, ℓ̂t

〉
+
∑

x1∈X1

1

η1(x1)
logZt

1(x1)

=
〈
µ̂t, ℓ̂t

〉
+

1

η

∑
x1∈X1

logZt
1(x1) . (19)

Hence, to bound the STABILITY term, it suffices to bound the log-partition function logZt
1. To this

end, roughly speaking, we prove that the summation of all logZt
1(x1) for x1 ∈ X1 can be bounded

by the product between (a) the value of all the reachable (xh, ah) in the element-wise product of the
random vectors independently sampled from the categorical distributions specified by µ̂t(·|xh); and
(b) the loss estimate at (xh, ah). Compared with the analysis tailored to the importance-weighted
loss estimate in previous works (Kozuno et al., 2021; Fiegel et al., 2023), where bounding similar
log-partition function logZt

1(x1) is easier and can be done by only considering the random variables
sampled from the Bernoulli distributions along the experienced trajectory, our analysis for least-
squares loss estimate is more challenging and also generalizes it in previous works.

D.2.1 BOUNDING THE LOG-PARTITION FUNCTION logZt
h

We first define zt(xh, ·) ∈ {0, 1}A, which is a random vector independently sampled from the
categorical distribution parameterized by µ̂t

h(·|xh), by

zt(xh, ·) ∼ Cat(µ̂t
h(·|xh)) ,

such that P (zt(xh, ah) = 1) = µ̂t
h(ah|xh).

Notice that

E

[
h∏

h′=1

zt(xh′ , ah′)

]
= µ̂t

1:h(xh, ah) .

We also let

zt
h:h′(xh′ , ah′) =

h′∏
h′′=h

zt(xh′′ , ah′′) ,

where {(xh′′ , ah′′)}h′′∈[h,h′] is the unique path from (xh, ah) to (xh′ , ah′) (under perfect recall
condition). Besides, we denote the product of Zt

h+1(xh+1) for all xh+1 ∈ C(xh, ah) as

Ξt(xh, ah) =
∏

xh+1∈C(xh,ah)

Zt
h+1(xh+1) ,

so that
1

η

∑
x1∈X1

logZt
1(x1) =

1

η
log Ξt(∅) .

Then, the following lemma shows that, Ξt
h(xh, ah) is equivalent to the expectation of the exponen-

tiation of the summation of zt
h+1:h′(xh′ , ah′)ℓ̂th′(xh′ , ah′), where (xh′ , ah′) are all the reachable

infoset-action pairs from (xh, ah).
Lemma D.3. For any (xh, ah) ∈ Xh ×A and h ∈ [H − 1], we have

Ξt
h(xh, ah) = Ezt

exp
−η

H∑
h′=h+1

∑
(xh′ ,ah′ )∈Ch′ (xh,ah)

zt
h+1:h′(xh′ , ah′)ℓ̂th′(xh′ , ah′)

 .

(20)

As an immediate corollary of Lemma D.3, we have

Ξt(∅) = Ezt

exp
−η

∑
(xh,ah)∈Xh×A

zt
1:h(xh, ah)ℓ̂

t
h(xh, ah)

 .
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Proof. We prove this by backward induction. For h = H − 1, we have

Ξt
H−1(xH−1, aH−1) =

∏
xH∈C(xH−1,aH−1)

∑
aH∈A

µ̂t
H(aH |xH) exp(−ηℓ̂tH(xH , aH))

= Ezt

[
exp

(
−ηzt

H:H(xH , aH)ℓ̂tH(xH , aH)
)]

.

Suppose Eq. (20) holds from h′ = h to H . Then for h′ = h− 1, one can deduce that

Ξt
h−1(xh−1, ah−1)

=
∏

xh∈C(xh−1,ah−1)

∑
ah∈A

µ̂t
h(ah|xh) exp

(
−ηℓ̂th(xh, ah)

)
Ξt
h(xh, ah)

=
∏

xh∈C(xh−1,ah−1)

∑
ah∈A

µ̂t
h(ah|xh) exp

(
−ηℓ̂th(xh, ah)

)

· Ezt

exp
−η

H∑
h′=h+1

∑
(xh′ ,ah′ )∈Ch′ (xh,ah)

zt
h+1:h′(xh′ , ah′)ℓ̂th′(xh′ , ah′)


=

∏
xh∈C(xh−1,ah−1)

Ezt,ah

[
exp

(
−η

H∑
h′=h+1

zt(xh, ah)

·

 ∑
xh′ ,ah′∈Ch′ (xh,ah)

zt
h+1:h′(xh′ , ah′)ℓ̂th′(xh′ , ah′) + ℓ̂th(xh, ah)


=Ezt

exp
−η

H∑
h′=h

∑
xh′ ,ah′∈Ch′ (xh−1,ah−1)

zt
h:h′(xh′ , ah′)ℓ̂th′(xh′ , ah′)

 ,

which completes the proof.

D.2.2 BOUNDING THE VARIANCE OF THE LOSS ESTIMATE

The following lemma bounds the variance of the loss estimate.

Lemma D.4. For and h ∈ [H] and any (xh, ah) ∈ Xh ×A, it holds that |ℓ̂th(xh, ah)| ≤ 1
γρ .

Proof. First notice that for any νt and any (xh, ah) ∈ Xh ×A, we have∥∥∥ϕνt

(xh, ah)
∥∥∥
2

=

∥∥∥∥∥∥−
∑

(sh,bh)∈xh×B

p1:h(sh)ν
t
1:h(y(sh), bh)ϕ(sh, ah, bh)

∥∥∥∥∥∥
2

≤
∑

(sh,bh)∈xh×B

p1:h(sh)ν
t
1:h(y(sh), bh) ∥ϕ(sh, ah, bh)∥2

(i)

≤
∑

(sh,bh)∈xh×B

p1:h(sh)ν
t
1:h(y(sh), bh)

(ii)

≤ 1 , (21)

where (i) is due to Assumption 2.1; and (ii) follows from the proof of Lemma 2 by Kozuno et al.
(2021).
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Recall that µt = (1− γ)µ̂t + γπ. Let Φt
h :=

{
ϕνt

(xh, ah)
}
(xh,ah)∈Xh×A

. It is then clear that

|ℓ̂th(xh, ah)| = |ϕνt

(xh, ah)
⊤Q−1

µt,hϕtrh(sh, ah, bh)|
(i)

≤ |ϕνt

(xh, ah)
⊤Q−1

µt,hϕt|
(ii)

≤ ∥ϕνt

(xh, ah)∥Q−1

µt,h

· sup
ϕ∈Φh

∥ϕ∥Q−1

µt,h

≤ sup
ϕ∈Φt

h

∥ϕ∥2
Q−1

µt,h

≤ sup
ϕ∈Φt

h

∥ϕ∥2(γQπt,h)
−1

≤ sup
ϕ∈Φt

h

∥ϕ∥2(γρI)−1

(iii)

≤ 1

γρ
,

where (i) is because |rh(sh, ah, bh)| ≤ 1; (ii) is by the Cauchy-Schwarz inequality; and (iii) comes
from Eq. (21).

D.2.3 FINAL PROOF THE STABILITY TERM

We are now ready to bound the STABILITY term.

Lemma D.5. The STABILITY term is bounded by

STABILITY ≤ ηTXHd .
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Proof. Plugging Eq. (20) into Eq. (19), we have〈
µ̂t, ℓ̂t

〉
+

1

η

∑
x1∈X1

logZt
1(x1)

=
〈
µ̂t, ℓ̂t

〉
+

1

η
log Ξt(∅)

=
〈
µ̂t, ℓ̂t

〉
+

1

η
logEzt

exp
− η

∑
(xh,ah)∈Xh×A

zt
1:h(xh, ah)ℓ̂

t
h(xh, ah)︸ ︷︷ ︸

♠




(i)

≤
〈
µ̂t, ℓ̂t

〉
+

1

η
logEzt

1− η
∑

(xh,ah)∈Xh×A

zt
1:h(xh, ah)ℓ̂

t
h(xh, ah) +

η
∑

(xh,ah)∈Xh×A

zt
1:h(xh, ah)ℓ̂

t
h(xh, ah)

2


(ii)

≤
〈
µ̂t, ℓ̂t

〉
− 1

η
Ezt

η ∑
(xh,ah)∈Xh×A

zt
1:h(xh, ah)ℓ̂

t
h(xh, ah)


+

1

η
Ezt


η

∑
(xh,ah)∈Xh×A

zt
1:h(xh, ah)ℓ̂

t
h(xh, ah)

2


=
〈
µ̂t, ℓ̂t

〉
−

∑
(xh,ah)∈Xh×A

Ezt

[
zt

1:h(xh, ah)ℓ̂
t
h(xh, ah)

]

+
1

η
Ezt


η

∑
(xh,ah)∈Xh×A

zt
1:h(xh, ah)ℓ̂

t
h(xh, ah)

2


=
1

η
Ezt


η

∑
(xh,ah)∈Xh×A

zt
1:h(xh, ah)ℓ̂

t
h(xh, ah)

2


(iii)

≤ η

 ∑
(xh,ah)∈Xh×A

µ̂t
1:h(xh, ah)

 ∑
(xh,ah)∈Xh×A

µ̂t
1:h(xh, ah)ℓ̂

t
h(xh, ah)

2


≤ ηX

 ∑
(xh,ah)∈Xh×A

µ̂t
1:h(xh, ah)ℓ̂

t
h(xh, ah)

2

 , (22)

where |♠| ≤ 1 follows from setting γ ≥ ηXρ−1 and Lemma D.4 in conjunction with Assump-
tion 3.2; (i) is from exp(−x) ≤ 1 − x + x2 for x ≥ −1; (ii) comes from ∀x > 0, log x ≤ x − 1;
(iii) is by the Cauchy–Schwarz inequality.

The proof is then concluded by taking summation of Eq. (22) over t and using Lemma B.1.

E PROOF OF REGRET GUARANTEES OF LSFTRL

To start with, notice that Πmax is an affine subspace of RXA
≥0 satisfying X linear constraints: for any

xh ∈ X , ∑
ah∈A

µ1:h(xh, ah) = µ1:h−1(xh−1, ah−1) ,

where (xh−1, ah−1) is the unique predecessor of xh under perfect recall condition. Thus Πmax can
be decomposed as Πmax = (F + u) ∩ RXA

≥0 where F is a linear subspace and u ∈ Πmax.
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With slight abuse of notations, we further denote Ψ(µ) = 1
η

∑H
h=1 Ψh (p

⋆
1:h · µ1:h) and define its

convex conjugate function Ψ⋆ on RXA
≥0 :

Ψ⋆(y) := sup
x∈RAX

≥0

⟨x,y⟩ −Ψ(x) . (23)

Also, we denote DΨ⋆(x,y) = Ψ⋆(x) − Ψ⋆(y) − ⟨∇Ψ⋆(y),x− y⟩ as the Bregman divergence
induced by Ψ⋆. The following lemma shows the canonical regret decomposition of FTRL algorithm
(Zimmert & Seldin, 2019; Lattimore & Szepesvári, 2020).

Lemma E.1. The regret of LSFTRL can be decomposed as

RT
max ≤ max

µ∈Πmax

[−Ψ(µ)]︸ ︷︷ ︸
PENALTY

+E

[
T∑

t=1

DΨ∗(∇Ψ(µt)− ℓ̂t,∇Ψ(µt))

]
︸ ︷︷ ︸

STABILITY

.

Proof. Let µ† ∈ Πmax be some realization plan. For all t ∈ [T ], the instantaneous regret against µ†

at step t can be decomposed into

〈
µt − µ†, ℓ̂t

〉
=
[
Φ
(
−L̂t−1

)
− Φ

(
−L̂t

)
−
〈
µ†, ℓ̂t

〉]
+
[〈

µt, ℓ̂t
〉
+Φ

(
−L̂t

)
− Φ

(
−L̂t−1

)]
,

where Φ(y) := supµ∈Πmax
⟨µ,y⟩ −Ψ(µ).

Taking summation of the above display over t yields

T∑
t=1

[
Φ
(
−L̂t−1

)
− Φ

(
−L̂t

)
−
〈
µ†, ℓ̂t

〉]
=Φ(0)− Φ

(
−L̂t

)
−
〈
µ†, L̂t

〉
(i)

≤ max
µ∈Πmax

[−Ψ(µ)] + Ψ
(
µ†)

(ii)

≤ max
µ∈Πmax

[−Ψ(µ)] ,

where (i) comes from µ† ∈ Πmax; and (ii) is due to the fact that Ψ is a non-positive function.

On the other hand, due to that Πmax = (F + u) ∩ RXA
≥0 , we have

〈
µt, ℓ̂t

〉
+Φ

(
−L̂t

)
− Φ

(
−L̂t−1

)
(i)
=
〈
µt, ℓ̂t

〉
+Φ

(
∇Ψ

(
µt
)
+ gt − ℓ̂t

)
− Φ

(
∇Ψ

(
µt
)
+ gt

)
(ii)
=
〈
µt, ℓ̂t

〉
+Φ

(
∇Ψ

(
µt
)
− ℓ̂t

)
− Φ

(
∇Ψ

(
µt
))

(iii)

≤
〈
µt, ℓ̂t

〉
+Ψ∗

(
∇Ψ

(
µt
)
− ℓ̂t

)
−Ψ∗ (∇Ψ

(
µt
))

(iv)
= DΨ∗

(
∇Ψ

(
µt
)
− ℓ̂t,∇Ψ

(
µt
))

,
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where (i) follows from L̂t−1+∇Ψ(µt)+gt = 0 for gt ∈ F⊥; (ii) is due to the fact that y ∈ RXA,

Φ
(
y + gt

)
= sup

µ∈(F+u)∩RXA
≥0

〈
µ,y + gt

〉
−Ψ(µ)

=

(
sup

µ∈F∩RXA
≥0

〈
µ,y + gt

〉
−Ψ(µ)

)
+
〈
u,y + gt

〉
=

(
sup

µ∈F∩RXA
≥0

⟨µ,y⟩ −Ψ(µ)

)
+
〈
u,y + gt

〉
=

(
sup

µ∈(F+u)∩RXA
≥0

⟨µ,y⟩ −Ψ(µ)

)
+
〈
u, gt

〉
= Φ(y) +

〈
u, gt

〉
;

(iii) is by the observation that ∀y ∈ RXA,Φ(y) ≤ Ψ∗(y) and µt = argmaxx∈RXA
≥0

⟨x,∇Ψ(µt)⟩−
Ψ(x) which implies that Φ (∇Ψ(µt)) = Ψ∗ (∇Ψ(µt)); and (iv) comes from the definition of
DΨ⋆(x,y).

The following lemma shows that the STABILITY term can be bounded by the variance of the loss
estimate, which is the expected version of Lemma E.6 in Fiegel et al. (2023). We also present the
proof here for completeness.

Lemma E.2. Let vt = DΨ⋆(∇Ψ(µt)− ℓ̂t,∇Ψ(µt)) for all t ∈ [T ]. Then, it holds that

STABILITY = E

[
T∑

t=1

vt

]
.

Furthermore, we have

E

[
T∑

t=1

vt

]
≤ E

η
2

T∑
t=1

H∑
h=1

∑
(xh,ah)∈Xh×A

1

p∗1:h(xh)
Eµt,νt

[
µt
1:h(xh, ah)ℓ̂

t(xh, ah)
2
] .

Proof. To begin with, for all t ∈ [T ], we define

ft(u) = DΨ⋆

(
∇Ψ

(
µt
)
− uℓ̂t,∇Ψ

(
µt
))

,

for u ∈ [0, 1], such that ft(0) = 0 and ft(1) = vt. Also notice that dom(Ψ⋆) = RXA
≥0 and both Ψ

and Ψ⋆ can be decomposed according to each infoset-action pair (xh, ah). Specifically, we have

Ψ(µ) =

H∑
h=1

∑
(xh,ah)∈Xh×A

Ψxh,ah
(µ1:h (xh, ah)) ,

and

Ψ⋆(y) =

H∑
h=1

∑
(xh,ah)∈Xh×A

Ψ⋆
xh,ah

(y (xh, ah)) .

Then the derivative of ft can be expressed as

f ′
t(u) =

H∑
h=1

∑
(xh,ah)∈Xh×A

ℓ̂th (xh, ah)
[
µt
1:h (xh, ah)−∇Ψ⋆

xh,ah

(
∇Ψxh,ah

(
µt
1:h (xh, ah)

)
− uℓ̂th (xh, ah)

)]
.

(24)
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Moreover, recall that we choose negative entropy as the potential function. Therefore, it holds that

∇Ψxh,ah
(µ1:h (xh, ah)) =

p⋆1:h (xh)

η
[log (p⋆1:h (xh)µ1:h (xh, ah)) + 1] ,

∇Ψ⋆
xh,ah

(y (xh, ah)) = exp

[
η

p⋆1:h (xh)
(y (xh, ah))− 1− log (p⋆1:h (xh))

]
,

and

∇Ψ⋆
xh,ah

(
∇Ψxh,ah

(
µt
1:h (xh, ah)

)
− uℓ̂th (xh, ah)

)
= exp

[
η

p⋆1:h (xh)

(
p⋆1:h (xh)

η
log
(
p⋆1:h (xh)µ

t
1:h (xh, ah)

)
− uℓ̂th (xh, ah)

)
− log (p⋆1:h (xh))

]
= µt

1:h (xh, ah) exp

[
−u

ηℓ̂th (xh, ah)

p⋆1:h (xh)

]

≥ µt
1:h (xh, ah)

[
1− u

ηℓ̂th (xh, ah)

p⋆1:h (xh)

]
, (25)

where the last inequality follows from e−x ≥ 1− x for all x ∈ R.

Substituting Eq. (25) into Eq. (24) shows that

f ′
t(u) ≤ u

H∑
h=1

∑
(xh,ah)∈Xh×A

ℓ̂th (xh, ah)µ
t
1:h (xh, ah)

ηℓ̂th (xh, ah)

p⋆1:h (xh)
.

The proof is concluded by integrating the above display from 0 to 1 over u and taking the expectation
on both sides.

E.1 ADDITIONAL DISCUSSIONS ON ASSUMPTION 4.1

Intuitively, this assumption says that the environment transition P and opponent’s policy νt are
balanced enough in the sense that pν

t

1:h (xh) induced by P and νt is not too large compared with the
“balanced” transition p⋆1:h(x2) for any x1, x2 ∈ Xh and h ∈ [H]. Indeed, consider the case where the
game tree is an k-ary tree and P is uniform distribution at every underlying state s, then it holds that
λ = 1. On the other hand, the worst-case scenario is that λ = O(X) if pν

t

1:H(x1) = 1 for some x1 ∈
XH . Nevertheless, this extreme case is very unlikely to happen in practice unless it simultaneously
happens that (a) the environment state transitions along the trajectory {(sh, ah, bh)}h∈[H−1] leading
to sH s.t. x(sH) = x1 satisfy ph(sh+1 | sh, ah, bh) = 1 for all (sh, ah, bh) along the trajectory;
and (b) the opponent knows the underlying environment transitions and the mapping y : S → Y so
that the opponent can ensure νt1:H−1 (y (sH−1) , bH−1) = 1 by setting νt(bh | y(sh)) = 1 for all
(sh, bh) along the trajectory.

E.2 PROOF OF THEOREM 4.2

In this section, we provide the proof of Theorem 4.2, which takes p⋆ as the transition probability
function over infoset-action pairs.

Proof of Theorem 4.2. Combining Lemma E.1, E.3 and E.4, with p⋆ computed by Computing-p⋆,
we have that

RT
max ≤ PENALTY + STABILITY

≤ H

η
log (XA) +

η

2
THdλ , (26)

which along with choosing η =
√

2 log(AX)
Tdλ finishes the proof.
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We note that leveraging β as well as Assumption 4.1 necessitates identifying a transition probability
function p⋆ with its minimum visitation probability achieving β. Finding such p⋆ is done by the
procedure illustrated in Appendix E.2.3.

E.2.1 BOUNDING THE PENALTY TERM

The lemma below directly follows from Lemma E.5 of Fiegel et al. (2023), with its proof provided
here for completeness.
Lemma E.3. For any fixed learning rate η and transition probability function p⋆, it holds that

PENALTY ≤ H

η
log (XA) .

Proof. It is clear that

−Ψ(µ) = −1

η

H∑
h=1

Ψh (p
⋆
1:h · µ1:h)

(i)

≤ 1

η

H∑
h=1

log (XhA) ≤ 1

η

H∑
h=1

log (XA) =
H

η
log (XA) ,

where (i) comes from Lemma A.1.

E.2.2 BOUNDING THE STABILITY TERM

Lemma E.4. For any fixed learning rate η and transition probability function p⋆, it holds that

STABILITY ≤ η

2
THdλ .

Proof. Recall that β = maxp̃∈P⋆ minh∈[H],xh∈Xh
p̃1:h(xh). Then, one can see that

STABILITY ≤ E

η
2

T∑
t=1

H∑
h=1

∑
(xh,ah)∈Xh×A

1

p⋆1:h(xh)
Eµt,νt

[
µt
1:h(xh, ah)ℓ̂

t(xh, ah)
2
]

≤ E

η
2

T∑
t=1

H∑
h=1

1

β
tr

 ∑
(xh,ah)∈Xh×A

pν
t

(xh)µ
t
1:h(xh, ah)ϕ

νt

(xh, ah)ϕ
νt

(xh, ah)
⊤Q−1

µt,h


(i)

≤ E

η
2

T∑
t=1

H∑
h=1

λ tr

 ∑
(xh,ah)∈Xh×A

µt
1:h(xh, ah)ϕ

νt

(xh, ah)ϕ
νt

(xh, ah)
⊤Q−1

µt,h


(ii)

≤ η

2
THdλ ,

where (i) is due to Assumption 4.1; and (ii) comes from Lemma B.1.

E.2.3 COMPUTING p⋆

The procedure Computing-p⋆ can compute p⋆ in Eq. (9), via backward dynamic programming in
O(XA) time.

E.3 PROOF OF THEOREM 4.4

This section presents the proof of Theorem 4.4.

Proof of Theorem 4.4. Combining Lemma E.1, E.5 and E.6, with p⋆1:h(xh) ≡ 1 for all xh ∈ X , we
have that

RT
max ≤ PENALTY + STABILITY

≤ X(1 + logA)

η
+

η

2
THd , (27)

which concludes the proof by noticing that η =
√

2X logA
THd .
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Algorithm 5 Computing-p⋆

1: Input: Tree-like structure of X ×A .
2: Initialization: Transition array p[·] of size X ; auxiliary array f [·] of size X , C[·, ·] of size

X ×A . For all xH in XH , initialize f [xH ] = 1 .
3: for h = H − 1 to 1 do
4: for xh in Xh do
5: for ah in A do
6: Compute C[xh, ah] =

∑
xh+1∈C(xh,ah)

f [xh+1] ,
7: Compute f [xh] = maxa∈A C[xh, a] .
8: end for
9: end for

10: end for
11: for x1 in X1 do
12: Compute p[x1] =

f [x1]∑
x1∈X1

f [x1]
.

13: end for
14: for h = 1 to H − 1 do
15: for xh, ah in Xh ×A do
16: for xh+1 in C(xh, ah) do
17: Compute p[xh+1] = p[xh] · f [xh+1]∑

xh+1∈C(xh,ah) f [xh+1]
.

18: end for
19: end for
20: end for
21: return p .

E.3.1 BOUNDING THE PENALTY TERM

To bound the PENALTY term, we establish a refined analysis, which shaves off an O(
√
A) fac-

tor compared with the direct combination of Lemma E.5 of Fiegel et al. (2023) and the setting of
p⋆1:h(xh) ≡ 1.

Lemma E.5. Setting p⋆1:h(xh) ≡ 1 for all xh ∈ X . For any fixed learning rate η, it holds that

PENALTY ≤ X(1 + logA)

η
.
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Proof.

−Ψ(µ) = −1

η

H∑
h=1

Ψh (p
⋆
1:h · µ1:h)

= −1

η

H∑
h=1

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah) logµ1:h(xh, ah)

= −1

η

H∑
h=1

∑
(xh,ah)∈Xh×A

µ1:h−1(xh)µ1:h(ah|xh) (logµ1:h−1(xh) + log µh(ah|xh))

= −1

η

H∑
h=1

( ∑
xh∈Xh

µ1:h−1(xh)

(
logµ1:h−1(xh) +

∑
ah∈A

µh(ah|xh) logµh(ah|xh)

))

≤ 1

η

H∑
h=1

( ∑
xh∈Xh

−µ1:h−1(xh) logµ1:h−1(xh) +
∑

xh∈Xh

µ1:h−1(xh) logA

)
(i)

≤ 1

η

H∑
h=1

(Xh +Xh logA)

=
X(1 + logA)

η
.

Here (i) comes from the fact that −x log x ≤ 1 for all x ∈ [0, 1].

E.3.2 BOUNDING THE STABILITY TERM

The upper bound of STABILITY term when setting p⋆1:h(xh) ≡ 1 is guaranteed in the following
lemma, the proof of which is omitted since it is essentially the same as that of Lemma E.4.

Lemma E.6. Setting p⋆1:h(xh) ≡ 1 for all xh ∈ X . For any fixed learning rate η, it holds that

STABILITY ≤ η

2
E

 T∑
t=1

H∑
h=1

∑
(xh,ah)∈Xh×A

Eµt,νt
[
µt
1:h(xh, ah)ℓ̂

t(xh, ah)
2
]

≤ η

2
THd .

F PROOF OF REGRET LOWER BOUND

In this section, we present the proof of Theorem 4.6.

Proof of Theorem 4.6. We consider an A-ary tree POMG instance, in which

• B = 1 so that there is actually no opponent effectively (and hence the dependence on the oppo-
nent’s action b is omitted in what follows);

• Xh = Sh = Ah−1 for all h ∈ [H], which means that Xh = Sh and there is actually no partial
observability;

• rh(s, a) = 0 for all h ∈ [H − 1], and rH(s, a) is a reward sampled from Bernoulli distribution
Ber(r̄H(s, a)) with mean r̄H(s, a) = ⟨ϕ(s, a),θ⟩.

By the construction, there exists a unique action sequence (a1, . . . , ah−1) that determines sh (and
hence xh) and the transition is deterministic. Following similar arguments by Bai et al. (2022);
Fiegel et al. (2023), it can be shown that if algorithm Alg achieves regret RT

max on this POMG
instance, then Alg can be used to tackle a stochastic linear bandit problem with AH “arms” and
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obtain the regret with the same order as RT
max, where the reward for “arm” (a1, a2, . . . , aH) (i.e.,

(sH , aH)) is sampled from Ber(⟨ϕ(sH , aH),θ⟩).
We now first consider the case when H ≥ d. In this case, ϕ and θ satisfy ϕ(s, a)[1:d−1] ∈
{−1, 1}d−1, ϕ(s, a)d = 1/4, θ[1:d−1] ∈ {−∆,∆}d−1 with ∆ = 1/(8

√
2T ) and θd = 1. More-

over, since |SH ×A| = AH−1 · A = AH as well as H ≥ d and A ≥ 2, ϕ can be chosen such that
{ϕ(s, a)[1:d−1]}(s,a)∈SH×A = {−1, 1}d−1 (omitting the duplicate feature vectors). Then by canon-
ical analysis for the regret lower bound of stochastic linear bandits (see, e.g., Theorem 24.1 by Latti-
more & Szepesvári (2020); Lemma 25 by Zhou et al. (2021)), there exists a θAlg

[1:d−1] ∈ {−∆,∆}d−1

such that RT ≥ (d− 1)
√
T/(16

√
2) = Ω(

√
d2T ).

In case when H < d, we can choose ϕ such that the stochastic linear bandit problem, on which Alg
suffers the same regret as on the POMG instance, has 2H distinct feature vectors since A ≥ 2 and
AH ≥ 2H . Then by similar reasoning of the construction of ϕ and θ in the case H ≥ d and the
proof of Corollary 3 by Zhou (2019), there exists a θAlg such that RT ≥ Ω(

√
dHT ). The proof is

concluded by combining the results of the two cases.
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