
Appendix687

A SPECTRL syntax and semantics and the proof of Theorem 4688

Syntax A specification in SPECTRL is defined in terms of predicates and specification formulas. An689

atomic predicate is a boolean function a : X → {true, false} which for each system state specifies690

whether it satisfies the predicate, and a predicate is defined as a boolean combination of atomic691

predicates. Specification formulas in SPECTRL are then defined by the grammar692

ϕ := achieve b | ϕ1 ensuring b | ϕ1;ϕ2 | ϕ1 or ϕ2 (1)

where b is a predicate and ϕ1 and ϕ2 are specification formulas. Intuitively, achieve b requires the693

agent to reach a state in which the predicate b is satisfied and ϕ1 ensuring b requires the agent to694

satisfy the specification ϕ while only visiting states in which the predicate b is satisfied. The clause695

ϕ1;ϕ2 requires the agent to first satisfy specification ϕ1 and then satisfy specification ϕ2. Finally,696

ϕ1 or ϕ2 requires satisfaction of at least one of the specifications ϕ1 or ϕ2.697

Semantics Given a trajectory ρ = (xt,ut, ωt)
∞
t=0 and writing ρK = (xt,ut, ωt)

K
t=0 for its finite698

prefix of length K, the semantics of each SPECTRL clause are formally defined as follows:699

ρ |= ϕ ∃K ∈ N0 s.t. ρK |= ϕ

ρK |= achieve p ∃ t ≤ K s.t. p(ρKt ) = true

ρK |= ϕ1 ensuring p ρK |= ϕ1 ∧ ∀ t ≤ K. p(ρKt ) = true

ρK |= ϕ1;ϕ2 ∃ t ≤ K s.t. ρK[0:t] |= ϕ1 and ρK[t:K] |= ϕ2

ρK |= ϕ1 or ϕ2 ρK |= ϕ1 or ρK |= ϕ2

Here, ρKt denotes the t-th state along ρK , ρK[0:t] denotes the prefix of ρK consisting of the first t+ 1700

states along ρK and ρK[t:K] denotes the suffix of ρK that starts in the (t+ 1)-st state along ρK .701

Theorem 4. For each ϕ ∈ Finitary there exists ϕ′ ∈ SPECTRL such that, for any word w, the word702

w is accepted by ϕ iff the word w is accepted by ϕ′.703

Proof. Let ϕ be a finitary specification defined over the set of atomic predicates AP . Since ϕ is704

finitary, there exist a finite time horizon H and a set L of words over AP of length H such that705

an infinite word over the alphabet AP is accepted by ϕ iff its prefix of length H is contained in L.706

Define a SPECTRL formula ϕ′ via:707

ϕ′ =
∨

(w1,...,wH)∈L

p(w1) ; p(w2) ; ... ; p(wH)

where each p(wi) is an atomic predicate associated to the i-th letter in the word (w1, . . . , wH) and ;708

denotes sequential composition of SPECTRL specifications. Then, an infinite word w is accepted by709

ϕ if and only if the prefix of w of length H is contained in L, which holds if and only if w is accepted710

by the SpectRL formula ϕ′. This completes our reduction.711

B Abstract Reachability Definition and Proof of Theorem 5712

Given a trajectory ρ = (xt,ut, ωt)
∞
t=0 of the system and an abstract graph G = (V,E, β, s, t), we say713

that ρ satisfies abstract reachability for G (written ρ |= G) if it gives rise to a path in G that traverses714

G from s to t and satisfies reach-avoid specifications of all traversed edges. Formally, we require that715

there exists a sequence of time steps 0 = i0 < i1 < · · · < ik and a finite path s = v0, v1, . . . , vk = t716

in G such that717

1. xij ∈ β(vj) holds for each 0 ≤ j ≤ k, and718

2. xt ∈ β(vj , vj+1) holds for each 0 ≤ j < k and ij ≤ t ≤ ij+1.719

Intuitively, the first condition encodes that the trajectory satisfies reachability specifications of720

traversed vertices in G while the second condition encodes that it satisfies avoidance specifications of721

traversed edges in G. We then say that a policy π for the system satisfies abstract reachability for G722

with probability p ∈ [0, 1] at an initial state x0 ∈ X0, if we have that Px0
[ρ ∈ Ωx0

| ρ |= G] ≥ p.723

We now provide the proof of Theorem 5.724
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Theorem 5. Consider a stochastic feedback loop system with an initial set of states X0 ⊆ X and let725

ϕ be a SPECTRL specification. Then there exists an abstract graph G = (V,E, β, s, t) with |V | in726

O(|ϕ|) such that, for each trajectory ρ of the system, we have ρ |= ϕ if and only if ρ |= G. Hence, for727

each policy π and initial state x0 ∈ X0, we have Px0
[ρ ∈ Ωx0

| ρ |= ϕ] = Px0
[ρ ∈ Ωx0

| ρ |= G].728

Proof. Given a SPECTRL specification ϕ, one can construct an abstract graph G such that for729

each trajectory ρ of the system we have ρ |= ϕ iff ρ |= G as follows. First, the specification ϕ730

is parsed according to the grammar of SPECTRL in eq. 1 in order to construct the parse tree of731

ϕ. We then start by constructing an abstract graph for each leaf formula in the parse tree, and732

traverse the parse tree bottom-up in order to construct abstract graphs of parent formulas. The733

abstract graph of the specification ϕ is then obtained by taking the abstract graph constructed for734

the root in the parse tree. The leaves of the parse tree are formulas of the form achieve p, for735

which we construct an abstract graph with two vertices s and t, a single edge e = (s, t) and set736

β(s) = X0, β(t) = {x ∈ X | p(x) = true} and β(e) = X . For a formula ϕ1 ensuring p, we737

take an abstract graph (V,E, β, s, t) for the specification ϕ1 which was already constructed for the738

child node and define the abstract graph G = (V,E, β′, s, t) by simply modifying the map β via739

β′(e) = β(e) ∩ {x ∈ X | p(x) = true} for each e ∈ E. For a formula ϕ1;ϕ2, we take the abstract740

graph of the specifications ϕ1 and ϕ2 which were already constructed for the child nodes and merge741

them by identifying the target node of ϕ1 with the source node of ϕ2 and using the region associated742

to it by the abstract graph of ϕ2. Finally, for a formula ϕ1 or ϕ2, we introduce a novel source node s743

with β(s) = X0, take the abstract graph of ϕ1 and ϕ2 and connect the novel source node s to them by744

an edge. Note that this construction yields a graph with V in O(|ϕ|).745

Since the above construction soundly encodes the semantics of each SPECTRL grammar element746

as a reach-avoid specification, it follows by induction on the depth of the parse tree that for each747

trajectory ρ of the system we have ρ |= ϕ iff ρ |= G. The claim of Theorem 5 follows.748

C Proof of Theorem 1749

Theorem 1. [Proof in Apendix C] The following two statements hold:750

1. If a continuous function V : X → R is an (ϵ, λ)-additive RASM, then it is also a751

(λ−ϵ
λ ,min{ϵ, λ}, λ)-multiplicative RASM.752

2. If a continuous function V : X → R is a (γ, δ, λ)-multiplicative RASM, then it is also an753

((1− γ) · δ, λ)-additive RASM.754

Proof.755

1. Let δ = min{ϵ, λ} and γ = λ−ϵ
λ . To show that V is a (γ, δ, λ)-multiplicative RASM, we756

need to show that the Strict positivity outside Xt and the Multiplicative expected decrease757

conditions hold. By the Additive expected decrease condition, for each x ∈ X\Xt at which758

V (x) ≤ λ we have V (x) ≥ ϵ. So as δ = min{ϵ, λ}, the Strict positivity outside Xt follows.759

On the other hand, observe that for every x ∈ X\Xt at which V (x) ≤ λ, we have760

Eω∼d[V (f(x, π(x), ω))]

V (x)
≤ V (x)− ϵ

V (x)
≤ λ− ϵ

λ
= γ,

where the first inequality follows by the Additive expected decrease condition and the second761

inequality follows since z−ϵ
z is monotonically increasing on the domain z > ϵ. Hence, the762

Multiplicative expected decrease condition holds.763

2. Let ϵ = (1 − γ) · δ. To show that V is an (ϵ, λ)-additive RASM, we need to show that764

the Additive expected decrease condition holds. We show this by observing that, for each765

x ∈ X\Xt such that V (x) ≤ λ, we have766

V (x)− Eω∼d[V (f(x, π(x), ω))] ≥ V (x)− γ · V (x) = (1− γ) · V (x) ≥ (1− γ) · δ,

where the first inequality holds by the Multiplicative expected decrease condition and the last767

inequality holds by the Strict positivity outside Xt condition. Hence, the Additive expected768

decrease condition is satisfied.769
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D Proof of Theorem 2770

We first provide an overview of definitions and results from martingale theory that we use in the771

proof. We then present the proof.772

Probability theory A probability space is a triple (Ω,F ,P) of a state space Ω, a sigma-algebra F773

and a probability measure P that satisfies Kolmogorov axioms [58]. A random variable in (Ω,F ,P) is774

a function X : Ω→ R that is F -measurable, i.e. for each a ∈ R we have {ω ∈ Ω | X(ω) ≤ a} ∈ F .775

A (discrete-time) stochastic process is a sequence (Xi)
∞
i=0 of random variables in (Ω,F ,P).776

Conditional expectation Let X be a random variable in (Ω,F ,P). Given a sub-sigma-algebra777

F ′ ⊆ F , a conditional expectation of X given F ′ is an F ′-measurable random variable Y such that,778

for each A ∈ F ′, we have779

E[X · I(A)] = E[Y · I(A)].

Here, I(A) : Ω → {0, 1} is an indicator function of A, given by I(A)(ω) = 1 if ω ∈ A, and780

I(A)(ω) = 0 if ω ̸∈ A. Intuitively, conditional expectation of X given F ′ is an F ′-measurable781

random variable that behaves like X upon evaluating its expected value on events in F ′. It is782

known that every nonnegative random variable admits a conditional expectation [58]. Moreover, the783

conditional expectation is almost-surely unique, meaning that for any two F ′-measurable random784

variables Y and Y ′ which are conditional expectations of X given F ′ we have P[Y = Y ′] = 1.785

Therefore, we pick any such random variable as a canonical conditional expectation and denote it by786

E[X | F ′].787

Supermartingales Let (Ω,F ,P) be a probability space and (Fi)
∞
i=0 be an increasing sequence of788

sub-sigma-algebras in F , i.e. F0 ⊆ F1 ⊆ · · · ⊆ F . A nonnegative supermartingale with respect789

to (Fi)
∞
i=0 is a stochastic process (Xi)

∞
i=0 such that each Xi is Fi-measurable, and Xi(ω) ≥ 0 and790

E[Xi+1 | Fi](ω) ≤ Xi(ω) hold for each ω ∈ Ω and i ≥ 0. Intuitively, the second condition is the791

expected decrease condition, and it is formally captured via conditional expectation.792

We now present two results from martingale theory that will be used in the proof. Let (Ω,F ,P) be a793

probability space and (Fi)
∞
i=0 be an increasing sequence of sub-σ-algebras in F .794

Theorem 6 (Supermartingale convergence theorem [58]). Let (Xi)
∞
i=0 be a nonnegative supermartin-795

gale with respect to (Fi)
∞
i=0. Then, there exists a random variable X∞ in (Ω,F ,P) to which the796

supermartingale converges to with probability 1, i.e. P[limi→∞ Xi = X∞] = 1.797

Theorem 7 ( [32]). Let (Xi)
∞
i=0 be a nonnegative supermartingale with respect to (Fi)

∞
i=0. Then,798

for every λ > 0, we have799

P
[
sup
i≥0

Xi ≥ λ
]
≤ E[X0]

λ
.

Theorem 2. [Proof in Appendix D] Let γ ∈ (0, 1), δ > 0 and λ > 1, and suppose that V : X → R is800

a (γ, δ, λ)-multiplicative RASM with respect to Xt and Xu. Suppose furthermore that V is Lipschitz801

continuous with a Lipschitz constant LV , and that the system under policy π satisfies the bounded802

step property, i.e. that there exists ∆ > 0 such that ||x− f(x, π(x), ω)||1 ≤ ∆ holds for each x ∈ X803

and ω ∈ W . Let N = ⌊(λ− 1)/(LV ·∆)⌋. Then, for every x0 ∈ X0, we have that804

Px0

[
ReachAvoid(Xt,Xu)

]
≥ 1− 1

λ
· γN .

Proof. Fix an initial state x0 ∈ X0. We need to show that Px0 [ReachAvoid(Xt,Xu)] ≥ 1− 1
λ · γ

N805

with N = ⌊(λ− 1)/(LV ·∆)⌋.806

Before proceeding with the proof, we define some notions. Consider the probability space807

(Ωx0 ,Fx0 ,Px0) over the set of all system trajectories that start in x0 ∈ X0. For each time step808

t ∈ N0, define Fx0,t ⊆ Fx0 to be a sub-σ-algebra which contains events that are defined in terms809

of the first t states along a trajectory. Formally, for each j ∈ N0, let Cj : Ωx0 → X assign to each810

trajectory ρ = (xt,ut, ωt)t∈N0 ∈ Ωx0 the j-th state xj along the trajectory. Fi is then defined as the811

smallest σ-algebra over Ωx0
with respect to which C0, C1, . . . , Ci are all measurable. The sequence812

(Fx0,t)
∞
t=0 defines a filtration in (Ωx0

,Fx0
,Px0

).813
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Proceeding with the proof, we show that V induces a supermartingale in the probability space814

(Ωx0 ,Fx0 ,Px0) over the set of all system trajectories that start in x0 ∈ X0. For each t ∈ N0, define a815

random variable Xt in (Ωx0 ,Fx0 ,Px0) via816

Xt(ρ) =


V (xt), if xi ̸∈ Xt and V (xi) < λ for all 0 ≤ i ≤ t

0, if xi ∈ Xt for some 0 ≤ i ≤ t and V (xj) < λ for all 0 ≤ j ≤ i

λ, otherwise

for each trajectory ρ = (xt,ut, ωt)t∈N0 ∈ Ωx0 . Intuitively, Xt is equal to V at xt until either the817

target set Xt is reached upon which Xt is set to 0, or some V (xt) ≥ λ is reached upon which Xt818

is set to λ. We claim that (Xt)
∞
t=0 is a nonnegative supermartingale with respect to the filtration819

(Fx0,t)
∞
t=0 in the probability space (Ωx0 ,Fx0 ,Px0) and that it with probability 1 converges to either820

0 or to a value that is ≥ λ.821

Clearly, each Xt is nonnegative. To prove that (Xt)
∞
t=0 is a supermartingale, note first that each Xt822

is Fx0,t measurable as it is defined in terms of the ferst t states along a trajectory. To show that the823

expected decrease condition is satisfied, we show that Ex0 [Xt+1 | Fx0,t](ρ) ≤ Xt(ρ) holds for each824

t ∈ N0 and ρ = (xt,ut, ωt)t∈N0 . We consider 3 cases based on the definition of V :825

1. If x0,x1, . . . ,xt ̸∈ Xt and V (xi) < λ for each 0 ≤ i ≤ t, then826

Ex0 [Xt+1 | Fx0,t](ρ)

= Ex0

[
Xt+1 ·

(
I(xt+1 ̸∈ Xt ∧ V (xt+1) < λ) + I(xt+1 ∈ Xt) + I(V (xt+1) ≥ λ)

)
| Fx0,t

]
(ρ)

= Ex0 [Xt+1 · I(xt+1 ̸∈ Xt) | Fx0,t](ρ) + 0 + λ · E[I(V (xt+1) ≥ λ) | Fx0,t](ρ)

≤ Eω∼d[V (f(xt,ut, ωt)) · I(xt+1 ̸∈ Xt ∧ V (xt+1) < λ)]

+ Eω∼d[V (f(xt,ut, ωt)) · I(xt+1 ∈ Xt)]

+ Eω∼d[V (f(xt,ut, ωt)) · I(V (xt+1) ≥ λ)]

= Eω∼d[V (f(xt,ut, ωt))]

≤ γ · V (xt) ≤ V (xt).

The first equality follows by the law of total probability, the second equality follows by827

definition of Xt, the third inequality follows by observing that V (xt+1) ≥ Xt+1(ρ) if828

xt+1 ∈ Xt, the fourth equality is just the sum of expectations over disjoint sets, and finally829

the fifth inequality follows by the Multiplicative expected decrease condition of V and the830

assumption that xt ̸∈ Xt and V (xt) < λ.831

2. If xi ∈ Xt for some 0 ≤ i ≤ t and V (xj) < λ for all 0 ≤ j ≤ i, then we have832

Ex0
[Xt+1 | Fx0,t](ρ) = γ ·Xt+1 = Xt+1(ρ) = 0.833

3. Otherwise, we must have V (xi) ≥ λ and x0, . . . ,xi ̸∈ Xt for some 0 ≤ i ≤ t, thus834

Ex0 [Xt+1 | Fx0,t](ρ) = Xt+1(ρ) = λ.835

Hence, we have proved that (Xt)
∞
t=0 is a nonnegative supermartingale.836

By Supermartingale Convergence Theorem, we then know that (Xt)
∞
t=0 with probability 1 converges837

to some value. We claim furthermore that this value is either 0 or ≥ λ and that the value is attained.838

To see this, recall that in Theorem 1 we showed that V is also an (ϵ, λ)-additive RASM with839

ϵ = (1 − γ) · δ. Then, the same sequence of inequalities as in the case one above shows that840

Ex0
[Xt+1 | Fx0,t](ρ) ≤ Xt(ρ)− ϵ if x0,x1, . . . ,xt ̸∈ Xt and V (xi) < λ for each 0 ≤ i ≤ t. Thus,841

the limit to which (Xt)
∞
t=0 converges cannot be in the open interval (0, λ) and the claim follows.842

To prove the theorem claim, we show that (Xt)
∞
t=0 converges to a value with ≥ λ with probability843

at most 1
λ · γ

N . Then, since (Xt)
∞
t=0 converging to 0 implies that system reaches a state in which844

V < δ while never reaching a state in which V ≥ λ, which by the Safety and the Strict positivity845

outside Xt conditions implies that reach-avoidance is satisfied, this will imply the theorem claim.846

The proof until this point is analogous to the proof of [61, Theorem 1].847

The technical novelty of our proof begins in the following step. We define another stochastic process848

(Yt)
∞
t=0 from (Xt)

∞
t=0 by letting849

Yt =

{
Xt/γ

t, if V (xi) < λ for all 0 ≤ i ≤ t

Yt−1, otherwise
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We claim that (Yt)
∞
t=0 is also a nonnegetive supermartingale with respect to the filtration (Fx0,t)

∞
t=0.850

The nonnegativity part of the claim clearly holds since each Xt is nonnegative. To check the expected851

decrease condition of supermartingales, for each t ∈ N0 and for each ρ ∈ Ωx0 we have distinguish852

two cases:853

1. If V (xi) < λ for all 0 ≤ i ≤ t, then854

Ex0 [Yt+1 | Fx0,t](ρ)

= Ex0 [Yt+1 · I(V (xt+1) < λ) | Fx0,t](ρ) + Ex0 [Yt+1 · I(V (xt+1) ≥ λ) | Fx0,t](ρ)

=
1

γt+1
· Ex0

[Xt+1 · I(V (xt+1) < λ) | Fx0,t](ρ) + Ex0
[Yt · I(V (xt+1) ≥ λ) | Fx0,t](ρ)

=
1

γt+1
· Ex0 [Xt+1 | Fx0,t](ρ)−

1

γt+1
· Ex0 [Xt+1 · I(V (xt+1) ≥ λ) | Fx0,t](ρ)

+ Ex0
[Yt · I(V (xt+1) ≥ λ) | Fx0,t](ρ)

≤ 1

γt+1
· γ ·Xt(ρ)− Ex0

[(
1

γt+1
·Xt+1 − Yt) · I(V (xt+1) ≥ λ) | Fx0,t](ρ)

= Yt(ρ)− Ex0 [(
1

γt+1
·Xt+1 − Yt) · I(V (xt+1) ≥ λ) | Fx0,t](ρ)

≤ Yt(ρ).

The first equality holds by the law of total probability. The second equality holds by the855

definition of Yt+1. The third equality holds by the law of total probability. The fourth856

inequality holds since above we proved that Ex0 [Xt+1 | Fx0,t](ρ) ≤ γ · Xt whenever857

V (xi) < λ for all 0 ≤ i ≤ t (cases 1 and 2 above). The fifth equality holds by definition858

of Yt and the assumption that V (xi) < λ for all 0 ≤ i ≤ t. Finally, the sixth inequality859

follows by observing that in the case when V (xi) < λ for all 0 ≤ i ≤ t but V (xt+1) ≥ λ,860

we have Xt+1/γ
t+1 ≥ λ/γt+1 ≥ λ/γt ≥ Yt.861

2. If V (xi) = λ for some 0 ≤ i ≤ t, then Ex0
[Yt+1 | Fx0,t](ρ) = Yt(ρ) = Yi(ρ).862

Hence, we have proved that (Yt)
∞
t=0 is a nonnegative supermartingale.863

We conclude the theorem claim by observing that864

Px0

[
sup
t≥0

Xt < λ
]
= Px0

[
sup
t≥0

γt · Yt < λ
]
= Px0

[
sup
t≥N

γt · Yt < λ
]

= Px0

[
γN · sup

t≥N
γt−N · Yt < λ

]
= Px0

[
sup
t≥N

γt−N · Yt <
λ

γN

]
≥ Px0

[
sup
t≥N

Yt <
λ

γN

]
≥ Px0

[
sup
t≥0

Yt <
λ

γN

]
≥ 1− 1

λ
· γN .

Three non-trivial steps are the first and the second equality and the last inequality. The first equality865

holds since, if supt≥0 Xt < λ, then we also have Yt = Xt/γ
t for each t by the definition of Yt.866

The second equality holds since the system cannot reach a state in which V ≥ λ and so Xt ≥ λ in867

less than N time steps. On the other hand, for the last inequality we the inequality in Theorem 7.868

Applying the inequality to (Yt)
∞
t=0 and λ

γN and observing that E[Y0] = E[X0] ≤ 1 by the Initial869

condition in Definition 2 yields Px0
[supt≥0 Yt ≥ λ/γN ] ≤ γN

λ and thus the last inequality.870

E Learning Policies with Reach-avoid Supermartingales871

We now present the POLICY+RASM subprocedure that we use for simultaneously learning a policy872

πµ and an RASM Vθ, both of which are parametrized as neural networks with parameters µ and θ.873

The subprocedure POLICY+RASM is identical to the algorithm of [61], thus we keep this exposition874

brief and refer the reader to [61] for details. The reason why we can reuse this algorithm even though875

it learns additive RASMs is that additive and multiplicative RASMs are equivalent by Thereom 1. As876

we show below, the algorithm does not need to explicitly set an additive term ϵ or a multiplicative877

factor γ, thus it is applicable to learning both additive and multiplicative RASMs. We then show how878

to use Vθ to extract the bound in Theorem 2.879
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Analogously as in [61], the value λ > 1 in Definition 3 is an algorithm parameter and we initialize880

it to λ = 1
1−p′ so that the Theorem ?? bound 1− 1

λ · γ
N ≥ 1− 1

λ = p′ implies satisfaction of the881

desired probabilistic reach-avoid specification. If the algorithm succeeds in learning πµ and Vθ with882

this value of λ, then the reach-avoid problem is solved. Otherwise, the algorithm gradually decreases883

the value of λ and tries to relearn πµ and Vθ so that the resulting bound in Theorem 2 still exceeds p′.884

Thus, our new bound also yields an improvement in the algorithm.885

The algorithm consists of two modules called learner and verifier, which are composed into a loop.886

In each loop iteration, the learner first learns a policy πµ and an RASM candidate Vθ. These are887

then passed to the verifier which formally checks whether Vθ satisfies all conditions in Definition 2.888

If the verification is successful, the algorithm returns the policy. Otherwise, the verifier identifies889

counterexample states at which the additive RASM conditions are violated. These are then passed to890

the learner and are used to fine-tune the previously learned policy and RASM by refining the loss891

function using the computed counterexamples.892

Learner A policy πµ and an additive RASM candidate Vθ are learned by minimizing the loss function893

L(θ, ν) = LInit(ν) + LUnsafe(ν) + LDec(θ, ν) + LLipschitz(θ, ν).

The first three loss terms are constructed from the sets Cinit, Cunsafe and Cdec which are initialized894

by computing finite discretizations of X0, Xu and X\Xt and are later extended by counterexamples895

computed by the verifier. The loss terms are used to guide the learner towards learning a true896

additive RASM which satisfies the Initial, Safety and Expected decrease conditions. Each loss term is897

designed to incur a loss at a counterexample whenever that counterexample violates the corresponding898

condition. In order for the Nonnegativity condition to be satisfied by default, the algorithm applies899

the softplus activation function to the output of Vθ. The loss term LLipschitz(θ, ν) is a regularization900

term that does not enforce any of the defining conditions of additive RASMs, however it helps in901

decreasing the Lipschitz constants of neural networks. Each loss term is defined as follows:902

LInit(ν) = max
x∈Cinit

{Vν(x)− 1, 0}

LUnsafe(ν) = max
x∈Cunsafe

{ 1

1− p
− Vν(x), 0}

LDecrease(θ, ν) =
1

|Cdec|
·

∑
x∈Cdecrease

(
max

{ ∑
ω1,...,ωN∼N

Vν

(
f(x, πθ(x), ωi)

)
N

− Vθ(x) + τ ·K, 0
})

The last loss term LLipschitz(θ, ν) = t · (LLipschitz(θ) + LLipschitz(ν)) is the regularization term used to903

guide the learner towards learning neural networks whose Lipschitz constants are below a tolerable904

threshold ρ, where t > 0 is a regularization constant. By preferring networks with small Lipschitz905

constants, we allow the verifier to use a wider mesh and thus make verification condition easier to906

satisfy. We have The regularization term for πθ (and analogously for Vν) is defined via907

LLipschitz(θ) = max
{ ∏

W,b∈θ

max
j

∑
i

|Wi,j | − ρ, 0
}
,

where W and b weight matrices and bias vectors for each layer in πθ.908

Verifier The verifier checks whether Vθ satisfies the defining properties of additive RASMs in909

Definition 2. Recall, the Nonnegativity condition is satisfied by default due to the softplus activation910

function applied to the output layer of Vθ. Hence, the verifier only needs to check the Initial, Safety911

and Expected decrease conditions.912

Since f , πµ and Vθ are continuous functions defined over a compact domain X thus also Lipschitz913

continuous, the verifier may check the (both Multiplicative and Additive) expected decrease condition914

by checking a slightly stricter condition at finitely many discretization points. A discretization of the915

state space X with mesh τ > 0 is a finite set X̃ ⊆ X such that, for every x ∈ X , there exists x̃ ∈ X̃916

such that ||x− x̃||1 < τ . The discretization is computed by taking a grid of mesh τ . Then, to check917

the expected decrease condition, it was showed in [61] that it suffices to check for each x̃ ∈ X̃ whose918
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adjacent discretization grid cells contain a non-target state and over which V attains a value that is919

less than or equal to λ that920

Eω∼d

[
Vθ

(
f(x̃, π(x̃), ω)

)]
< Vθ(x̃)− τ ·K,

where K = LV · (Lf · (Lπ + 1) + 1) and Lf , Lπ and LV are Lipschitz constants of f , πµ and921

Vθ. It is assumed that Lf is provided and Lπ and LV are computed by the method of [52]. To922

verify the Initial condition, the verifier collects the set CellsX0 of all cells of the discretization grid923

that intersect the initial set X0. Then, for each cell ∈ CellsX0 , it checks if supx∈ cell Vθ(x) ≤ 1,924

where the supremum is bounded from above by using interval arithmetic abstract interpretation925

(IA-AI) [20, 24] to propagate across neural network layers the extreme values that Vθ can attain over926

a cell. Similarly, to verify the Unsafe condition, the verifier collects the set CellsXu
of all cells of the927

discretization grid that intersect the initial set Xu. Then, for each cell ∈ CellsXu
, it uses IA-AI to928

check if infx∈ cell Vθ(x) ≥ λ.929

If the verifier shows that Vθ satisfies the above checks, it concludes that Vθ is an additive (and930

therefore multiplicative) RASM for the system under the policy πµ and returns the policy together931

with the lower bound on the probability of satisfying the reach-avoid specification as in Theorem ??.932

The fact that the verifier is correct was proved in [61, Theorem 2]. Otherwise, if a counterexample x̃933

to any of the checks is found, it is added to one of the three counterexample sets Cinit, Cunsafe and934

Cdec that are then used by the learner to fine-tune Vθ and πµ.935

Soundness and computation of γ. The following theorem establishes that the above is a sound936

verification procedure and provides a closed-form expression for the values of δ > 0 and γ ∈ (0, 1) for937

which Vθ is a (γ, δ, λ)-multiplicative RASM. Hence, to compute the lower bound on the probability938

of satisfying reach-avoidance in Theorem 2, one may use the value of γ implied by the theorem939

together with λ which is fixed by the algorithm, LV which is computed by the algorithm and the940

maximal step size ∆ which we assume is provided by the user.941

Theorem 8. If the verifier returns neural networks πµ and Vθ, then Vθ is a (γ, δ, λ)-multiplicative942

RASM with943

δ = min
{
min
x̃∈X̃

(
Vθ(x̃)− τ ·K − Eω∼d[Vθ(f(x̃, π(x̃), ω))]

)
, λ

}
, γ = 1− δ

λ
.

Proof. Since it was shown in [61] that the verifier provides a sound verification procedure for checking944

that Vθ is an additive RASM, by the equivalence in Theorem 1 it follows that it is also sound for945

checking that Vθ is a (γ, δ, λ)-multiplicative RASM for some values of γ and δ. Hence, it remains to946

show that the values of γ and δ in the theorem statement are correct.947

First, we show that the Strict positivity outside Xt condition is satisfied with the above value of δ. To948

see this, let x ∈ X\Xt. Since δ ≤ λ, suppose without loss of generality that Vθ(x) ≤ λ. Then, x949

is contained in a discretization grid cell which contains a non-target state and over which V attains950

a value that is ≤ λ. Hence, the verifier has shown that Eω∼d[Vθ(f(x̃, π(x̃), ω))] < Vθ(x̃)− τ ·K951

holds for each x̃ ∈ X̃ which is a vertex of this cell. Taking a vertex x̃ ∈ X̃ of this cell for which952

||x− x̃||1 ≤ τ , by the definition of Lipscthiz constants we have953

Eω∼d

[
V
(
f(x, π(x), ω)

)]
≤ Eω∼d

[
V
(
f(x̃, π(x̃), ω)

)]
+ ||f(x̃, π(x̃), ω)− f(x, π(x), ω)||1 · LV

≤ Eω∼d

[
V
(
f(x̃, π(x̃), ω)

)]
+ ||(x̃, π(x̃), ω)− (x, π(x), ω)||1 · LV · Lf

≤ Eω∼d

[
V
(
f(x̃, π(x̃), ω)

)]
+ ||x̃− x||1 · LV · Lf · (1 + Lπ)

≤ Eω∼d

[
V
(
f(x̃, π(x̃), ω)

)]
+ τ · LV · Lf · (1 + Lπ).
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Hence, by the Nonnegativity condition we also have954

V (x) ≥ V (x)− Eω∼d

[
V
(
f(x, π(x), ω)

)]
≥ V (x̃)− τ · LV − Eω∼d

[
V
(
f(x̃, π(x̃), ω)

)]
− τ · LV · Lf · (1 + Lπ)

= V (x̃)− τ ·K − Eω∼d

[
V
(
f(x̃, π(x̃), ω)

)]
≥ δ,

(2)

since K = LV · (Lf · (Lπ + 1) + 1), which concludes the proof.955

Second, we show that Multiplicative expected decrease condition with the above value of γ holds.956

Let x ∈ X\Xt be such that Vθ(x) ≤ λ. We need to show that γ · V (x) ≥ Eω∼d[V (f(x, π(x), ω))].957

Since we showed in eq. (2) that V (x) ≥ V (x) − Eω∼d[V (f(x, π(x), ω))] ≥ δ > 0 and since958

Vθ(x) ≤ λ, we have959

Eω∼d[V (f(x, π(x), ω))]

V (x)
= 1− V (x)− Eω∼d[V (f(x, π(x), ω))]

V (x)

≤ 1− δ

V (x)
≤ 1− δ

λ
.

This concludes the proof.960

F Proof of Theorem 3961

Theorem 3. [Proof in Appendix F] Algorithm 1 is compositional, and if it outputs a policy π, then π962

guarantees the probabilistic specification (ϕ, p).963

Proof. In order to prove that π guarantees satisfaction of the probabilistic specification (ϕ, p), by964

Theorem 5 it suffices to show that π satisfies abstract reachability for the abstract graph G with965

probability at least p.966

To prove abstract reachability for G with probability at least p, we show that a random trajectory967

of the system under policy π satisfies reach-avoid specifications of the edges along the finite path968

s = vi0 , vi1 , . . . , vik = t exhibited above with probability at least p. To prove this, we proceed by969

induction on 0 ≤ j ≤ k to show that a random trajectory of the system under policy π satisfies reach-970

avoid specifications of each edge along a prefix s = vi0 , vi1 , . . . , vij of this path with probability at971

least Prob[vij ]. Recall, Prob is the dictionary computed by Algorithm 1. Abstract reachability for G972

with probability at least p then follows if we set j = k, since vjk = t and we must have Prob[t] ≥ p973

for Algorithm 1 to output a policy (lines 15-17).974

The base case j = 0 follows trivially since the system starts in the initial region β(s) = X0 and975

since Prob[vi0 ] = Prob[s] = 1 by line 6. For the inductive step, suppose that 0 ≤ j ≤ k − 1 and976

that π satisfies reach-avoid specifications of each edge along s = vi0 , vi1 , . . . , vij with probability977

at least Prob[vij ]. The claim for the prefix of length j + 1 then follows by our construction of the978

finite path s = vi0 , vi1 , . . . , vik = t, as it implies that Algorithm 1 has successfully learned an edge979

policy for the edge (vij , vij+1
) that ensures satisfaction of the associated reach-avoid specification980

with probability at least p(vij ,vij+1
) and for which Prob[vij+1 ] = p(vij ,vij+1

) · Prob[vij ]. Since981

the right-hand-side of this equality is a lower bound on the probability of π satisfying reach-avoid982

specifications of each edge along s = vi0 , vi1 , . . . , vij multiplied by a lower bound on the probability983

of it satisfying the reach-avoid specification of the edge (vij , vij+1), the claim follows. This concludes984

the proof by induction.985
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