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Abstract
Dynamic facial expression recognition (DFER) is a rapidly develop-
ing field that focuses on recognizing facial expressions in video se-
quences. However, the complex temporal modeling caused by noisy
frames, along with the limited training data significantly hinder the
further development of DFER. Previous efforts in this domain have
been limited as they tackled these issues separately. Inspired by
recent advances of pretrained vision-language models (e.g., CLIP),
we propose to leverage it to jointly address the two limitations in
DFER. Since the raw CLIP model lacks the ability to model tem-
poral relationships and determine the optimal task-related textual
prompts, we utilize DFER-specific domain knowledge, including
characteristics of temporal correlations and relationships between
facial behavior descriptions at different levels, to guide the adap-
tation of CLIP to DFER. Specifically, we propose enhancements to
CLIP’s visual encoder through the design of a hierarchical video en-
coder that captures both short- and long-term temporal correlations
in DFER. Meanwhile, we align facial expressions with action units
through prior knowledge to construct semantically rich textual
prompts, which are further enhanced with visual contents. Fur-
thermore, we introduce a class-aware consistency regularization
mechanism that adaptively filters out noisy frames, bolstering the
model’s robustness against interference. Extensive experiments on
three in-the-wild dynamic facial expression datasets demonstrate
that our method outperforms the state-of-the-art DFER approaches.
The code is available at https://github.com/liliupeng28/DK-CLIP.
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1 Introduction
Facial expression recognition (FER) has garnered significant atten-
tion in the computer vision community due to its crucial role in
various applications, such as human-computer interaction (HCI)
[5, 7, 26], driver or student status monitoring [14, 22], and medical
diagnosis [2, 17]. According to the type of input data, FER can be
categorized into static FER (SFER) and dynamic FER (DFER). SFER
focuses on static facial images, while DFER deals with dynamic
image sequences. The continuity of human emotional expression
implies that dynamic image sequences offer richer information
regarding the genuine emotional states, thereby facilitating more
accurate emotion recognition. Consequently, DFER receives increas-
ing attentions owing to its significance in practical applications.

Previous works in DFER primarily focus on capturing tempo-
ral correlations within video frames using approaches based on
3DCNNs [4, 15], RNNs [1, 11, 49] and Transformers [20, 25, 28, 50].
Although these methods have achieved notable performance, the
issues of complex temporal correlations and scarce training data
still hinder the progress of DFER. Firstly, the existence of non-target
frames complicates the modeling of temporal correlations in DFER,
distinguishing it from general video understanding tasks. As shown
in Fig. 1 (a), dynamic facial sequences often exhibit a transition
between target and non-target emotions. Meanwhile, current facial
expression datasets typically offer only video-level labels, lacking
snippet-level annotations with precise temporal locations. Models
trained with this type of supervision are susceptible to producing
inaccurate predictions owing to the disruptive influence of noisy
frames. Recently, researchers have attempted to address the com-
plex temporal correlations modeling in DFER. NR-DFERNet [21]
mitigates the impact of noisy frames by introducing a dynamic
class token and a snippet-based filter. M3DFEL [39] proposes mod-
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Figure 1: In-the-wild dynamic facial expressions. (a) In the
context of video sequences, the non-target expressions con-
stitute noisy frames, which present notable challenges DFER.
(b) Facial action units (AUs) serve as descriptors of local facial
behaviors associated with particular expressions.

eling DFER as a multi-instance learning problem, where non-target
frames are disregarded while target frames are emphasized. Sec-
ondly, the prohibitive cost of annotating facial expression data limits
the availability of training data for previous DFER methods, thereby
restricting their further advancement. MARLIN[3] and VideoMAE
[34] leverage large-scale self-supervised pretraining on unlabeled
facial videos to address the constraints posed by the limited training
data in existing datasets. Despite their state-of-the-art performance,
these methods exhibit notable limitations, including substantial
pretraining costs, task-independent representations, and ignoring
the impact of noisy frames. Most recently, the advancements in
adapting vision-language pretraining models, such as CLIP [31], to
various downstream computer vision tasks [29, 52, 53] demonstrate
their remarkable transfer and generalization abilities. CLIPER [19]
and DFER-CLIP [51] finetune the pretrained CLIP model to promote
the development of DFER, without pretraining on unlabeled facial
videos. Although these CLIP-based methods have achieved excel-
lent DFER performance, they still employ simple temporal average
pooling or single-layer Transformers for feature aggregation across
frames, ignoring the detrimental impact of noisy frames on learning
robust temporal facial features. In addition, CLIPER necessitates
a pretraining phase to learn multiple text descriptors for expres-
sions, whereas DFER-CLIP entails carefully guiding large language
models (LLMs) to initially produce descriptions of facial behaviors
associated with expressions. The process of training or generating
text descriptions is not only time demanding but also fails to ensure
the model’s generalization across diverse visual samples.

To jointly address the issues of noisy frames and limited train-
ing data, we suggest utilizing the domain knowledge in DFER,
including characteristics of temporal correlations and relationships
between facial behavior descriptions at different levels, to effec-
tively guide CLIP in adapting to DFER. In other words, we incor-
porate DFER-specific Domain Knowledge into the CLIP model,
dubbedDK-CLIP, to further promote its performance for the DFER
task. To tackle the issue of noisy frames, we present a hierarchical

video encoder equipped with a cross-frame attention module to
capture short-term temporal correlations in local snippets and a
multi-snippets integration module to model long-term temporal
correlations among these snippets. Subsequently, we introduce a
class-aware consistency regularization mechanism aimed at miti-
gating the detrimental effects of noisy frames and bolstering the
model’s robustness through a noise reducing module and a consis-
tency loss. As for the challenge of limited training data, our method
aligns with existing works [19, 51], reducing the need for labeled
data by fine-tuning pretraining parameters. Furthermore, since the
integration of expression class names with textual descriptions of
facial action units (AUs) [9] offers semantic information that is
highly pertinent to visual facial content (as illustrated in Fig. 1 (b)),
we leverage the descriptions of AUs to enrich the semantic content
of text prompt for basic expressions. Additionally, we condition the
learning of textual prompts on visual features using a cross-modal
attention module, enabling the model to adapt to diverse sample
variations. To verify the effectiveness of DK-CLIP, we conduct ex-
periments on three in-the-wild datasets (DFEW [15], FERV39K [41],
MAFW [24]). The results demonstrate that the proposed DK-CLIP
outperforms the state-of-the-art methods, highlighting its ability
to mitigate the effects of limited training data and noisy frames.

In summary, our key contributions are as follows:
• We introduce DK-CLIP, a novel CLIP-based approach that
jointly addresses the limitations posed by insufficient train-
ing data and noisy frames in DFER.

• DK-CLIP not only offers an effective hierarchical video en-
coder to modeling complex temporal correlations amidst
noise interference, but also harnesses prior knowledge to
steer task-related textual prompt generation. With the in-
corporation of the class-aware consistency regularization
mechanism, DK-CLIP is also applicable for fine-grained ex-
pression analysis and expression intensity prediction in a
weakly supervised setting.

• We conduct extensive experiments on three DFER datasets,
and our proposed DK-CLIP achieves state-of-the-art results
compared with other methods.

2 Related Works
2.1 Dynamic Facial Expression Recognition
Deep learning has significantly promoted the advancement of DFER.
Early works [11, 15, 18, 49] typically employ RNNs and 3DCNNs
to model the temporal relationships among frames. Furthermore,
several studies [28, 50] exploit the global dependency modeling
ability of Transformer to extract spatial-temporal features from
facial video sequences. However, these methods exhibit limited per-
formance since they ignore the varying expression intensities and
noisy frames within dynamic facial sequences. Recently, IAL [20]
introduces an intensity-aware loss, enabling the network to distin-
guish frames based on their expression intensities and pay extra
attention to low-intensity sequences. NR-DFERNet [21] employs
a dynamic class token and a snippet-based filter to mitigate the
impact of target irrelevant frames during temporal modeling and
the decision-making stage, respectively. Additionally, M3DFEL [39]
formulates DFER as a multi-instance learning problem, treating
each video as a bag containing target and non-target instances, and
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devises a dynamic long-term instance aggregation module to learn
the long-term temporal relationships and dynamically aggregate
the instances. Although these methods have achieved good perfor-
mance, they are limited by the insufficient training samples in the
existing DFER datasets.

To address the challenge of limited training samples, large-scale
self-supervised pretrained methods have been proposed. For in-
stance, MARLIN [3] and MAE-DFER [34] pretrain masked autoen-
coders on massive non-annotated facial videos, and then finetune
them for DFER. The self-supervised pertained models exhibit no-
table limitations, including substantial pretraining costs and task-
independent representations. Furthermore, CLIPER [19] and DFER-
CLIP [51] directly adapt the pretrained CLIP to DFER, enabling
task-related representation learning and obviating the need for
additional pretraining processes. However, these models primarily
learn temporal dependencies through video masking autoencoders
(VideoMAEs [36]) or temporal average pooling, struggling to model
complex temporal dependencies in the presence of noisy frames.

Unlike existing CLIP-based methods for DFER, we propose lever-
aging unique domain knowledge in DFER to enable CLIP to handle
complex temporal dependencies, thereby simultaneously address-
ing the issues of noise frames and limited training data.

2.2 Vision-Language Pretraining
Vision-language pretraining [48] has demonstrated remarkable
generalization capabilities to various downstream computer vision
tasks. One of the most representative works is CLIP [31], which
leverages contrastive learning to jointly learn image-language rep-
resentations from a large-scale dataset, comprising 400 million
image-text pairs sourced from the web. CLIP’s remarkable transfer-
ability has propelled advancements in various downstream tasks
[16, 27, 40, 43]. A critical challenge in adapting the pretrained CLIP
for downstream visual tasks is prompt engineering, which is highly
time-consuming due to the substantial impact of minor wording
variation on performance. CoOp [53] first pioneers the application
of context optimization for automatic prompt engineering, intro-
ducing learnable prompts for textual inputs, rather than relying
on hand-crafted templates. The follow-up CoCoOp [52] utilizes
visual feature to generate input-conditional prompts, thereby en-
hancing generalization abilities. In addition, the unsuitability of the
vision encoder devised for images in handling videos potentially
restrict CLIP’s application in video understanding tasks. X-CLIP
[29] introduces a cross-frame attention mechanism to capture long-
range frame dependencies along the temporal dimension, enabling
CLIP to process videos as input. Moreover, CLIP-VIP [44] facilitates
CLIP’s ability to handle both images and videos via a proxy-guided
video attention mechanism. In addition to the modifications sug-
gested by existing methods, we further leverage domain knowledge
to inform the design of video encoders and the learning of textual
prompts, enhancing CLIP’s adaptability to DFER.

2.3 Facial Action Units
Facial action units (AUs) [10, 35] encode subtle facial behaviors
commonly observed during the production of facial expressions.
For instance, AU4, which describes the facial behavior of lower-
ing eyebrows, is often associated with expressions of sad, fear,

and angry. Actually, the categories of facial expressions provide
holistic descriptions of facial behaviors, whereas AUs capture lo-
cal variations on faces. The pioneering work [9] comprehensively
summarizes the relationships between expressions and AUs, offer-
ing prototypical AUs for each basic expression. Given that AUs
offer more detailed information about different expressions, several
studies [6, 23, 30, 45] utilize them to enhance FER performance.
Nonetheless, owing to the costly and labor-intensive nature of AU
annotation, these studies often rely on prior relationships between
AUs and expressions as supplementary supervision signals during
model training. In our study, we utilize the textual descriptions of
relevant AUs to enrich the semantic content associated with each
expression class name.

3 Methodology
3.1 Revisiting CLIP
CLIP [31] comprises an image encoder and a text encoder to ex-
tract image and text features, respectively. After obtaining visual
and textual features, CLIP learns a joint encoding space for both
modalities using a contrastive loss based on the cosine similarity
between the two features. Consequently, the prediction process of
the image classification task based on the pretrained CLIP can be
formulated as follows:

𝑝 (𝑦 |x) =
exp(sim(x, c𝑦)/𝜏)∑𝐾
𝑖=1 exp(sim(x, c𝑖 )/𝜏)

, (1)

where sim(·, ·) denotes cosine similarity, 𝐾 represents the number
of classes, and 𝜏 is a temperature parameter. The image feature x and
the textual descriptions that specify the class c𝑦 are extracted using
the image encoder and text encoder of the pretrained CLIP. Our
work is focused on effectively adapting CLIP for DFER through the
design of an efficient video encoder and learnable textual prompts.

3.2 DK-CLIP: Overview
As shown in Fig. 2, our proposed method comprises visual feature
extraction, textual feature extraction, and prediction. In the visual
feature extraction part, facial expression sequences, consisting of
𝑇 frames, are first embedded into patch embeddings, which are
subsequently divided into 𝑁 snippets. Following this, the cross-
frame attention module extracts local visual features, while the
multi-snippet integration module extracts global visual features. In
the textual feature extraction part, the class names of expressions
are aligned with AUs based on prior knowledge summarized from
previous work [9]. Subsequently, the cross-modal attention module
takes textual features and noise-free visual features as inputs to
learn textual prompts tailored for DFER. In the prediction part, the
noise reducing module is employed to erase noisy local snippets.
Then, all extracted visual features, excluding noisy ones, are utilized
to calculate similarity with textual prompts for classification and
engage in consistency regularization. We will elaborate on these
components in the subsequent sections.

3.3 Visual Feature Extraction
The primary challenge in adapting CLIP to DFER lies in how to
learn robust and discriminative visual features through effectively
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Figure 2: An overview of our proposed DK-CLIP. In the visual feature extraction part, the cross-frame attention module and
multi-snippet integration module are responsible for extracting local and global visual features, respectively. In the textual
feature extraction part, class names of expressions are initially aligned with corresponding AUs based on prior knowledge.
Subsequently, the textual features undergo enhancement through the integration of noise-free visual features. During the
prediction stage, the noise reducing module and consistency regularization mechanism work together to adaptively mitigate
the influence of noisy visual features. Notably, the consistency regularization is only employed during the training process.

modeling the temporal correlations within video frames. Nonethe-
less, the presence of noisy frames requires consideration of both
short- and long-term temporal dependencies when model temporal
correlations in DFER, which differentiates from general video recog-
nition task. Inspired by the work [29] that employs a cross-frame
attention mechanism to capture temporal correlations in videos,
we develop a hierarchical video encoder that first extracts local
features from local sequences, and then extracts global features.

Specifically, given a video clip V ∈ R𝑇×𝐻×𝑊 ×3, consisting of 𝑇
sampled frames with 𝐻 and𝑊 denoting the spatial resolution, we
follow the Vision Transformer (ViT) [8] to divide the 𝑡-th frame
into 𝑀 non-overlapping patches and subsequently embed them
into patch embeddings, denoted as {x𝑡,𝑖 }𝑀𝑖=1, where 𝑡 ∈ {1, · · · ,𝑇 }
denotes the absolute temporal index. Then, the patch embeddings
of𝑇 frames are evenly divided into 𝑁 snippets. To capture temporal
correlations within each local snippet, we incorporate a cross-frame
attention module (CFAM) composed of an L-layer Transformer. The
input to the CFAM at frame 𝑡 in the 𝑛-th snippet is denoted as:

z𝑛
𝑡
= [x𝑛

𝑡,𝑐
, x𝑛
𝑡,1, x

𝑛

𝑡,2, · · · , x
𝑛

𝑡,𝑀
] + e𝑠𝑝𝑎, (2)

where x𝑛
𝑡,𝑐

is the learnable class token, 𝑡 is the relative temporal
index in local snippets, and e𝑠𝑝𝑎 represents the spatial position
encoding. Subsequently, we utilize the message token m𝑛

𝑡
, linearly

transformed from x𝑛
𝑡,𝑐
, to abstract and exchange visual informa-

tion across frames in each local snippet. Specifically, in the l-th
layer of the CFAM, the message tokens of 𝑛-th snippet, denoted as

m𝑛 = [m𝑛
1 ,m

𝑛
2 , · · · ,m

𝑛

𝑇
], are utilized to capture spatio-temporal

relationships among local frames in the local snippet, which is
formulated as:

m̃𝑛 = m𝑛 + MHSA(LN(mn)), (3)

where LN indicates layer normalization andMHSA representsmulti-
head self-attention [38]. Subsequently, z𝑛

𝑡
and m̃𝑛

𝑡
are concatenated

to diffuse spatio-temporal dependencies across each frame, which
defined as following:

[ẑ𝑛
𝑡
, m̂𝑛

𝑡
] = [z𝑛

𝑡
, m̃𝑛

𝑡
] + MHSA(LN( [z𝑛

𝑡
, m̃𝑛

𝑡
])), (4)

where [·, ·] concatenates the frame tokens and message tokens.
Ultimately, a snippet-level representation s𝑛 is derived by:

s𝑛 =
1
𝑇

𝑇∑︁
𝑡=1

x̂𝑛
𝑡,𝑐
. (5)

As a result, the CFAM outputs a collection of snippet features,
denoted as s = [s1, s2, · · · , s𝑁 ].

To derive a comprehensive representation for the entire video
clip V, we introduce a multi-snippet integration module (MSIM) to
synthesize local snippet features into a single video-level feature v,
which is expressed as:

v = AvgPool(FFN(MHSA(s + e𝑡𝑒𝑚))), (6)

where e𝑡𝑒𝑚 is the relative temporal position embedding, AvgPool
denotes the average pooling, and FFN indicates the feed-forward
network.



Domain Knowledge Enhanced Vision-Language Pretrained Model for Dynamic Facial Expression Recognition MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

3.4 Textual Feature Extraction
Existing works [19, 51] have demonstrated that constructing suit-
able textual prompts plays a key role in adapting pretrained vision-
language models to DFER task. However, the ways they generate
textual prompts involve complicated preprocessing steps that typi-
cally require a significant amount of time. Therefore, we propose
a straightforward approach to enrich textual prompts by combin-
ing the class names of expressions and the textual descriptions of
relevant AUs, guiding the model to focus on facial regions related
to expressions. Furthermore, we leverage visual contents to en-
hance the constructed textual prompts, enabling the model to learn
relevant information for each expression.

Enriching Textual Prompts with AUs. Traditional ways of
adapting CLIP to recognition tasks often rely on manually designed
textual prompts, such as “A photo of a {class}” or simply “{class}”,
where “class” primarily refers to objects or scenes. However, due to
the semantic gap between class names and visual contents, these
traditional ways are not suitable for adapting CLIP to DFER. Ac-
cording to existing works [10, 35], it is known that AUs describe
facial behaviors closely related to basic expressions (excluding Neu-
tral). As suggested in previous literature [9] that each expression is
associated with several AUs, we consider aligning basic expressions
with the primary relevant AUs to generate more semantically rich
textual prompts, as shown in Tab. 1. Specifically, we concatenate
the class name with the descriptions of related AUs to construct
textual prompts. Meanwhile, we use “or” to indicate the semantics
of AUs that are not always activated simultaneously. For instance,
the textual prompt for “Happiness” is reformulated as “Happiness
with cheek raiser, lip corner puller or lip part.”, where “cheek raiser”,
“lip corner puller”, and “lip part” are the textual descriptions of AU6,
AU12 and AU25, respectively. Notably, the textual prompts for
expressions without relevant AUs consist solely of the class name.

EnhancingTextual PromptswithVisual Contents.Although
textual prompts for basic expressions are enriched through AUs,
the manually designed prompts remain inadequate for generalizing
across varied visual situations. We follow the conditional prompt
learning mechanism [29, 52], leveraging visual content information
to enhance textual prompts. Specifically, given a set of text embed-
dings c = [c1, c2, · · · , c𝐾 ] derived from enriched textual prompts,
we propose a cross-modal attention module (CMAM) to facilitate
conditional prompt learning, which is formalized as following:

z̄ =
1
𝑇

𝑇∑︁
𝑡=1

z𝑡 , (7)

ĉ = c + 𝛾 · FFN(MHSA(c, z̄)), (8)

where ĉ represents the enhanced prompts, 𝛾 denotes a learnable
parameter initialized at 0.1, and z𝑡 is the ultimate output of the
𝑡-th frame obtained from the CFAM, excluding the class tokens. In
MHSA, we utilize the text representation c as the query and the
visual content representation z̄ as both the key and value.

3.5 Class-aware Consistency Regularization
The previous work [21] has verified that noisy frames significantly
impact the performance of DFERmethods, while the current datasets
lack supervised information for their identification. To mitigate
the influence of noisy frames on the visual and textual features,

Table 1: The prior relationships between basic expressions
and the primary relevant AUs. The detailed textual prompts
of each expression can be found in the appendix.

Basic Expression Primary Relevant AUs
Happiness AU6, AU12, AU25
Sadness AU1, AU4, AU15, AU17
Anger AU4, AU7, AU17, AU24
Surprise AU1, AU2, AU5, AU25, AU26
Disgust AU9, AU10, AU17
Fear AU1, AU2, AU4, AU5, AU20, AU25

we introduce a class-aware consistency regularization mechanism,
consisting of a noise reducing module and a consistency regular-
ization loss, to enable the model to adaptively perceive and erase
noise features.

Noise Reducing Module. Due to lacking supervision signals to
identify noisy frames, we introduce a simple yet efficient approach
to adaptively perceive noisy frames and mitigate their adverse
effects on DFER, i.e., Noise Reducing Module (NRM). The NRM
perceives and erases the noisy frames by leveraging visual simi-
larities between local snippet features and the holistic feature as
indicators. Specifically, we compute the similarity between each
snippet feature s𝑛 and the holistic feature v, resulting in a set of
similarity scores denoted as a = [𝑎1, 𝑎2, · · · , 𝑎𝑁 ]. Then, we em-
ploy the normalized similarity scores a∗ to identify potential noisy
snippet features and erase them, which can be defined as follows:

s∗𝑛 =

{
∅, 𝑎∗𝑛 < 𝜃,

s𝑛, otherwise,
(9)

where𝜃 represents a pre-determined hyperparameter and∅ denotes
empty vector. The remained snippet features then constitute a new
set s∗, containing local features that are less impacted by noisy
frames. Additionally, only 𝑇 ∗ frames, excluding those identified as
noisy, are utilized in computing z̄∗. Meanwhile, z̄ in Eq. 8 is replaced
by z̄∗ to mitigate the impact of noisy frames on textual prompts.

Consistency Regularization Loss. Due to noisy frames are
identified based on local snippet features and holistic feature in an
unsupervised manner, the precision of these identified noisy frames
cannot be guaranteed in the early training phases. The inconsis-
tency between the two features may result in erasing keyframes
incorrectly. Meanwhile, the influence of noisy frames on the overall
holistic visual features remain unchanged. Actually, the presence
of noisy frames or erasing keyframes is equivalent to introduce
perturbations to the sample, potentially resulting in inconsistency
between local snippet features and holistic feature. Consequently,
we introduce the consistency regularization employed in semi-
supervised learning [33, 46] to enforce similar predictions for per-
turbed versions of the same sample. Specifically, by utilizing the
holistic feature v and the text features ĉ, we can compute the global
prediction result p𝑔 using Eq. 1. Additionally, we can derive a set
of local prediction results based on the refined snippet features s∗.
Subsequently, we generate a unified local prediction p𝑙 by fusing
local predictions, which can be formulated as:

p𝑙 =
𝑁 ∗∑︁
𝑖=1

𝑤𝑖 · p𝑖 , (10)
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Table 2: Performance comparison of our DK-CLIP with the state-of-the-art methods on DFEW.

Methods Accuracy of Each Emotion(%) Metrics(%)
Hap. Sad. Neu. Ang. Sur. Dis. Fea. UAR WAR

FormerDFER [50] 84.05 62.57 67.52 70.03 56.43 3.45 31.78 53.69 65.70
STT [28] 87.36 67.90 64.97 71.24 53.10 3.49 34.04 54.58 66.45

DPCNet [42] - - - - - - - 55.02 66.32
NR-DFERNet [21] 88.47 64.84 70.03 75.09 61.60 0.00 19.43 54.21 68.19

IAL [20] 87.95 67.21 70.10 76.06 62.22 0.00 26.44 55.71 69.24
M3DFEL [39] 89.59 68.38 67.88 74.24 59.69 0.00 31.63 56.10 69.25

MARLIN (ViT-B/16) [3] 85.77 66.64 67.22 69.54 60.72 0.00 27.72 53.94 66.74
MAE-DFER (ViT-B/16) [34] 92.92 77.46 74.56 76.94 60.99 18.62 42.35 63.41 74.43
CLIPER (ViT-B/32) [19] - - - - - - - 57.56 70.84

DFER-CLIP (ViT-B/32) [51] 91.12 75.34 71.15 74.09 56.30 11.72 37.81 59.61 71.25
DK-CLIP (ViT-B/32) 93.03 74.96 70.45 77.28 60.45 7.72 39.04 60.42 72.98
DK-CLIP (ViT-B/16) 94.61 76.19 75.06 78.65 63.61 23.60 42.93 64.95 75.41

where p𝑖 represents the local prediction of 𝑖-th snippet feature, 𝑁 ∗

denotes the number of snippet features in s∗, and𝑤𝑖 is fusionweight
determined from the visual similarity scores a∗. Then, the class-
aware consistency regularization between p𝑔 and p𝑙 is achieved via
minimizing the following loss function:

L = L𝑔 + 𝜆 · (L𝑙 + L𝑘 ), (11)

where L𝑔 and L𝑙 represent the cross-entropy loss of p𝑔 and p𝑙 ,
respectively. L𝑘 denotes the KL-loss [13], which measures the KL-
Divergence between p𝑔 and p𝑙 . 𝜆 is a scalar hyperparameter that
controls the weight of the consistency regularization loss, which
comprises L𝑙 and L𝑘 . We enforce consistent prediction outputs for
the same sample across varying perturbations by aligning predicted
categories and probability distributions. This not only enhances
the NRM’s capability to perceive noisy frames but also mitigate the
influence of noisy features on global feature.

4 Experiments
4.1 Experimental Setup
Databases. We conduct experiments on three in-the-wild datasets,
including DFEW [15], FERV39K [41], and MAFW [24]. DFEW con-
sists of 16,372 video clips collected from more than 1,500 movies,
and each video clip is annotated with seven basic expressions, in-
cluding Happiness, Sadness, Neutral, Anger, Surprise, Disgust, and
Fear. FERV39K comprises 38,935 video clips collected from different
scenarios, and each video clip is assigned to one of the seven pri-
mary expressions as in DFEW. MAFW is a multi-modal compound
affective database with 10,045 video clips. Each video clip is anno-
tated with 11 compound expressions (containing Contempt, Anxiety,
Helplessness, Disappointment, and seven basic expressions) and a tex-
tual description of the subject’s affective behavior. We only use the
videomodality to evaluate our proposedmethod. DFEW andMAFW
provide data partitioning settings for 5-fold cross-validation, while
FERV39K splits all data into training and test sets without overlap-
ping. To ensure a fair comparison with other methods, we conduct
experiments on the default setting provided by each dataset.

Implementation Details. Our proposed method is based on
the pretrained CLIP that uses ViT [8] as the image encoder and a
transformer model [32] as the text encoder. Specifically, the patch

Table 3: Performance comparison of our DK-CLIP with the
state-of-the-art methods on FERV39K and MAFW.

Methods FERV39K MAFW
UAR WAR UAR WAR

FormerDFER [50] 37.20 46.85 31.16 43.27
NR-DFERNet [21] 33.99 45.97 - -

T-ESFL [24] - - 33.28 48.18
IAL [20] 35.82 48.54 -

M3DFEL [39] 35.94 47.67 - -
MARLIN (ViT-B/16) [3] 35.13 46.64 34.83 48.05

MAE-DFER (ViT-B/16) [34] 43.12 52.07 41.62 54.31
CLIPER (ViT-B/32) [19] 41.23 51.34 - -

DFER-CLIP (ViT-B/32) [51] 41.27 51.65 39.89 52.55
DK-CLIP (ViT-B/32) 40.76 51.58 41.17 54.93
DK-CLIP (ViT-B/16) 43.71 52.14 43.01 56.56

embeddingmodule and text encoder of our proposedmethod inherit
the weights directly from the pretrained CLIP, while the CFAM par-
tially inherits the weights from the pretrained ViT. The MSIM and
CMAM are randomly initialized. All parameters of CFAM, MSIM,
and CMAM are adjusted during training, while the parameters of
the patch embedding and text encoder remain frozen. Our proposed
model is trained for 50 epochs with five warm-up epochs using the
AdamW optimizer. The learning rate, the weight decay, and the
batch size are set to 2e-6, 0.001, and 8, respectively. We use data
augmentation techniques consisting of Fmix [12] and Mixup [47]
to increase the diversity of training data. We sample 16 frames for
each video (𝑇 = 16), and divide them into 4 parts as inputs (𝑁 = 4).
Meanwhile, we align only six basic expressions with AUs for all
datasets. We implement the proposed method with the Pytorch
toolbox and train it on 2 Tesla V100 GPUs. In all experiments, we
take unweighted average recall (UAR, i.e., the average accuracy of
each class) and weighted average recall (WAR, i.e., accuracy) as
metrics.

4.2 Experimental Results
To demonstrate the superiority of our proposed DK-CLIP, we com-
pare it with the state-of-the-artmethods on three in-the-wild datasets.
Since different methods employ distinct scales of ViT (B/16 and
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B/32) for feature extraction, we conduct experiments on both model
scales.

The average performances of 5-fold cross-validation results on
DFEW are presented in Tab. 2. As can be seen, our proposed DK-
CLIP achieves superior performance in both UAR and WAR. Specif-
ically, in comparison to the previously best-performing MAE-DFER
[34], DK-CLIP achieves an improvement of 1.54% and 0.98% in terms
of UAR and WAR, respectively. Additionally, it is noteworthy that
DK-CLIP exhibits significant improvement across most expressions.
The performance of DK-CLIP surpasses that of CLIPER [19] and
DFER-CLIP [51], thus highlighting the effectiveness of our proposed
method in adapting CLIP for DFER. In addition, DK-CLIP signif-
icantly outperforms M3DFEL[39], which is trained from scratch,
by 8.85%/6.16% of UAR/WAR, demonstrating the effectiveness of
leveraging pretrained knowledge for DFER. Tab. 3 presents the
experimental results obtained on FERV39K and MAFW. Our pro-
posed DK-CLIP achieves the best performance on both datasets.
Specifically, DK-CLIP surpasses MAE-DFER [34] by margins of
1.39% UAR and 2.25% WAR on MAFW. Meanwhile, it outperforms
DFER-CLIP with advantages of 1.28% UAR and 2.38% WAR. Owing
to the diverse scenarios present in FERV39K compared to DFEW
and MAFW, the dataset poses a greater challenge, leading to lower
recognition accuracy. Concurrently, the improvement in perfor-
mance resulting from the increased ViT scale is relatively minor
compared to other datasets. In summary, the promising results on
three in-the-wild datasets demonstrate the strong generalization
ability of DK-CLIP in practical scenarios.

4.3 Ablation Study
In this section, we conduct ablation studies to investigate the impact
of key factors in DK-CLIP. For simplicity, we only report the results
of the ViT-B/16 based model on DFEW fold 3.

Influence of Key Components. To evaluate the effectiveness
of key components in DK-CLIP, we perform experiments with
varying model architectures. The baseline model employs average
pooling for temporal modeling and incorporates class names as
textual prompts. As shown in Tab. 4, the results demonstrate the
effectiveness of modeling temporal correlations via the hierarchical
video encoder, along with the enhancement of textual prompts
through including AUs and visual contents. Our proposed DK-CLIP
outperforms the baseline model by 4.09%/3.17% of UAR/WAR. Fur-
thermore, the integration of class-aware consistency regularization
enhances performance by 0.74%/0.77% of UAR/WAR, highlighting
its effectiveness in reducing the influence of noisy frames.

Influence of Different Temporal Modeling. To evaluate the
effectiveness of our proposed hierarchical video encoder, we con-
duct experiments utilizing diverse temporal modeling approaches.
As shown in Tab. 5, our proposed hierarchical video encoder con-
sistently outperforms other approaches, showcasing its prowess in
modeling intricate temporal correlations within facial expression
sequences.

Influence of Different Textual Prompts. We conduct experi-
ments to analyze the influence of different textual prompts on the
performance of DK-CLIP. As shown in Tab. 6, we observe that the
utilization of learnable prompts results in superior performance due
to their capacity to learn task-relevant information throughout the

Figure 3: Ablation study on the noisy frame threshold 𝜃 , and
the number of local snippets 𝑁 .

Table 4: Ablation study on the model architecture. HVE:
Hierarchical Video Encoder. ETP: Enhanced learnable Text
Prompts. CCR: Class-aware Consistency Regularization.

Modules Metrics(%)
HVE ETP CCR UAR WAR

✗ ✗ ✗ 59.38 71.92
✓ ✗ ✗ 61.43 74.83
✗ ✓ ✗ 61.49 73.63
✓ ✓ ✗ 63.47 75.09
✓ ✓ ✓ 64.21 75.86

Table 5: Ablation study on different temporal modeling. (a)
Average pooling [19]. (b) Single-layer Transformer [51]. (c)
Cross-frame attention [29]. (d) The hierarchical structure.

Metrics Setting(%)
a b c d

UAR 61.49 61.67 63.47 64.21
WAR 73.63 74.49 75.09 75.86

Table 6: Ablation study on textual prompts. (a) Class names.
(b) Learnable prompts [53]. (c) Learnable prompts generated
by LLMs [51]. (d) Learnable prompts enriched by all relevant
AUs. (e) Learnable prompts enriched by activated AUs.

Metrics Setting(%)
a b c d e

UAR 62.46 64.50 62.67 63.98 64.21
WAR 74.49 75.17 75.34 75.56 75.86

training process. Moreover, compared with the learnable prompts
generated by LLMs in DFER-CLIP [51], our proposed learnable
prompts enhanced by visual content and activated AUs exhibits an
improvement of 1.54% and 0.52% in UAR and WAR, respectively.
This improvement stems from the fact that the generated textual
prompts exhibit significant semantic similarity, whereas our tex-
tual prompts, incorporating class names and AUs, exhibit greater
discernibility. Furthermore, compared to using “and” in textual
prompts to combine AUs that are not always activated simultane-
ously (Tab. 6 (d)), employing “or” to distinguish their semantics
(Tab. 6 (e)) shows better performance.

Influence of Hyper-parameters. We investigate the influence
of the threshold 𝜃 and the number of local snippets 𝑁 . As shown in
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(a) IAL (AAAI2023) (b) M3DFEL (CVPR2023) (c) DFER-CLIP (BMVC2023) (d) DK-CLIP (ours)

Figure 4: High-level visual feature visualization on DFEW fold 3 using t-SNE.
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Figure 5: The recognition results of four video sequences at 𝜃 = 0.15. The global and local predictions are obtained by video-level
and snippet-level representations, respectively. The local snippets with similarity scores 𝑎∗ less than 𝜃 are erased.

Fig. 3, improper setting of noise frame threshold 𝜃 can significantly
impact model performance. This is due to the fact that a threshold 𝜃
that is too low fails to effectively erase noise, whereas an excessively
high threshold may lead to the erroneous removal of keyframes.
Meanwhile, it is evident that setting the number of local snippets
to 4 represents an optimal selection for a sampling rate of 16.

4.4 Visualization
Feature Visualization. To demonstrate the superiority of DK-CLIP
compared to state-of-the-art methods, we visualize the learned vi-
sual embedding using t-SNE [37] on DFEW fold 3. As can be seen
in Fig. 4, the embeddings learned by our method exhibit greater
compactness and separability compared to those of other meth-
ods, which demonstrates the ability of DK-CLIP to learn highly
discriminative visual representations for diverse dynamic facial
expressions.

Recognition Results Visualization. To further evaluate the
effectiveness of the proposed method, we provide detailed local
and global prediction results for four samples from DFEW fold 3,
as shown in Fig. 5. As we can see, our proposed method accurately

identifies noisy frames and produces reliable predictions. Mean-
while, we observe that the similarity scores also serve as indicators
for estimating the expression intensity, as exemplified in the third
row of Fig. 5. Furthermore, our proposed method demonstrates
robustness against interference such as occlusion and low light
conditions.

5 Conclusion
In this paper, we propose a novel method to promote the devel-
opment of DFER through effectively adapting CLIP to DFER. We
present a hierarchical video encoder designed to jointlymodel short-
and long-term temporal correlations in DFER. Meanwhile, we align
facial expressions and AUs using prior relationships to construct
semantically rich textual prompts, which are further enhanced with
visual contents. Furthermore, we introduce a class-aware consis-
tency regularization mechanism that comprises a noise reducing
module and a consistency regularization loss, aiming to reduce the
impact of noisy frames and enhance the robustness of the model to
interference. The extensive experimental results demonstrate the
superiority of our proposed method.
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