
MultiScan: Scalable RGBD scanning for
3D environments with articulated objects

Supplemental Materials

Yongsen Mao, Yiming Zhang, Hanxiao Jiang, Angel X. Chang, Manolis Savva
Simon Fraser University

https://3dlg-hcvc.github.io/multiscan/

This supplemental document provides the following additional contents to support the main paper:

A MultiScan pipeline technical details

B Additional MultiScan dataset statistics

C Additional experiments and results

A MultiScan pipeline details

In this section we describe in more detail the different phases of the MultiScan pipeline: acquisition,
reconstruction, and annotation.

A.1 Acquisition details

We developed scanning apps for both iOS and Android mobile devices. The scanning app captures
RGB, depth, confidence streams, camera poses, and provides UI for the user to specify metadata
(scene type, location, etc) and upload the scans for a server for reconstruction. Users move freely
through indoor scenes with the devices in hand, and record RGBD scans of the environment.

Owners of non-public spaces that were scanned provided their consent by reading and agreeing to the
terms below:

I agree to allow Simon Fraser University to use data of my space for academic and/or non-
commercial research purposes as described by the Creative Commons Attribution-NonCommercial
4.0 (CC BY-NC 4.0) license (https://creativecommons.org/licenses/by-nc/4.0/).

How will the data be used?
The data will be used for academic research, such as 3D computer vision and artificial
intelligence. With your permission the data from your space will become part of a collection
of spaces around the world.

Is it anonymous? Is any of my information distributed in the data?
Yes, it is anonymous. We will not distribute any information about your name, address, or
other personal information. However, please make sure that there is no personal information
that is visible when we collect the data (for example pieces of paper with personal
information, or photos). If there is such information and it cannot be hidden, please let us
know so that we avoid taking pictures of it.

The iOS app uses Apples’s ARKit library and the Android app uses Google’s ARCore library. Active
sensors such as time-of-flight (ToF) and LiDAR sensors are detected and used. If unavailable, less
accurate estimated depth frames are acquired. Recorded data streams are compressed with the H.264
codec for RGB video, and zlib compression for other data streams such as depth and depth confidence.
Associated 6 DoF camera poses and timestamps for each frame are also stored in json line format.
See Figure 1 for screenshots showing different parts of the acquisition app UI from both iOS and
Android devices.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://3dlg-hcvc.github.io/multiscan/


Figure 1: Screenshots from the iOS and Android acquisition apps showing parts of the interface
allowing the user to specify scene metadata and description text, list acquired scans and upload to a
processing server.

Figure 2: Depth map filtering. From left: raw acquired depth map, filtered depth map, reconstruction
result with raw depth maps, reconstruction result with filtered depth maps. Filtering of low-confidence
and rapidly changing depth values leads to fewer floating point artifacts.

A.2 Reconstruction and processing details

A web interface is available for users to browse the scanned data and to initiate the reconstruction
process. Users can first preview the geometry of the untextured mesh in an early stage to confirm
the quality of reconstruction based on a scan. After the mesh is textured, users can start annotating
scenes with our semantic annotation framework.

The reconstruction process consists of a pre-processing step where depth filter is applied to filter
out noise and outliers in the depth maps. Then, a dense surface reconstruction is performed using
Open3D [20] to obtain 3D mesh geometry which is subsequently decimated, cleaned, and aligned to
a global coordinate frame. The cleaned mesh is then textured using and the mesh is textured using
the multi-view stereo texturing approach of Waechter et al. [14]. Finally, we apply an unsupervised
segmentation based on normals and colors to provide an initial set of coarse and fine segmentations
for our annotation interface.

Depth map filtering. Depth maps from mobile devices tends to be low resolution and noisy. The
raw acquired depth maps contains noise and outliers, especially in edge boundaries with big depth
difference, which will introduce artifacts in the reconstruction results as shown in Figure 2. We
compute pixel-wise depth differences between pairs of frames to filter out depth values with depth
difference greater than 5 cm. In addition, we only use depth pixels with high confidence: confidence
of 2 (high) in ARKit for all the data reported in the main paper.

Reconstruction parameters. For reconstruction, we use a CUDA-accelerated implementation of
volumetric fusion [4] from Open3D [20]. For our dataset, we use the device provided camera poses,
and integrate the depth maps during the first pass for reconstruction. In our experiments, we found
that a voxel size of 0.01m , and truncation value of 0.08m can produce good results across different
scenes. We set the block resolution to 24, and block count to 30000.

2




