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RT-Sketch: Goal-Conditioned Imitation Learning
from Hand-Drawn Sketches - Supplementary Material

In this section, we provide further details on the visual goal representations RT-Sketch sees at train
and test time (Appendix A), qualitative visualizations of experimental rollouts (Appendix B), limita-
tions (Appendix C) of RT-Sketch, as well as the interfaces used for data annotation, evaluation, and
human assessment (Appendix D). To best understand RT-Sketch’s performance and see its emergent
capabilities, please refer to our website.>.

A SKETCH GOAL REPRESENTATIONS

Since the main bottleneck to training a sketch-to-action policy like RT-Sketch is collecting a dataset
of paired trajectories and goal sketches, we first train an image-to-sketch translation network 7T
mapping image observations o; to sketch representations g;, discussed in Section 3. To train 7T,
we first take a pre-trained network for sketch-to-image translation (Li et al., 2019) trained on the
ContourDrawing dataset of paired images and edge-aligned sketches (Fig. 4). This dataset contains
L% = 5 crowdsourced sketches per image for 1000 images. By pre-training on this dataset, we
hope to embed a strong prior in 7 and accelerate learning on our much smaller dataset. Next, we
finetune 7 on a dataset of 500 manually drawn line sketches for RT-1 robot images. We visualize a
few examples of our manually sketched goals in Fig. 5 under ‘Line Drawings’.

Figure 4: ContourDrawing Dataset: We visualize 6 samples from the ContourDrawing Dataset
from (Li et al., 2019). For each image, 5 separate annotators provide an edge-aligned sketch of
the scene by outlining on top of the original image. As depicted, annotators are encouraged to
preserve main contours of the scene, but background details or fine-grained geometric details are
often omitted. Li et al. (2019) then train an image-to-sketch translation network 7 with a loss that
encourages aligning with at least one of the given reference sketches (Eq. (2)).

Notably, while we only train 7 to map an image to a black-and-white line sketch ¢;, we consider
various augmentations A on top of generated goals to simulate sketches with varied colors, affine
and perspective distortions, and levels of detail. Fig. 5 visualizes a few of these augmentations,
such as automatically colorizing black-and-white sketches by superimposing a blurred version of
the original RGB image, and treating an edge-detected version of the original image as a generated

http://rt-sketch-anon.github.io

13


http://rt-sketch-anon.github.io
http://rt-sketch-anon.github.io

Under review as a conference paper at ICLR 2024

sketch to simulate sketches with a lot of details. We generate a dataset for training RT-Sketch by
‘sketchifying’ hind-sight relabeled goal images via 7 and .A.

Ground Truth Manually Sketched Goals
i 7

Generated Goals

gi —A 07:)

. GAN-generated GAN-generated  ~
Goal Image Free-Hand Line Sketch Color Sketch Line Sketch Line Sketch + Color Sobel Edges

Figure 5: Visual Goal Diversity: RT-Sketch is capable of handling a variety of visual goals at both
train and test time. RT-Sketch is trained on generated and augmented images like those shown on
the right below ’Generated Goals’. But it can also interpret free-hand, line sketches, and colored
sketches at test time such as those on the left below *Manually Sketched Goals’.

Although RT-Sketch is only trained on generated line sketches, colorized line sketches, edge-
detected images, and goal images, we find that it is able to handle sketches of even greater diversity.
This includes non-edge aligned free-hand sketches and sketches with color infills, like those shown
in Fig. 5.

B ROLLOUT VISUALIZATIONS

To interpret RT-Sketch’s performance, beyond quantitative notions of alignment like pixelwise dis-
tance or Likert ratings as in Section 4.2, we provide qualitative visualizations of experimental roll-
outs. In Fig. 6, Fig. 7, Fig. 8, and Fig. 10, we visualize each policy’s behavior for H1, H2, H3
and H4, respectively. Fig. 9 visualizes the four tiers of difficulty in language ambiguity that we
analyze for H4. To best understand RT-Sketch’s performance, we kindly refer interested readers to
our website containing a much more detailed overview and videos of all policies.
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Figure 6: H1 Rollout Visualization: We visualize the performance of RT-1, RT-Sketch, and RT-
Goal-Image on two skills from the RT-1 benchmark (upright and knock). For each skill, we visu-
alize the goal provided as input to each policy, along with the policy rollout. We see that for both
skills, RT-1 obeys the semantic task at hand by successfully placing the can upright or sideways, as
intended. Meanwhile, RT-Sketch and RT-Goal-Image struggle with orienting the can upright, but
successfuly knock it sideways. Interestingly, both RT-Sketch and RT-Goal-Image are able to place
the can in the desired location (disregarding can orientation) whereas RT-1 does not pay attention
to where in the scene the can should be placed. This is indicated by the discrepancy in position of
the can in the achieved versus goal images on the right. This trend best explains the anomalous per-
formance of RT-Sketch and RT-Goal-Image in perceived Likert ratings for the upright task (Fig. 3),
but validates their comparably higher spatial precision compared to RT-1 across all benchmark skills
(Table 1).
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Figure 7: H2 Rollout Visualization: For the open drawer skill, we visualize four separate rollouts
of RT-Sketch operating from different input types. Free-hand sketches are drawn without outlining
over the original image, such that they can contain marked perspective differences, partially ob-
scured objects (drawer handle), and roughly drawn object outlines. Line sketches are drawn on top
of the original image using the sketching interface we present in Appendix Fig. 13. Color sketches
merely add color infills to the previous modality, and Sobel Edges represent an upper bound in terms
of unrealistic sketch detail. We see that RT-Sketch is able to successfully open the correct drawer
for any sketch input except the free-hand sketch, without a noticeable performance gain or drop. For
the free-hand sketch, RT-Sketch still recognizes the need for opening a drawer, but the differences
in sketch perspective and scale can occasionally cause the policy to attend to the wrong drawer, as
depicted.
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Non-Distractor Objects Rollout
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Figure 8: H3 Rollout Visualization: We visualize qualitative rollouts for RT-Sketch and RT-Goal-
Image for 3 separate trials of the move near skill subject to distractor objects. In Column 2, we
highlight the relevant non-distractor objects that the policy must manipulate in order to achieve the
given goal. In Trial 1, we see that RT-Sketch successfuly attends to the relevant objects and moves
the blue chip bag near the coke can. Meanwhile, RT-Goal-Image is confused about which blue
object to manipulate, and picks up the blue pepsi can instead of the blue chip bag (A). In Trial 2,
RT-Sketch successfully moves an apple near the fruit on the left. A benefit of sketches is their ability
to capture instance multimodality, as any of the fruits highlighted in Column 2 are valid options to
move, whereas this does not hold for an overspecified goal image. RT-Goal-Image erroneously picks
up the green chip bag (B) instead of a fruit. Finally, Trial 3 shows a failure for both policies. While
RT-Sketch successfully infers that the green can must be moved near the red one, it accidentally
knocks over the red can (C) in the process. Meanwhile, RT-Goal-Image prematurely drops the green
can and instead tries to pick the green chip bag (D).
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Figure 9: H4 Tiers of Difficulty: To test H4, we consider language instructions that are either am-
biguous due the presence of multiple similar object instances (T1), are somewhat out-of-distribution
for RT-1 (T2), or are far out-of-distribution and difficult to specify concretely without lengthier de-
scriptions (T3). Each image represents the ground truth goal image paired with the task description.
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Figure 10: H4 Rollout Visualization (T1 as visualized in Fig. 9): One source of ambiguity in
language descriptions is mentioning an object for which there are multiple instances present. For
example, we can easily illustrate three different desired placements of an orange in the drawer via
a sketch, but an ambiguous instruction cannot easily specify which orange is relevant to pick and
place. In all rollouts, RT-Sketch successfully places the correct orange in the drawer, while RT-
1 either picks up the wrong object (A), fails to move to the place location (B), or knocks off one of
the oranges (C). Although in this case, the correct orange to manipulate could easily be specified
with a spatial relation like pick up the ( left/middle/right ) orange, we show below in Appendix
Fig. 11 that this type of language is still out of the realm of RT-1’s semantic familiarity.
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Figure 11: H4 Rollout Visualization (T2-3 as visualized in Fig. 9): For T2, we consider language
with spatial cues that intuitively should help the policy disambiguate in scenarios like the oranges
in Fig. 10. However, we find that RT-1 is not trained to handle such spatial references, and this kind
of language causes a large distribution shift leading to unwanted behavior. Thus, for the top rollout
of trying to move the chip bag to the left where there is an existing pile, RT-Sketch completes the
skill without issues, but RT-1 attempts to open the drawer instead of even attempting to rearrange
anything on the countertop (A). For T3, we consider language goals that are even more abstract in
interpretation, without explicit objects mentioned or spatial cues. Here, sketches are advantageous
in their ability to succinctly communicate goals (i.e. visual representation of a rainbow), whereas
the corresponding language task string is far too underspecified and OOD for the policy to handle

(B).
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C RT-SKETCH FAILURE MODES AND LIMITATIONS

While RT-Sketch is performant at several manipulation benchmark skills, capable of handling dif-
ferent levels of sketch detail, robust to visual distractors, and unaffected by ambiguous language, it
is not without failures and limitations.
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Figure 12: RT-Sketch Failure Modes

In Fig. 12, we visualize the failure modes of RT-Sketch. One failure mode we see with RT-Sketch is
occasionally re-trying excessively, as a result of trying to align the scene as closely as possible. For
instance, in the top row, Rollout Image 3, the scene is already well-aligned, but RT-Sketch keeps
shifting the chip bag which causes some misalignment in terms of the chip bag orientation. Still,
this kind of failure is most common with RT-Goal-Image (Table 1), and is not nearly as frequent
for RT-Sketch. We posit that this could be due to the fact that sketches enable high-level spatial
reasoning without over-attending to pixel-level details.

One consequence of spatial reasoning at such a high level, though, is an occasional lack of precision.
This is noticeable when RT-Sketch orients items incorrectly (second row) or positions them slightly
off, possibly disturbing other items in the scene (third row). This may be due to the fact that sketches
are inherently imperfect, which makes it difficult to reason with such high precision.

Finally, we see that RT-Sketch occasionally manipulates the wrong object (rows 4 and 5). Interest-
ingly, we see that a fairly frequent pattern of behavior is to manipulate the wrong object (orange in
row 4) to the right target location (near green can in row 4). This may be due to the fact that the
sketch-generating GAN has occasionally hallucinated artifacts or geometric details missing from
the actual objects. Having been trained on some examples like these, RT-Sketch can mistakenly
perceive the wrong object to be aligned with an object drawn in the sketch. However, the sketch still
indicates the relative desired spatial positioning of objects in the scene, so in this case RT-Sketch still
attempts to align the incorrect object with the proper place.
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Finally, the least frequent failure mode is manipulating the wrong object to the wrong target location
(i.e. opening the wrong drawer handle). This is most frequent when the input is a free-hand sketch,
and could be mmitigated by increasing sketch detail (Table 2).

D EVALUATION AND ASSESSMENT INTERFACES
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Figure 13: Sketching UI: We design a custom sketching interface for manually collecting paired
robot images and sketches with which to train 7, and for sketching goals for evaluation. The in-
terface visualizes the current robot observation, and provides the ability to draw on a digital screen
with a stylus. The interface supports different colors and erasure. We note that intuitively, drawing
on top of the image is not an unreasonable assumption to make, since current agent observations are
far more readily available than a goal image, for instance. Additionally, the overlay is intended to
make the sketching interface easy for the user to provide, without having to eyeball edges for the
drawers or handles blindly.
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Figure 14: Assessment UI: For all skills and methods, we ask labelers to assess semantic and
spatial alignment of the recorded rollout relative to the ground truth semantic instruction and visual
goal. We show the interface above, where labelers are randomly assigned to skills and methods
(anonymized). The results of these surveys are reported in Fig. 3.
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