
Supplementary Material: A Winning Hand: Compressing Deep
Networks Can Improve Out-Of-Distribution Robustness

Here we provide a brief outline of the appendices. In Appendix A, we provide details on relevant
past works. In Appendix B, we discuss our experimental setting and relevant hyperparameters. In
Appendix C, we provide additional experiments with initialization methods and, in part, show that
the robustness of the EP method is not only due to binarization but also due to the specific pruning
strategy. In Appendix D, we provide Fourier heatmaps for additional pruning rates and architectures.
In Appendix E, we provide additional Fourier heatmap results on comparing the rewinding-based
schemes with the traditional pruning schemes. In Appendix F, we provide extensive tables for
CARD and CARD-Deck experiments performed in Section 3. In Appendix G, we provide remaining
proof details for our theoretical justification of our CARD-Deck approach. We show the universal
approximation power of CARD-Decks and prove that CARD-Deck with a suitable gating function is
provably better than using a single classifier.

A Background

A.1 Accuracy preserving model compression

Two popular approaches for model compression are: pruning and quantization. Here, we discuss
these approaches and their effects on accuracy.

Pruning. Neural network pruning removes weights [30] or larger structures like filters [31] from
neural networks to reduce their computational burden [18, 21] and potentially improve their gener-
alization [53, 35]. As the performance of DNNs has continued to improve with increasing levels
of overparameterization [56], production DNNs have grown larger [29, 4], and the need to broadly
deploy such models has amplified the importance of compression methods like pruning [18, 17].

In modern networks, pruning the smallest magnitude weights after training then fine-tuning (FT)
to recover accuracy lost from the pruning event is surprisingly effective; when the pruning is done
iteratively rather than all at once, this approach enables a 9x compression ratio without loss of accuracy
[18]. Gradual magnitude pruning (GMP) performs such iterative pruning throughout training rather
than after training [37, 60], recovering accuracy lost from pruning events as training proceeds, and
matches or exceeds the performance of more complex methods [14].

Another form of magnitude pruning stems from work on the lottery ticket hypothesis (LTH), which
posits that the final, sparse subnetwork discovered by training then pruning can be rewound to its state
at initialization [12] or early in training [13], then trained in isolation to be comparably accurate to the
trained dense network. The associated pruning approach that iteratively trains the network, rewinds
the weights (and learning rate schedule) to their values early in training, then trains the subnetwork is
referred to here as LTH. A simpler version of this algorithm, learning rate rewinding (LRR) [43], only
rewinds the learning rate schedule (not the weights) and achieves a state-of-the-art accuracy-efficiency
frontier while being less complex than other competitive approaches [60, 36, 12, 22]. LRR has been
shown to offer small improvements to accuracy with not-too-high compression ratio [43]. The authors
in [50] proposed calibration mechanisms to find more effective lottery tickets.

Building on the lottery ticket hypothesis, the edgepopup (EP) algorithm introduced a way to find
sparse subnetworks at initialization that achieve good performance without any further training [41].
Diffenderfer and Kailkhura [9] introduced a similar pruning approach, biprop (BP), which also
performs weight binarization.

Binarization. Typical post-training schemes have not been successful in binarizing pretrained models
with or without retraining to achieve reasonable accuracy. Most existing post-training works [17, 58]
are limited to ternary weight quantization. To overcome this limitation, there have been several
efforts to improve the performance of binary neural network (BNN) training. This is challenging
due to the discontinuities introduced by the binarization, which makes back-propogation difficult.
Binaryconnect [7] first showed how to train networks with binary weights within the familiar back-
propagation paradigm. Unfortunately, this early scheme resulted in a significant drop in accuracy
compared to its full precision counterparts. To improve performance, XNOR-Net [42] proposed
adding a real-valued channel-wise scaling factor to improve capacity. Dorefa-Net [59] extended
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XNOR-Net to accelerate the training process via quantized gradients. ABC-Net [33] improved
performance by using more weight bases and activation bases at the cost of increased memory.

Notably, one can exploit the complementary nature of pruning and binarization to combine their
strengths. For example, Diffenderfer and Kailkhura [9] produced an algorithm for finding multi-prize
lottery tickets (MPTs): sparse, binary subnetworks present at initialization that don’t require training.

Pruning algorithm framework. The following pruning algorithm framework, inspired by those
in [43, 51], covers traditional-through-emerging pruning methodologies. Specifically, we define the
trained subnetwork created by one pruning-retraining cycle (i.e., one pruning iteration) as:

Wsparse = F1(Wk1
;D)� F2(Wi;D,M, k2), (3)

where D denotes the training dataset, Wi denotes the weight vector at the start of training iteration
i,4 F1 represents the function that finds and returns the weight-masking vectorM, F2 represents
the function that retrains the weights afterM is found, ki is the earliest training iteration that Fi

requires information from (e.g., weight-vector or learning-rate values), F1 and F2 are each applied at
the beginning of iteration k1, and � is the Hadamard (element-wise) product. Using this, the pruning
paradigms and representative techniques from these categories considered in this paper are as follows:

• Traditional k1 = k2 and F2 6= I (identity function). Particular techniques:

– Fine-Tuning (FT) [18]:
Wsparse = F1(WT )� F2(WT ;D,M, T )

– Gradual Magnitude Pruning (GMP) [60]:
Wsparse = F1(Wt)� F2(Wt;D,M, t), where t ∈ [t1, t2, ..., tn] and tn < T

• Rewinding-based Lottery Ticket k1 = aT − (a− 1)r and k2 = r, where a ∈ [1 .. n] and
r � T . Particular techniques:

– Weight Rewinding (LTH) [12, 13]:
Wsparse = F1(WaT−(a−1)r)� F2(Wr;D,M, r)

– Learning Rate Rewinding (LRR) [43]:
Wsparse = F1(WaT−(a−1)r)� F2(WaT−(a−1)r;D,M, r)

• Initialization-based (Strong) Lottery Ticket k1 = k2 = 0 and F2 = I . Particular
techniques:

– Edgepopup (EP) [41]:
Wsparse = F1(W0, binary;D)� I(W0, binary)

– Biprop (BP) [9]:
Wsparse = F1(W0;D)� I(W0, binarized by biprop)

Note that GMP, LTH, and LRR are all iterative. Further, since rewinding schemes apply F1 and F2

at the beginning of iterations k1 = aT − (a − 1)r, a ∈ [1 .. n], it’s true that k1 > k2 = r, so F2

needs to store information from iteration k2 = r in order to (at k1) perform the training iterations that
determine Wi, i ≥ T . As opposed to traditional and rewinding schemes, strong lottery ticket [41]
schemes do not require any weight training before or after pruning—a performant network is found at
initialization via F1. In other words, learning occurs simply by pruning a randomly initialized neural
network. Furthermore, by design BP performs binarization of the weights to reduce the memory
footprint. We note that the precision of the weights in networks trained using EP maintain the same
precision as the randomly initialized weights. Hence, EP can also be used to identify binarized
networks by randomly initializing the weights to binary values. To take advantage of additional
compression, in our experiments with EP the maskM is learned from a binary-initialized weight
vector W0, binary. As BP performs binarization during pruning, a full-precision weight vector W0 is
used when findingM. In all of these methods, we make use of global unstructured pruning which
allows for different pruning percentages at each layer of the network.

4During training, i < T for most pruning approaches, where T is the default number of training iterations.
However, fine-tuning trains for an additional set of iterations after pruning takes place at iteration T . Additionally,
rewinding-based lottery ticket approaches (when accounting for training done by F2) use (n+1)T −nr training
iterations, where n is the number of pruning iterations or “shots” in an n-shot pruning procedure, and r is the
iteration rewound to after each pruning iteration (note that when r = 0, the network is rewound to its state from
initialization after each pruning iteration and (n+ 1)T total iterations are required by this approach).
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A.2 Accuracy preserving robust training

While DNN models show impressive generalization in I.I.D. data scenarios [48, 10], the robustness
of such models on OOD data (e.g., common corruptions – blurring from camera movement, or noise
from low-lighting conditions) is critical to the successful deployment of DL in the wild. To evaluate
performance in the presence of such common corruptions, Hendrycks and Dietterich [23] introduced
the CIFAR-10-C dataset, which comprises validation images from CIFAR-10 [28] that were exposed
to 15 diverse corruption types applied at 5 severity levels.

To achieve high OOD robustness and accuracy, AugMix [24] creates data augmentations at training
time by composing randomly-selected augmentation operations from a diverse set, which notably
excludes augmentations overlapping with those used to create CIFAR-10-C. Additionally, AugMix
utilizes a Jensen-Shannon Divergence consistency loss term to match the predictions between different
augmentations of a given image. This approach is expanded on by DeepAugment [25], which inputs
clean images to a pretrained image-to-image model, corrupts this model’s weights and activations
with various operations that distort the typical forward pass, then uses the output images as augmented
data. AdversarialAugment (AdA) builds on DeepAugment by generating the weight perturbations
performed on the image-to-image models via adversarial training [6]. Also, when used with an
appropriately selected perturbation radius and distance metric, adversarial training can serve as a
strong baseline against common corruptions [16, 27].

Notably, the state-of-the-art in OOD robustness has historically evolved by leveraging more advanced
data augmentation schemes and larger models than prior works [8].

A.3 Methods to design compact-accurate-robust models

Despite its critical need, efforts towards achieving model compactness, high accuracy, and OOD (natu-
ral corruption) robustness simultaneously have mostly been unsuccessful, to the best of our knowledge.
Note that some recent works have shown successful attempts for different use cases, e.g., adversarial
example robustness [52], additive white noise robustness [1], and domain generalization [57].

Hooker et al. [26] analyzed traditional compression techniques [60] and showed that pruned and
quantized models have comparable accuracy to the original dense network but are far more brittle
than non-compressed models in response to small distributional changes that humans are robust to. It
is well known that even non-compressed models are very brittle to the OOD shifts. The authors in
[26] showed that this brittleness is amplified at higher levels of compression.

Liebenwein et al. [32] corroborated that a pruned [43, 2] model can have similar predictive power
to the original one when it comes to test accuracy, while being more brittle when faced with out of
distribution data points. They further showed that this phenomenon holds even when considering
robust training objectives (e.g., data augmentation). Their results suggest that robustness advances
discussed in Sec. A.2 may be suboptimal with model compression approaches unless OOD shifts are
known at train time.

Notably, the aforementioned papers only analyze a limited class of pruning approaches. Our findings
with traditional pruning approaches are consistent with the findings of [26], which involved a
traditional pruning approach. Additionally, when Liebenwein et al. [32] employ a lottery ticket-style
pruning approach, they find pruning harms robustness more when using smaller networks, which
is consistent with our CARD hypothesis that states that the starting network must be sufficiently
overparameterized.

B Experiment settings

All codes were written in Python using Pytorch and were run on IBM Power9 CPU with 256 GB
of RAM and one to two NVIDIA V100 GPUs. Publicly available code was used as the base for
each pruning method for models pruned with FT and GMP5, LTH and LRR6, EP7 and BP8. We

5https://github.com/RAIVNLab/STR
6https://github.com/facebookresearch/open_lth
7https://github.com/allenai/hidden-networks
8https://github.com/chrundle/biprop
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Dense 2e-4 3e-4 0.1 None LR160 Adam SGD 0 1e-4 100 160 N/A N/A

FT ← 0.01→ 0.1 Cosine LR160 ← SGD→ ← 1e-4→ ← 200→ ←− Prune at epoch 160 then fine tune 40 epochs−→
GMP ← 0.01→ 0.1 Cosine LR160 ← SGD→ ← 1e-4→ ← 160→ ←− (si, t, n, ∆t) = (0, 5, 105, 1) −→
LTH 5e-3 1e-2 0.1 ← LR160→ ← SGD→ ← 1e-4→ ← 160→ rewind it.: 1000, rate: 20% rewind it.: 5000, rate: 20%
LRR 5e-3 1e-2 0.1 ← LR160→ ← SGD→ ← 1e-4→ ← 160→ rewind it.: 1000, rate: 20% rewind it.: 5000, rate: 20%
BP ←− 0.1−→ ← Cosine→ ← SGD→ ← 1e-4→ ← 250→ ←− All Epochs−→
EP ←− 0.1−→ ← Cosine→ ← SGD→ ← 1e-4→ ← 250→ ←− All Epochs−→

Table 1: Hyperparameters used when training dense baselines and each pruning method by model.
Note that “Rest” refers to all other models trained in our experiments, such as VGG and ResNet.

added functionality for global pruning in FT, GMP, EP and BP as it was not implemented in existing
repositories.

ResNet-18 results for rewinding strategies, LRR and LTH, make use of regular ResNet-18 [19]
models while all other methods, including dense, make use of PreAct ResNet-18 [20] as it provided
improved performance in terms of accuracy and robustness.

A breakdown of hyperparameters by model and pruning method is provided in Table 1. As mentioned
in Section 2, for each pruning method we used hyperparameters tuned specifically for that method.
The dense Conv2/4/6/8 models used a batch size of 60, as specified in Figure 2 of the original Lottery
Ticket Hypothesis paper [12]. All pruned models and the remaining dense models were trained using
a batch size of 128. In the LR schedule column, Cosine denotes cosine decay while LR160 denotes a
schedule that sets the learning rate to 0.01 at epoch 80 and 0.001 at epoch 120. All models trained
using SGD use a momentum of 0.9.

We first note details of experiments using traditional pruning methods, fine-tuning (FT) and gradual
magnitude pruning (GMP). For FT models, unpruned training takes place for 160 epochs at which
point pruning to the full sparsity level takes place using global magnitude pruning. After pruning,
fine-tuning of the pruned network takes place over 40 epochs where the learning rate is kept at
the final value after pruning at epoch 160 [34, 43]. For GMP models, the sparsity level gradually
increases over the course of the training process. In our experiments, the sparsity level at training step
t increases in accordance with equation (1) from [60] which we include here to interpret the GMP
pruning details from Table 1:

st = sf + (si − sf )

(
1− t− t0

n∆t

)3

, for t ∈ {t0 + k∆t}nk=0. (4)

Here, si denotes the initial sparsity level, sf denotes the final sparsity level, n denotes the number
of pruning steps, t0 denotes the first training step where pruning is performed, and st denotes the
sparsity level at the current training step. Note that the values for si, t0, n, and ∆t are provided in
Table 1.

For rewinding methods, LTH and LRR, hyperparameters were chosen based on details from [12, 13,
11, 43]. Notably, our rewinding-iteration choices stemmed from the hyperparameter study shown in
Figure 7 of [13], and the fact that the small Conv models performed well when rewound to iteration 0
in [12]. All LTH/LRR runs were implemented using a modified version of the OpenLTH repository
[11].

For initialization methods, edgepopup (EP) and biprop (BP), pruning is achieved by learning a
pruning mask that is applied to the randomly initialized networks weights and, in the case of BP,
binarization is applied to the weights of the resulting pruned network. For EP networks, weights
were initialized using the signed constant initialization from [41] which offered the best performance.
As an added benefit for compactness, this initialization also yields a binary weight network. For BP
networks, weights were initialized using the kaiming normal initialization as in [9] and the biprop
algorithm performs binarization during training resulting in a binary-weight network. Due to the
binary weights in both the EP and BP CARDs we trained, these CARDs provided further reductions in
on-device memory consumption over rewinding based pruning strategies. For both EP and BP, we
used the same number of epochs for training as in [9].
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C Additional Experiments

C.1 Effect of global vs. layerwise pruning in lottery ticket initialization methods.

The lottery ticket initialization methods analyzed in the Section 2 were originally developed to prune a
percentage of weights uniformly across all layers of the network. In contrast, global pruning methods
are considered to be more flexible as they can prune some layers more heavily than others while
still meeting a user-specified sparsity level for the entire network. By analyzing these initialization
methods using both layerwise and global pruning, we notice certain peculiar patterns. Figure 5
provides the accuracy and robustness of models trained with BP and EP using global and layerwise
pruning. For each model, the maximum CIFAR-10 accuracy was achieved by a layerwise pruned
model at one of the six sparsity levels. However, the globally-pruned models consistently outperform
the layerwise pruned models on robustness at nearly every sparsity level. Furthermore, the globally-
pruned models typically achieve higher or comparable accuracy at higher sparsity levels, indicating
that initialization methods utilizing global pruning are more suitable when a high-level of sparsity is
desired.

Figure 5: Global pruning in lottery ticket Initialization methods provides greater robustness
gains: While layerwise pruning is able to achieve the highest accuracy across all sparsity levels in
initialization methods, global pruning provides more significant robustness gains at all sparsity levels.

C.2 Comparison of full-precision-weight Edgepopup pruning with binary-weight
Edgepopup pruning

The models pruned using EP in our experiments are pruned using weights initialized from a scaled
binary initialization, as specified in [41]. Additionally, models pruned with BP contain binary weights
regardless of the initialization used. To demonstrate that the robustness gains afforded are a feature of
initialization based pruning methods and not binarization, we provide some results for full-precision
initialization based pruning models. In particular, by using the kaiming normal initialization with
EP the resulting network has full-precision weights. In Figure 6, we visualize the accuracy of these
models on CIFAR-10 and CIFAR-10-C. These experiments demonstrate the the robustness of the
initialization based CARDs is not exclusive to binary weight networks as the full-precision weight
networks can achieve comparable accuracy to the binary weight networks at some prune percentages.

D Additional heatmaps

Here we provide additional heatmaps (varying sparsity levels) for Conv8 (see Figures 7 and 8) and
for ResNet18 models (see Figures 9, 10 and 11). By comparing the heatmaps of rewinding and
initialization based pruning methods to baselines, we find that these models are more resilient to
perturbations of varying severity.
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Figure 6: Using Full Precision weights in lottery ticket Initialization still provides robustness
gains: While initialization pruning methods with binary weights yield the greatest robustness gains
over the baseline, randomly initialized networks with full-precision weights pruned using Edgepopup
are capable of providing improved robustness over the dense baseline.

D.1 Additional Conv8 heatmaps

In the Conv8 models, differences in the heatmaps of initialization methods and the baseline model
persist up to the highest sparsity level of 95%, as seen in Figure 8. The top three rows in each figure
provide the Fourier heatmaps for each model while the bottom three rows provide the difference to
the dense baseline. In the difference heatmaps, blue pixels are where the compressed model has an
error rate lower than the dense model and red pixels are where the compressed model has an error
rate higher than the dense model.

Figure 7: Visualizing the response of compressed models to perturbations at different frequen-
cies: The top three rows are Fourier heatmaps for error rate of Conv8 models trained on CIFAR-10
with 90% of weights pruned. The bottom three rows are difference to the baseline with blue regions
indicating lower error rate than baseline.
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Figure 8: Visualizing the response of compressed models to perturbations at different frequen-
cies: The top three rows are Fourier heatmaps for error rate of Conv8 models trained on CIFAR-10
with 95% of weights pruned. The bottom three rows are difference to the baseline with blue regions
indicating lower error rate than baseline.

D.2 ResNet-18 heatmaps

Here we provide Fourier error rate heatmaps for the ResNet-18 architecture trained using different
pruning methods. As in the Conv8 heatmap figures, we include heatmaps for a trained dense
ResNet-18 model for reference and the difference heatmaps clearly conveying the difference of each
compression method to the baseline.

E Constructing iterative pruning with rewinding from fine-tuning

While LTH [12] and LRR [43] offer unsurpassed performance, such approaches also greatly extend
the training duration, pruning just 20% of the remaining weights every T − r epochs, where T is the
initial training duration and r is the epoch the weights/learning-rate are rewound to after each pruning
event (here, r = 12 and T = 160). This raises the question: Is longer training and the multi-shot
pruning procedure critical to the robustness improvements LTH/LRR offer relative to FT/GMP?

To test this, we gradually construct the LTH/LRR pruning approaches used in this paper by starting
from a fine-tuning approach and adding modifications until we produce the LTH/LRR method that
prunes the network 13 times to reach 95% sparsity. The phases of this construction for LRR are
illustrated in Figure 12, wherein we plot a column of Fourier heatmaps for each phase. Specifically,
the first column is our FT approach, the second column extends the fine-tuning duration, the third
column adds learning-rate rewinding to this fine-tuning period, the fourth column decreases the
iterative prune rate to achieve 95% sparsity in 4 shots rather than 1, and subsequent columns continue
to increase the number of pruning shots. In this construction process, we find a notable benefit of
adding learning-rate rewinding (70.9% to 72.6% CIFAR-10-C accuracy moving from column 2 to
column 3), but the biggest benefits of LTH/LRR come from combining this rewinding with multiple
iterations (i.e., all columns from 4 onward display at least 75% robust accuracy). Interestingly, our
results also indicate that it may be possible to achieve the robustness benefits of LTH/LRR with
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Figure 9: Visualizing the response of compressed models to perturbations at different frequen-
cies: The top three rows are Fourier heatmaps for error rate of ResNet-18 models trained on CIFAR-10
with 80% of weights pruned. The bottom three rows are difference to the baseline with blue regions
indicating lower error rate than baseline.

a higher iterative pruning rate and thus fewer pruning shots/iterations than what is standard in the
literature [12, 43].

We now repeat this experiment using 90% sparsity (Figure 14), using LTH instead of LRR at 95%
sparsity (Figure 13), and using LTH and 90% sparsity (Figure 15).

At 95% sparsity, we observe the same pattern: adding multiple shots of pruning is critical to improving
the LTH heatmaps and robustnesses of the rewinding-based methods (Figure 13). That is to say,
adding rewinding and a longer post-pruning fine-tuning duration to our FT method is not sufficient
to obtain the results achievable with LTH/LRR—multiple iterations are needed. Interestingly, as
especially visible at epsilon 6.0 in the Fourier heatmaps, LRR (Figure 12) is clearly more resilient to
perturbations than LTH, which is consistent with the improved performance of LRR relative to LTH.

At 90% sparsity, for both LTH (Figure 15) and LRR (Figure 14), the Fourier heatmaps reflect benefits
of multiple shots and rewinding (particularly near the centers of the images for all epsilons). For
LRR, there is greater similarity among the Rewinding and Initialization Fourier heatmaps at 90%
sparsity than at 95% sparsity, and this is reflected in their robustnesses in the captions, which are less
separated in the 90% sparsity case. Notably, however, all these robustness figures are consistent with
the aforementioned heatmap improvements in that they show the benefits of combining rewinding
with multiple pruning shots. Note that 10-shot pruning corresponds to the scheme / iterative pruning
rate (20%) we use to reach 90% sparsity in other sections (e.g., Figure 10).

F Additional results with CARDS and CARD-Deck

In this section, we provide tables for all experimental results from Section 3. This includes tables
for individual CARDs on CIFAR-10 for ResNet-18 (Table 2), ResNeXt-29 (Table 13), ResNet-
50 (Table 14), and WideResNet-18-2 (Table 15). Additionally, we provide tables for CIFAR-10
CARD-Decks using ResNet-18 (Table 3), WideResNet-18-2 (Table 4), and CIFAR-100 CARD-Decks
using WideResNet-18-2 (Table 5). Breakdowns for the performance of CIFAR-10 ResNet-18 CARDs
and CARD-Decks on each of the 15 corruption types in CIFAR-10-C are provided in Tables 6 –
Tables 11. As a reference, tables for individual CARDs provide results for dense baseline models. Due
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Figure 10: Visualizing the response of compressed models to perturbations at different fre-
quencies: The top three rows are Fourier heatmaps for error rate of ResNet-18 models trained on
CIFAR-10 with 90% of weights pruned. The bottom three rows are difference to the baseline with
blue regions indicating lower error rate than baseline.
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80
%

Clean Acc. 95.5 95.1 93.9 94.3 93.7 92.4 94.9 94.4 93 96.1 95.6 93.8 95.6 94.9 93.5 93.9 93.7 92.4 94.5 94.1 93.2
Robust Acc. 89.2 73.7 85.6 87.8 76.7 85.1 88.4 74.4 85.7 89.8 75.7 86.4 89.4 74.4 85.8 87.5 76.1 85.1 87.8 74.3 85.3

Memory (Mbit) 358 358 358 2.23 2.23 2.23 2.23 2.23 2.23 71.5 71.5 71.5 71.5 71.5 71.5 2.23 2.23 2.23 2.23 2.23 2.23

90
%

Clean Acc. 95.5 95.1 93.9 94.4 93.9 92.9 94.4 94.1 92.8 96.3 95.6 93.9 95.7 95.2 93.6 94.4 94.1 92.7 93.7 93.6 93
Robust Acc. 89.2 73.7 85.6 88 75.6 85.2 87.9 76 85.4 89.8 76.1 86.3 89.7 74.3 86 87.8 75.1 85 87.1 74.6 84.2

Memory (Mbit) 358 358 358 1.12 1.12 1.12 1.12 1.12 1.12 35.8 35.8 35.8 35.8 35.8 35.8 1.12 1.12 1.12 1.12 1.12 1.12

95
%

Clean Acc. 95.5 95.1 93.9 94.5 94 92.6 93.2 92.7 91.2 96.1 95.7 93.9 95.8 95.1 93.8 94.2 93.8 92.5 92.5 92.1 91.4
Robust Acc. 89.2 73.7 85.6 87.8 73.1 84.3 85.7 73.4 83.9 89.6 75.6 86.3 89.7 74.3 86 87.5 73.8 84.4 84.7 73.4 83.1

Memory (Mbit) 358 358 358 0.56 0.56 0.56 0.56 0.56 0.56 17.9 17.9 17.9 17.9 17.9 17.9 0.56 0.56 0.56 0.56 0.56 0.56

Table 2: Performance comparison between dense baselines and CARDs using ResNet-18 architecture.
Clean and Robust Acc. refer to accuracy on CIFAR-10 and CIFAR-10-C, respectively. The best
performance for each method is shown in bold.

to the structure of the table these results are intentionally repeated at each sparsity level (the dense
baselines are not pruned so their performance remains constant).

F.1 Tables of CARD and CARD-Decks results for ResNet-18 and WideResNet-18

The clean and robust accuracies (averaged across three realizations) of CARDs for each pruning
scheme are provided in Table 2. We find that CARDs perform comparably to (and in some cases better
than) their dense counterparts in terms of accuracy and robustness but have a significantly smaller
memory footprint.
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CARD-Deck (Agnostic/Adaptive)

Edgepopup (Global) LRR LTH Biprop (Global)

2 4 6 2 4 6 2 4 6 2 4 6

80
%

Clean Acc. 92.1/94.1 94/94.5 94.2/94.8 96/96 96.3/96.4 96.4/96.6 95.5/95.5 96/96.1 96.1/96.1 93.8/93.8 94.3/94.3 94.3/94.4
Robust Acc. 85/88.9 88.4/89.8 88.9/90 89.7/90.9 91.7/91.8 91.9/92 89.4/90.4 91/91.2 91.2/91.4 87.5/88.6 88.8/89.3 89/89.6

Memory (Mbit) 4.47 8.94 13.4 143 286 429 143 286 429 4.47 8.94 13.4

90
%

Clean Acc. 92.9/94.4 94.6/94.8 94.7/94.8 96.3/96.3 96.4/96.4 96.4/96.6 95.7/95.7 95.9/95.7 96.2/96.2 94/94 94.6/94.4 94.5/94.6
Robust Acc. 85.2/89.2 88.6/90.1 89.3/90.4 89.8/91.1 91.7/91.8 92/92.1 89.4/90.5 91/91.3 91.3/91.5 87.4/88.6 89.2/89.5 89.4/89.9

Memory (Mbit) 2.23 4.47 6.70 71.5 143 215 71.5 143 215 2.23 4.47 6.70

95
%

Clean Acc. 92.6/94.5 94.2/94.8 94.5/95.1 96.1/96.1 96.3/96.4 96.3/96.5 95.8/95.8 96/96.1 96.1/96.2 94/94 94.7/94.5 94.7/94.6
Robust Acc. 84.3/88.6 87.7/89.5 88.4/89.9 89.6/91 91.6/91.8 91.9/92 89/90.3 90.8/91.1 91.1/91.4 87.2/88.5 88.9/89.4 89.2/89.7

Memory (Mbit) 1.12 2.23 3.35 35.8 71.5 107 35.8 71.5 107 1.12 2.23 3.35

Table 3: Performance of domain-agnostic and domain-adaptive ResNet-18 CARD-Decks. Clean and
Robust Acc. refer CIFAR-10 and CIFAR-10-C accuracy, respectively.

CARD-Deck (Agnostic/Adaptive)

Edgepopup (Global) LRR LTH Biprop (Global)

2 4 6 2 4 6 2 4 6 2 4 6

90
%

Clean Acc. 92.4/ 92.9 94.0/ 94.8 94.8/ 95.1 96.3/ 96.3 96.7/ 96.7 96.7/ 96.8 96.1/ 96.1 96.5/ 96.4 96.6/ 96.6 92.4/ 93.1 94.3/ 94.5 94.9/ 95.0
Robust Acc. 85.1/ 86.2 88.6/ 90.0 90.1/ 90.6 90.6/ 91.7 92.3/ 92.3 92.5/ 92.6 90.1/ 91.2 91.6/ 91.8 91.9/ 92.1 85.3/ 86.2 88.7/ 89.8 89.9/ 90.5

Memory (Mbit) 8.93 17.86 26.79 285.8 571.6 857.5 285.8 571.6 857.5 8.93 17.86 26.79

95
%

Clean Acc. 92.8/ 93.4 94.6/ 94.9 95.1/ 95.3 96.3/ 96.3 96.8/ 96.8 96.6/96.8 96.1/ 96.1 96.5/ 96.4 96.6/ 96.7 92.3/ 92.8 94.2/ 94.5 95.0/ 95.2
Robust Acc. 85.2/ 86.1 88.6/ 89.9 90.0/ 90.6 90.8/ 91.8 92.4/ 92.5 92.7/92.75 89.9/ 91.4 91.6/ 91.9 91.9/ 92.2 84.9/ 86.0 88.4/ 89.5 90.0/ 90.5

Memory (Mbit) 4.46 8.93 13.39 142.9 285.8 428.7 142.9 285.8 428.7 4.46 8.93 13.39

Table 4: Performance of domain-agnostic and domain-adaptive WideResNet-18 CARD-Decks. Clean
and Robust Acc. refer to CIFAR-10 and CIFAR-10-C accuracy, respectively. The best performance
for each method is shown in bold. For reference, dense WideResNet-18 (AugMix) model achieves
(Clean Acc., Robust Acc., Memory) = (95.6%, 89.3%, 1429 Mbit).

CARD-Deck (Agnostic/Adaptive)

Edgepopup (Global) LRR LTH Biprop (Global)

2 4 6 2 4 6 2 4 6 2 4 6

90
%

Clean Acc. 77.1/77.1 78.5/78.4 78.6/78.7 78.3/78.3 79.6/79.7 79.6/80.2 78.2/78.2 79.6/79.7 79.9/80.3 76.9/76.9 77.8/78.1 78.0/78.3
Robust Acc. 66.3/67.8 69.5/69.6 69.9/70.3 66.9/68.8 70.5/70.7 71.0/71.2 66.2/68.6 69.8/70.4 70.6/71.0 65.8/67.3 68.7/69.0 69.1/69.6

Memory (Mbit) 8.95 17.90 26.85 286.5 572.9 859.3 286.5 572.9 859.3 8.95 17.90 26.85

95
%

Clean Acc. 77.1/77.1 78.5/78.5 78.7/79.1 78.7/78.7 79.9/80.2 80.1/80.6 78.2/78.2 79.7/80.0 79.8/80.4 76.0/76.0 77.4/77.1 77.9/77.8
Robust Acc. 65.6/67.1 68.9/69.0 69.4/69.7 67.1/68.8 70.6/70.7 71.1/71.3 66.5/68.6 70.1/70.3 70.7/71.0 64.8/66.5 67.9/68.1 68.4/68.7

Memory (Mbit) 4.48 8.95 13.43 143.2 286.5 429.7 143.2 286.5 429.7 4.48 8.95 13.43

Table 5: Performance of domain-agnostic and domain-adaptive WideResNet-18 CARD-Decks. Clean
and Robust Acc. refer to CIFAR-100 and CIFAR-100-C accuracy, respectively. The best performance
for each method is shown in bold. For reference, dense WideResNet-18 (AugMix) model achieves
(Clean Acc., Robust Acc., Memory) = (77.5%, 66.1%, 1433 Mbit).
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Figure 11: Visualizing the response of compressed models to perturbations at different fre-
quencies: The top three rows are Fourier heatmaps for error rate of ResNet-18 models trained on
CIFAR-10 with 95% of weights pruned. The bottom three rows are difference to the baseline with
blue regions indicating lower error rate than baseline.
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Figure 12: Comparing the resiliencies of Rewinding and Traditional methods to perturbations
at different frequencies: Fourier heatmaps for error rate of ResNet18 models trained on CIFAR-10
in which 95% of the weights are pruned.

F.2 Additional results for CARDs and CARD-Decks with ResNet-18

In this section, we provide a breakdown of the accuracy of ResNet-18 CARDs and CARD-Decks by
CIFAR-10-C corruption types. In particular, Tables 6 - 8 contain the performance of CARDs trained on
clean, Augmix, and Gaussian augmentations when tested on CIFAR-10-C corruption types. Tables 9
to 11 contain the performance of LTH, LRR, EP, and BP CARD-Decks on individual CIFAR-10-C
corruptions.

As a note of interest, we found that the best performance on different CIFAR-10-C corruptions
changes for individual CARDs as the sparsity level increases. At 80% sparsity, a Gaussian CARD yields
the highest accuracy on impulse noise but at 90% and 95% sparsity levels Augmix CARDs deliver the
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Figure 13: Comparing the resiliencies of Rewinding and Traditional methods to perturbations
at different frequencies: Fourier heatmaps for error rate of ResNet18 models trained on CIFAR-10
in which 95% of the weights are pruned via LTH.
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Figure 14: Comparing the resiliencies of Rewinding and Traditional methods to perturbations
at different frequencies: Fourier heatmaps for error rate of ResNet18 models trained on CIFAR-10
in which 90% of the weights are pruned via LRR.
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Figure 15: Comparing the resiliencies of Rewinding and Traditional methods to perturbations
at different frequencies: Fourier heatmaps for error rate of ResNet18 models trained on CIFAR-10
in which 90% of the weights are pruned via LTH.
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highest accuracy on impulse noise. Further, at 95% sparsity the margin of difference in accuracy on
impulse noise provided by the Augmix CARD over the Gaussian CARD is more significant.

While pruning using FT and GMP were unable to yield CARDs, note that we include the accuracy and
robustness of ResNet-18 models pruned using FT and GMP with the same augmentation schemes in
Table 12 for comparison against the performance of ResNet-18 CARDs in Table 2.

F.3 Achieving state-of-the-art performance on CIFAR-10-C using larger models

We report these results in Tables 13, 14 and 15. To summarize, our results highlight the fact that the
accuracy/robustness gains due to the model compression (and ensembling) are compatible with the
gains from the existing strategies, i.e., data augmentation and the use of larger models. By combining
these strategies with the scheme proposed in this paper, we achieve even larger gains in terms of
robustness and accuracy, in turn, establishing a new SOTA. Note that we include performance of
WideResNet-18 CARD-Decks composed of layerwise pruned BP and EP models in Table 16.

F.4 Note on gating function performance

In Table 17, we provide a break down of the performance of the spectral-similarity based gating
function by CIFAR-10-C corruption type. For each augmentation scheme and corruption type,
the corresponding number indicates the percetage of data from that corruption selected by the
gating function averaged across the 5 severity levels in CIFAR-10-C. Based on the performance
of Augmix and Gaussian CARDs by CIFAR-10-C corruption type in Tables 6 – 8, entries in the
table are marked in bold whenever a model pruned to sparsity 80%, 90%, or 95% trained using that
data augmentation scheme achieved the highest accuracy averaged over all severity levels of that
corruption type. Bolding these entries in Table 17 indicates that the gating function typically selects
the best performing augmentation scheme, and thereby the CARDs in the deck trained on data most
similar to the incoming test data, for the domian-adaptive CARD-Decks. Improvements could be
made by determining a gating function that is more accurate on the frost and jpeg corruptions. As
noted in Section F.2, the augmentation scheme yielding the best performing models on impulse and
glass corruptions varies with the sparsity level of the pruned network. This observation indicates that
an alternative similarity metric that takes into account features of the trained CARDs, such as sparsity
level, could provide a gating function that offers improved performance on CIFAR-10-C corruptions.

G Theory

G.1 Proof of Corollary 2

Using the triangle inequality, we have that∥∥∥ n∑
k=1

λifk(x)−
n∑

k=1

λiFk(`,w)(x)
∥∥∥ ≤ n∑

k=1

λi‖fk(x)− Fk(`,w)(x)‖, (5)

for any x ∈ X . Hence, if

sup
x∈X
‖fk(x)− Fk(`,w)(x)‖ ≤ ε (6)

for each 1 ≤ k ≤ n, then it immediately follows that∥∥∥ n∑
k=1

λifk(x)−
n∑

k=1

λiFk(`,w)(x)
∥∥∥ ≤ n∑

k=1

λiε = ε, (7)

for all x ∈ X . Under the hypotheses of Theorem 3 in [38] (Theorem 2 in [9]), for each k ∈ {1, . . . , n}
we have that with probability (1− δ) there exists a full-precision (binary-weight) CARD satisfying (6).
Thus, with probability (1− δ)n there exists a collection of full-precision (binary-weight) networks
{fk} satisfying (1).
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G.2 OOD Robustness analysis

To understand the average OOD robustness better, we derive the following decomposition:

Rob(Dc, f
a) = Rob(Ŝa, f

a)

+ [Rob(Da, f
a)−Rob(Ŝa, f

a)]

+ [Rob(Dc, f
a)−Rob(Da, f

a)].

Next, using the triangle inequality a+ (b− a) ≥ a−‖b− a‖ which is true because ‖b− a‖ ≥ a− b
for a, b ≥ 0, we have

Rob(Dc, f
a) ≥ Rob(Ŝa, f

a)

− ‖Rob(Da, f
a)−Rob(Ŝa, f

a)‖
− ‖Rob(Dc, f

a)−Rob(Da, f
a)‖.

By linearity of expectation, we can bound (2) from below

Rob(DC , fDeck) ≥
|A|∑
a=1

|C|∑
c=1

wa
cRob(Ŝa, f

a) (8)

−
|A|∑
a=1

|C|∑
c=1

wa
c ‖Rob(Da, f

a)−Rob(Ŝa, f
a)‖ (9)

−
|A|∑
a=1

|C|∑
c=1

wa
c ‖Rob(Dc, f

a)−Rob(Da, f
a)‖. (10)

Note that we have bounded (2) in terms of the following three error terms for a classifier-corruption
pair weighted by their gating (or selection) probabilities: 1) empirical robustness (8), 2) generalization
gap (9), and 3) OOD-shift (10).

Next, we aim to provide a bound on the OOD-shift that is independent of the classifiers in hand and
is only related to the properties of the distributions. To facilitate this, we define a notion of distance
between two distributions.
Definition 2 ( (Conditional Wasserstein distance). For two labeled distributions D and D′ with
supports on X × Y , we define conditional Wasserstein distance according to a distance metric d as
follows:

W(D,D′) = E
(.,y)∼D

[
inf

J∈J (D|y,D′|y)
E

(x,x′)∼J
d(x, x′)

]
, (11)

where J (D,D′) is the set of joint distributions whose marginals are identical to D and D′.

Conditional Wasserstein distance between the two distributions is simply the expectation of Wasser-
stein distance between conditional distributions for each class.
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Table 6: Performance when using ResNet-18 architecture with 80% of weights pruned evaluated on
CIFAR-10 and CIFAR-10-C. Note: LTH and LRR model prune rates are 79%.
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Table 7: Performance when using ResNet-18 architecture with 90% of weights pruned evaluated on
CIFAR-10 and CIFAR-10-C. Note: LTH and LRR model prune rates are 89%.
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Table 8: Performance when using ResNet-18 architecture with 95% of weights pruned evaluated on
CIFAR-10 and CIFAR-10-C.
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Table 9: Performance of data-agnostic CARD-Deck ensembles composed of 80% sparse ResNet-18
CARDs on individual CIFAR-10-C corruptions. For each corruption, entry is average over severity
levels 1 through 5.
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Table 10: Accuracy of data-agnostic CARD-Deck ensembles composed of 90% sparse ResNet-18
CARDs on individual CIFAR-10-C corruptions. For each corruption, entry is average over severity
levels 1 through 5.
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Table 11: Accuracy of data-agnostic CARD-Deck ensembles composed of 95% sparse ResNet-18
CARDs on individual CIFAR-10-C corruptions. For each corruption, entry is average over severity
levels 1 through 5.
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Table 12: Performance comparison between dense baselines and ResNet-18 models pruned using
fine-tuning (FT) and gradual magnitude pruning (GMP). Clean and Robust Acc. refer to accuracy on
CIFAR-10 and CIFAR-10-C, respectively.
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Robust Acc. 88.2 71.2 84.3 85.8 69.9 82.3 82.8 69 80.3 89.3 72.1 85.2 88.4 71.1 84.3 85.1 70.3 81.8 82.4 70.4 80.2

Memory (Mbit) 153 153 153 0.24 0.24 0.24 0.24 0.24 0.24 7.64 7.64 7.64 7.64 7.64 7.64 0.24 0.24 0.24 0.24 0.24 0.24

Table 13: Performance comparison between dense baselines and CARDs for ResNeXt-29. Clean and
Robust Acc. refer to accuracy on CIFAR-10 and CIFAR-10-C, respectively.
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90
%

Clean Acc. 95.9 95.1 93.6 94.8 94.4 93.3 95.4 95 94 96.4 95.9 94.7 95.8 95.4 94.2 94.7 94.4 93 94.9 94.7 93.2
Robust Acc. 88.9 74.4 85.2 88 75.8 84.8 89.1 76.6 86.3 90.3 76.1 86.9 89.8 75.6 86 87.9 74.6 85.1 88.6 75.6 85.6

Memory (Mbit) 753 753 753 2.35 2.35 2.35 2.35 2.35 2.35 75.27 75.27 75.27 75.27 75.27 75.27 2.35 2.35 2.35 2.35 2.35 2.35

95
%

Clean Acc. 95.9 95.1 93.6 92.4 93.6 92.2 95 94.8 93.4 96.4 95.8 94.7 95.8 95.4 94.2 94.6 94.6 93.2 94.4 93.9 92.6
Robust Acc. 88.9 74.4 85.2 79.2 70.9 82.6 88.9 76.6 85.9 90.4 75.7 86.8 89.6 75.3 86 87.4 73.9 84.8 87.6 74.4 84.6

Memory (Mbit) 753 753 753 1.18 1.18 1.18 1.18 1.18 1.18 37.63 37.63 37.63 37.63 37.63 37.63 1.18 1.18 1.18 1.18 1.18 1.18

Table 14: Performance comparison between dense baselines and CARDs for ResNet-50. Clean and
Robust Acc. refer to accuracy on CIFAR-10 and CIFAR-10-C, respectively.
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Baseline CARD

Dense Edgepopup LRR LTH Biprop
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90
%

Clean Acc. 95.6 95.2 93.3 94.8 94.2 92.4 95.0 94.7 92.8 96.4 95.9 94 96.1 95.6 94.2 94.5 94.4 92.7 94.6 94.1 92.6
Robust Acc. 89.3 74.6 85.7 88.6 78.2 85.5 88.8 76.5 85.7 90.5 76.8 86.6 89.8 75.5 86.5 88.4 77.4 85.6 88.3 75.7 85.3

Memory (Mbit) 1429 1429 1429 4.47 4.47 4.47 4.47 4.47 4.47 142.9 142.9 142.9 142.9 142.9 142.9 4.47 4.47 4.47 4.47 4.47 4.47

95
%

Clean Acc. 95.6 95.2 93.3 94.9 94.4 92.8 94.2 93.8 92.1 96.5 95.8 94.2 96.1 95.8 94.3 94.7 94.3 92.7 93.6 93.3 91.5
Robust Acc. 89.3 74.6 85.7 88.7 75.6 85.2 87.6 75.9 85.0 90.8 77.1 87.0 90.0 76.2 86.6 88.6 76.1 84.9 87.3 76.0 84.6

Memory (Mbit) 1429 1429 1429 2.23 2.23 2.23 2.23 2.23 2.23 71.46 71.46 71.46 71.46 71.46 71.46 2.23 2.23 2.23 2.23 2.23 2.23

Table 15: Performance comparison between dense baselines and CARDs for WideResNet-18 (2x).
Clean and Robust Acc. refer to accuracy on CIFAR-10 and CIFAR-10-C, respectively.

CARD-Deck (Agnostic/Adaptive)

Biprop (Layerwise) Edgepopup (Layerwise)

2 4 6 2 4 6

90
%

Clean Acc. 92.3/ 93.0 94.0/ 94.5 94.8/95.1 92.6/ 93.3 94.3/ 95.0 95.2/95.4
Robust Acc. 85.2/ 86.2 88.4/ 89.8 89.9/90.5 85.3/ 86.6 89.0/ 90.4 90.6/91.0

Memory (Mbit) 8.93 17.86 26.79 8.93 17.86 26.79

95
%

Clean Acc. 91.4/ 92.0 93.3/ 93.6 94.0/ 94.1 92.1/ 92.2 93.8/ 94.1 94.7/94.8
Robust Acc. 84.6/ 85.2 87.4/ 88.7 88.8/ 89.3 85.0/ 85.9 88.1/ 89.3 89.7/90.0

Memory (Mbit) 4.46 8.93 13.39 4.46 8.93 13.39

Table 16: Performance of additional domain-agnostic and domain-adaptive CARD-Decks containing
CARDs using WideResNet-18 architecture.
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Augmix 0 3.2 0 89 0 100 96.2 100 38.6 100 99.8 100 98.2 99.6 100
Gaussian 100 96.8 100 11 100 0 3.8 0 61.4 0 0.2 0 1.8 0.4 0

Table 17: Gating Function Selection by Corruption Type on CIFAR-10-C: The CARD-Decks
make use of models trained on Augmix and Gaussian augmented datasets. Here we provide the
percentage of CIFAR-10-C test data that was gated to the Augmix and Gaussian models in the
CARD-Deck based on the type of corruption. For each corruption type, the bold number indicates
which CARD achieves higher performance (on average) on that corruption. This highlights that our
spectral similarity based gating function typically selects the best performing model. Note that for
impulse and glass corruptions, the best performing models vary between those trained on Augmix
and Gaussian corruptions based on the sparsity level of the model. For each corruption type, the
percentage in the table gated to each augmentation method is an average over the gating percentages
on CIFAR-10-C corruption severity levels 1 through 5.
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