Supplementary Material: A Winning Hand: Compressing Deep
Networks Can Improve Out-Of-Distribution Robustness

Here we provide a brief outline of the appendices. In Appendix [A] we provide details on relevant
past works. In Appendix [B| we discuss our experimental setting and relevant hyperparameters. In
Appendix |C] we provide additional experiments with initialization methods and, in part, show that
the robustness of the EP method is not only due to binarization but also due to the specific pruning
strategy. In Appendix [D] we provide Fourier heatmaps for additional pruning rates and architectures.
In Appendix [E] we provide additional Fourier heatmap results on comparing the rewinding-based
schemes with the traditional pruning schemes. In Appendix [F, we provide extensive tables for
CARD and CARD-Deck experiments performed in Section 3] In Appendix [G| we provide remaining
proof details for our theoretical justification of our CARD-Deck approach. We show the universal
approximation power of CARD-Decks and prove that CARD-Deck with a suitable gating function is
provably better than using a single classifier.

A Background

A.1 Accuracy preserving model compression

Two popular approaches for model compression are: pruning and quantization. Here, we discuss
these approaches and their effects on accuracy.

Pruning. Neural network pruning removes weights [30] or larger structures like filters [31] from
neural networks to reduce their computational burden [[18, 21]] and potentially improve their gener-
alization [53}[35]]. As the performance of DNNs has continued to improve with increasing levels
of overparameterization [56], production DNNs have grown larger [29 4], and the need to broadly
deploy such models has amplified the importance of compression methods like pruning [18 [17]].

In modern networks, pruning the smallest magnitude weights after training then fine-tuning (FT)
to recover accuracy lost from the pruning event is surprisingly effective; when the pruning is done
iteratively rather than all at once, this approach enables a 9x compression ratio without loss of accuracy
[18]. Gradual magnitude pruning (GMP) performs such iterative pruning throughout training rather
than after training [37,160]], recovering accuracy lost from pruning events as training proceeds, and
matches or exceeds the performance of more complex methods [[14].

Another form of magnitude pruning stems from work on the lottery ticket hypothesis (LTH), which
posits that the final, sparse subnetwork discovered by training then pruning can be rewound to its state
at initialization [[12]] or early in training [13]], then trained in isolation to be comparably accurate to the
trained dense network. The associated pruning approach that iteratively trains the network, rewinds
the weights (and learning rate schedule) to their values early in training, then trains the subnetwork is
referred to here as LTH. A simpler version of this algorithm, learning rate rewinding (LRR) [43], only
rewinds the learning rate schedule (not the weights) and achieves a state-of-the-art accuracy-efficiency
frontier while being less complex than other competitive approaches [60} 36} 12, 22]. LRR has been
shown to offer small improvements to accuracy with not-too-high compression ratio [43]]. The authors
in [50] proposed calibration mechanisms to find more effective lottery tickets.

Building on the lottery ticket hypothesis, the edgepopup (EP) algorithm introduced a way to find
sparse subnetworks at initialization that achieve good performance without any further training [41]].
Diffenderfer and Kailkhura [9] introduced a similar pruning approach, biprop (BP), which also
performs weight binarization.

Binarization. Typical post-training schemes have not been successful in binarizing pretrained models
with or without retraining to achieve reasonable accuracy. Most existing post-training works [17, 58]
are limited to ternary weight quantization. To overcome this limitation, there have been several
efforts to improve the performance of binary neural network (BNN) training. This is challenging
due to the discontinuities introduced by the binarization, which makes back-propogation difficult.
Binaryconnect [[7] first showed how to train networks with binary weights within the familiar back-
propagation paradigm. Unfortunately, this early scheme resulted in a significant drop in accuracy
compared to its full precision counterparts. To improve performance, XNOR-Net [42] proposed
adding a real-valued channel-wise scaling factor to improve capacity. Dorefa-Net [59] extended
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XNOR-Net to accelerate the training process via quantized gradients. ABC-Net [33] improved
performance by using more weight bases and activation bases at the cost of increased memory.

Notably, one can exploit the complementary nature of pruning and binarization to combine their
strengths. For example, Diffenderfer and Kailkhura [9] produced an algorithm for finding multi-prize
lottery tickets (MPTs): sparse, binary subnetworks present at initialization that don’t require training.

Pruning algorithm framework. The following pruning algorithm framework, inspired by those
in [43}151]], covers traditional-through-emerging pruning methodologies. Specifically, we define the
trained subnetwork created by one pruning-retraining cycle (i.e., one pruning iteration) as:

Wsparse = Fl(Wkl;D) QFQ(Wi;DankQ); 3)

where D denotes the training dataset, W; denotes the weight vector at the start of training iteration
i F represents the function that finds and returns the weight-masking vector M, F; represents
the function that retrains the weights after M is found, k; is the earliest training iteration that F;
requires information from (e.g., weight-vector or learning-rate values), F and F; are each applied at
the beginning of iteration k1, and ® is the Hadamard (element-wise) product. Using this, the pruning
paradigms and representative techniques from these categories considered in this paper are as follows:

* Traditional ky = ko and F5 # I (identity function). Particular techniques:

— Fine-Tuning (FT) [18]:
Wsparse - Fl(WT) © FQ(WT; D7 M? T)
— Gradual Magnitude Pruning (GMP) [60]:
Weparse = F1(Wy) © Fo(Wy; D, M, t), where t € [tq,t2,...,t,] and t,, < T

* Rewinding-based Lottery Ticket k; = a7 — (a — 1)r and k3 = r, where a € [1 .. n] and
r < T. Particular techniques:

— Weight Rewinding (LTH) [12} [13]]:
Wspa.rse = Fl(Wn,T—(a,—l)r) © FQ(WT; Dv Ma 7")
— Learning Rate Rewinding (LRR) [43]]:
Wsparse =F (Wan(afl)r) © F (Wan(afl)r; D, M, ’I“)

* Initialization-based (Strong) Lottery Ticket k1 = k; = 0 and F» = [. Particular
techniques:

— Edgepopup (EP) [41]]:
Wsparse = FI(WO, binary 5 D) ® I(WO, binary)
— Biprop (BP) [9]:
Wsparse = (WO; D) © I(WO, binarized by biprop)

Note that GMP, LTH, and LRR are all iterative. Further, since rewinding schemes apply F} and F,
at the beginning of iterations k1 = aT — (a — 1)7, @ € [1 .. n], it’s true that k; > ko = 7, so F
needs to store information from iteration ko = r in order to (at k) perform the training iterations that
determine W;, i > T. As opposed to traditional and rewinding schemes, strong lottery ticket [41]
schemes do not require any weight training before or after pruning—a performant network is found at
initialization via F7. In other words, learning occurs simply by pruning a randomly initialized neural
network. Furthermore, by design BP performs binarization of the weights to reduce the memory
footprint. We note that the precision of the weights in networks trained using EP maintain the same
precision as the randomly initialized weights. Hence, EP can also be used to identify binarized
networks by randomly initializing the weights to binary values. To take advantage of additional
compression, in our experiments with EP the mask M is learned from a binary-initialized weight
vector Wy, pinary- As BP performs binarization during pruning, a full-precision weight vector W is
used when finding M. In all of these methods, we make use of global unstructured pruning which
allows for different pruning percentages at each layer of the network.

*During training, s < T for most pruning approaches, where 7T is the default number of training iterations.
However, fine-tuning trains for an additional set of iterations after pruning takes place at iteration 7". Additionally,
rewinding-based lottery ticket approaches (when accounting for training done by F>) use (n + 1)1 — nr training
iterations, where n is the number of pruning iterations or “shots” in an n-shot pruning procedure, and r is the
iteration rewound to after each pruning iteration (note that when r = 0, the network is rewound to its state from
initialization after each pruning iteration and (n + 1) total iterations are required by this approach).
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A.2 Accuracy preserving robust training

While DNN models show impressive generalization in I.I.D. data scenarios [48 [10], the robustness
of such models on OOD data (e.g., common corruptions — blurring from camera movement, or noise
from low-lighting conditions) is critical to the successful deployment of DL in the wild. To evaluate
performance in the presence of such common corruptions, Hendrycks and Dietterich [23] introduced
the CIFAR-10-C dataset, which comprises validation images from CIFAR-10 [28]] that were exposed
to 15 diverse corruption types applied at 5 severity levels.

To achieve high OOD robustness and accuracy, AugMix [24] creates data augmentations at training
time by composing randomly-selected augmentation operations from a diverse set, which notably
excludes augmentations overlapping with those used to create CIFAR-10-C. Additionally, AugMix
utilizes a Jensen-Shannon Divergence consistency loss term to match the predictions between different
augmentations of a given image. This approach is expanded on by DeepAugment [25]], which inputs
clean images to a pretrained image-to-image model, corrupts this model’s weights and activations
with various operations that distort the typical forward pass, then uses the output images as augmented
data. AdversarialAugment (AdA) builds on DeepAugment by generating the weight perturbations
performed on the image-to-image models via adversarial training [6]]. Also, when used with an
appropriately selected perturbation radius and distance metric, adversarial training can serve as a
strong baseline against common corruptions [16, [27]].

Notably, the state-of-the-art in OOD robustness has historically evolved by leveraging more advanced
data augmentation schemes and larger models than prior works [8].

A.3 Methods to design compact-accurate-robust models

Despite its critical need, efforts towards achieving model compactness, high accuracy, and OOD (natu-
ral corruption) robustness simultaneously have mostly been unsuccessful, to the best of our knowledge.
Note that some recent works have shown successful attempts for different use cases, e.g., adversarial
example robustness [52f], additive white noise robustness [1], and domain generalization [S7]].

Hooker et al. [26] analyzed traditional compression techniques [[60] and showed that pruned and
quantized models have comparable accuracy to the original dense network but are far more brittle
than non-compressed models in response to small distributional changes that humans are robust to. It
is well known that even non-compressed models are very brittle to the OOD shifts. The authors in
[26] showed that this brittleness is amplified at higher levels of compression.

Liebenwein et al. [32] corroborated that a pruned [43} 2] model can have similar predictive power
to the original one when it comes to test accuracy, while being more brittle when faced with out of
distribution data points. They further showed that this phenomenon holds even when considering
robust training objectives (e.g., data augmentation). Their results suggest that robustness advances
discussed in Sec.[A.2may be suboptimal with model compression approaches unless OOD shifts are
known at train time.

Notably, the aforementioned papers only analyze a limited class of pruning approaches. Our findings
with traditional pruning approaches are consistent with the findings of [26], which involved a
traditional pruning approach. Additionally, when Liebenwein et al. [32] employ a lottery ticket-style
pruning approach, they find pruning harms robustness more when using smaller networks, which
is consistent with our CARD hypothesis that states that the starting network must be sufficiently
overparameterized.

B Experiment settings

All codes were written in Python using Pytorch and were run on IBM Power9 CPU with 256 GB
of RAM and one to two NVIDIA V100 GPUs. Publicly available code was used as the base for
each pruning method for models pruned with FT and GMIﬂ> LTH and LRRE], Efﬂ and BPﬂ We

*https://github.com/RAIVNLab/STR
Shttps://github.com/facebookresearch/open_lth
"https://github.com/allenai/hidden-networks
$https://github.com/chrundle/biprop
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Learning Rate LR Schedule Optimizer ~ Weight Decay Epochs Pruning Details

Conv4/6/8
Rest
Conv2/4/6/8
Conv2/4/6/8
Conv2/4/6/8
Conv2/4/6/8

Rest
Rest

123 23 23
~ & &

< | Conv2/4/6/8

Dense | 2e-4 3e-4 0.1 | None LRI160 | Adam SGD le-4 100 160 N/A N/A

FT < 0.01 - 0.1 | Cosine LRI160 | < SGD — < le-4 — | <200 — | <— Prune at epoch 160 then fine tune 40 epochs —
GMP | +-0.01 — 0.1 | Cosine LRI160 | < SGD — — le-4 = | <160 — +— (s4,t,n, At) = (0,5,105,1) —>
LTH | 5e-3 1le-2 0.1 <+ LR160 — + SGD — +— le-4 — < 160 — | rewind it.: 1000, rate: 20% rewind it.: 5000, rate: 20%
LRR | 5e-3 le-2 0.1 <+ LR160 — <+ SGD — +— le-4 — < 160 — | rewind it.: 1000, rate: 20% rewind it.: 5000, rate: 20%

BP +— 01— < Cosine — <+ SGD — +— le-4 —» | + 250 — <+— All Epochs —

EP +— 01— <— Cosine — <+ SGD — +— le-4 —» | + 250 — <+— All Epochs —

Table 1: Hyperparameters used when training dense baselines and each pruning method by model.
Note that “Rest” refers to all other models trained in our experiments, such as VGG and ResNet.

added functionality for global pruning in FT, GMP, EP and BP as it was not implemented in existing
repositories.

ResNet-18 results for rewinding strategies, LRR and LTH, make use of regular ResNet-18 [[19]]
models while all other methods, including dense, make use of PreAct ResNet-18 [20] as it provided
improved performance in terms of accuracy and robustness.

A breakdown of hyperparameters by model and pruning method is provided in Table[I] As mentioned
in Section[2] for each pruning method we used hyperparameters tuned specifically for that method.
The dense Conv2/4/6/8 models used a batch size of 60, as specified in Figure 2 of the original Lottery
Ticket Hypothesis paper [12]. All pruned models and the remaining dense models were trained using
a batch size of 128. In the LR schedule column, Cosine denotes cosine decay while LR160 denotes a
schedule that sets the learning rate to 0.01 at epoch 80 and 0.001 at epoch 120. All models trained
using SGD use a momentum of 0.9.

We first note details of experiments using traditional pruning methods, fine-tuning (FT) and gradual
magnitude pruning (GMP). For FT models, unpruned training takes place for 160 epochs at which
point pruning to the full sparsity level takes place using global magnitude pruning. After pruning,
fine-tuning of the pruned network takes place over 40 epochs where the learning rate is kept at
the final value after pruning at epoch 160 [34} 43]]. For GMP models, the sparsity level gradually
increases over the course of the training process. In our experiments, the sparsity level at training step
t increases in accordance with equation (1) from [60] which we include here to interpret the GMP
pruning details from Table [T}

3
t—t ,

Here, s; denotes the initial sparsity level, sy denotes the final sparsity level, n denotes the number
of pruning steps, ¢y denotes the first training step where pruning is performed, and s; denotes the
sparsity level at the current training step. Note that the values for s;, tg, n, and At are provided in
Table[Il

For rewinding methods, LTH and LRR, hyperparameters were chosen based on details from [[12, 13|
111 143]]. Notably, our rewinding-iteration choices stemmed from the hyperparameter study shown in
Figure 7 of [13|], and the fact that the small Conv models performed well when rewound to iteration 0
in [12f]. All LTH/LRR runs were implemented using a modified version of the OpenLTH repository
(1]

For initialization methods, edgepopup (EP) and biprop (BP), pruning is achieved by learning a
pruning mask that is applied to the randomly initialized networks weights and, in the case of BP,
binarization is applied to the weights of the resulting pruned network. For EP networks, weights
were initialized using the signed constant initialization from [41] which offered the best performance.
As an added benefit for compactness, this initialization also yields a binary weight network. For BP
networks, weights were initialized using the kaiming normal initialization as in [9]] and the biprop
algorithm performs binarization during training resulting in a binary-weight network. Due to the
binary weights in both the EP and BP CARDs we trained, these CARDs provided further reductions in
on-device memory consumption over rewinding based pruning strategies. For both EP and BP, we
used the same number of epochs for training as in [9]].
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C Additional Experiments

C.1 Effect of global vs. layerwise pruning in lottery ticket initialization methods.

The lottery ticket initialization methods analyzed in the Section 2] were originally developed to prune a
percentage of weights uniformly across all layers of the network. In contrast, global pruning methods
are considered to be more flexible as they can prune some layers more heavily than others while
still meeting a user-specified sparsity level for the entire network. By analyzing these initialization
methods using both layerwise and global pruning, we notice certain peculiar patterns. Figure [3]
provides the accuracy and robustness of models trained with BP and EP using global and layerwise
pruning. For each model, the maximum CIFAR-10 accuracy was achieved by a layerwise pruned
model at one of the six sparsity levels. However, the globally-pruned models consistently outperform
the layerwise pruned models on robustness at nearly every sparsity level. Furthermore, the globally-
pruned models typically achieve higher or comparable accuracy at higher sparsity levels, indicating
that initialization methods utilizing global pruning are more suitable when a high-level of sparsity is
desired.

Convé4 Conv6 Conv8 5o Vggl9 o Resnet18

25 2.5

o N w
o o
oNn
v o
N oo
“ o

!
|

~
|

&

-2.5 T 2,5 e

-5.0 -5.0| -5 -5.0

=715 =75

-10.0 -10.0 -10.0 -10.0

~12.5] [ Reference Accuracy: 87.00% | | ~12:5| [ Reference Accuracy: 88.43% | | ~12:5| [ Reference Accuracy: 88.68% | | ~125| [ Reference Accuracy: 93.44% | | ~12:5| [ Reference Accuracy: 94.42%

_152 55 60 65 70 75 80 85 90_15'% 55 60 65 70 75 80 85 _15%0 55 60 65 70 75 80 85 90_152 55 60 65 70 75 80 85 9—]5%0 55 60 65 70 75 80 85 90
Percentage of Weights Pruned Percentage of Weights Pruned Percentage of Weights Pruned Percentage of Weights Pruned Percentage of Weights Pruned

Accuracy
L&
-8

|
L
b

Relative CIFAR-10
|
S
S

—— Baseline (Dense) Biprop (Global) Biprop (Layerwise) Edgepopup (Global) Edgepopup (Layerwise)

Conv4 Convé Conv8 Vggl9 Resnet18

Relative Corrupted
°
o
g
o
o
o
g
1

CIFAR-10 Accuracy

| — Reference Accuracy: 71.00% | =501 Reference Accuracy: 72.98% =50 TReference Accuracy: 72.40% =501 Reference Accuracy: 73.69% |
-75 -75 -75 -7,

55 60 65 70 75 80 85 90 50 55 60 65 70 75 80 85 O 50 55 60 65 70 75 80 85 90 50 55 60 65 70 75 80 85 90 50 55 60 65 70 75 80 85 90
Percentage of Weights Pruned Percentage of Weights Pruned Percentage of Weights Pruned Percentage of Weights Pruned Percentage of Weights Pruned

[ Reference Accuracy: 69.04%

win o 0

Figure 5: Global pruning in lottery ticket Initialization methods provides greater robustness
gains: While layerwise pruning is able to achieve the highest accuracy across all sparsity levels in
initialization methods, global pruning provides more significant robustness gains at all sparsity levels.

C.2 Comparison of full-precision-weight Edgepopup pruning with binary-weight
Edgepopup pruning

The models pruned using EP in our experiments are pruned using weights initialized from a scaled
binary initialization, as specified in [41]]. Additionally, models pruned with BP contain binary weights
regardless of the initialization used. To demonstrate that the robustness gains afforded are a feature of
initialization based pruning methods and not binarization, we provide some results for full-precision
initialization based pruning models. In particular, by using the kaiming normal initialization with
EP the resulting network has full-precision weights. In Figure[6] we visualize the accuracy of these
models on CIFAR-10 and CIFAR-10-C. These experiments demonstrate the the robustness of the
initialization based CARDs is not exclusive to binary weight networks as the full-precision weight
networks can achieve comparable accuracy to the binary weight networks at some prune percentages.

D Additional heatmaps

Here we provide additional heatmaps (varying sparsity levels) for Conv8 (see Figures[7]and [8) and
for ResNet18 models (see Figures [0} [T0] and [TT). By comparing the heatmaps of rewinding and
initialization based pruning methods to baselines, we find that these models are more resilient to
perturbations of varying severity.
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Figure 6: Using Full Precision weights in lottery ticket Initialization still provides robustness
gains: While initialization pruning methods with binary weights yield the greatest robustness gains
over the baseline, randomly initialized networks with full-precision weights pruned using Edgepopup
are capable of providing improved robustness over the dense baseline.

D.1 Additional Conv8 heatmaps

In the Conv8 models, differences in the heatmaps of initialization methods and the baseline model
persist up to the highest sparsity level of 95%, as seen in Figure 8] The top three rows in each figure
provide the Fourier heatmaps for each model while the bottom three rows provide the difference to
the dense baseline. In the difference heatmaps, blue pixels are where the compressed model has an
error rate lower than the dense model and red pixels are where the compressed model has an error
rate higher than the dense model.
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Figure 7: Visualizing the response of compressed models to perturbations at different frequen-
cies: The top three rows are Fourier heatmaps for error rate of Conv8 models trained on CIFAR-10
with 90% of weights pruned. The bottom three rows are difference to the baseline with blue regions
indicating lower error rate than baseline.
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Figure 8: Visualizing the response of compressed models to perturbations at different frequen-
cies: The top three rows are Fourier heatmaps for error rate of Conv8 models trained on CIFAR-10
with 95% of weights pruned. The bottom three rows are difference to the baseline with blue regions
indicating lower error rate than baseline.

D.2 ResNet-18 heatmaps

Here we provide Fourier error rate heatmaps for the ResNet-18 architecture trained using different
pruning methods. As in the Conv8 heatmap figures, we include heatmaps for a trained dense
ResNet-18 model for reference and the difference heatmaps clearly conveying the difference of each
compression method to the baseline.

E Constructing iterative pruning with rewinding from fine-tuning

While LTH [12] and LRR offer unsurpassed performance, such approaches also greatly extend
the training duration, pruning just 20% of the remaining weights every T — r epochs, where 7" is the
initial training duration and r is the epoch the weights/learning-rate are rewound to after each pruning
event (here, »r = 12 and T' = 160). This raises the question: Is longer training and the multi-shot
pruning procedure critical to the robustness improvements LTH/LRR offer relative to FT/GMP?

To test this, we gradually construct the LTH/LRR pruning approaches used in this paper by starting
from a fine-tuning approach and adding modifications until we produce the LTH/LRR method that
prunes the network 13 times to reach 95% sparsity. The phases of this construction for LRR are
illustrated in Figure[T2] wherein we plot a column of Fourier heatmaps for each phase. Specifically,
the first column is our FT approach, the second column extends the fine-tuning duration, the third
column adds learning-rate rewinding to this fine-tuning period, the fourth column decreases the
iterative prune rate to achieve 95% sparsity in 4 shots rather than 1, and subsequent columns continue
to increase the number of pruning shots. In this construction process, we find a notable benefit of
adding learning-rate rewinding (70.9% to 72.6% CIFAR-10-C accuracy moving from column 2 to
column 3), but the biggest benefits of LTH/LRR come from combining this rewinding with multiple
iterations (i.e., all columns from 4 onward display at least 75% robust accuracy). Interestingly, our
results also indicate that it may be possible to achieve the robustness benefits of LTH/LRR with

20



Edgepopup Edgepopup Biprop Biprop
Layerwise Global Layerwise Global

o
=
o
5
I
-
5
o

Dense
10

|

|
B

|

w

i

#

Epsilon 3.0
L
-

l,;‘" ‘s
N

Epsilon 4.0
P

O
‘h b i

Epsilon 6.0

r

0.0

Rz
‘ i ol

¢

Epsilon 3.0

3

Epsilon 4.0

= . z -y 1 I —t g ] - 00
X R PN | I
o - . v . ! ™

gl < L I

Epsilon 6.0
&

L w "
I F

Figure 9: Visualizing the response of compressed models to perturbations at different frequen-
cies: The top three rows are Fourier heatmaps for error rate of ResNet-18 models trained on CIFAR-10
with 80% of weights pruned. The bottom three rows are difference to the baseline with blue regions
indicating lower error rate than baseline.

a higher iterative pruning rate and thus fewer pruning shots/iterations than what is standard in the

literature [12] 43]].

We now repeat this experiment using 90% sparsity (Figure[[4]), using LTH instead of LRR at 95%
sparsity (Figure[I3), and using LTH and 90% sparsity (Figure|I3).

At 95% sparsity, we observe the same pattern: adding multiple shots of pruning is critical to improving
the LTH heatmaps and robustnesses of the rewinding-based methods (Figure [I3). That is to say,
adding rewinding and a longer post-pruning fine-tuning duration to our FT method is not sufficient
to obtain the results achievable with LTH/LRR—multiple iterations are needed. Interestingly, as
especially visible at epsilon 6.0 in the Fourier heatmaps, LRR (Figure[T2)) is clearly more resilient to
perturbations than LTH, which is consistent with the improved performance of LRR relative to LTH.

At 90% sparsity, for both LTH (Figure[T3) and LRR (Figure[T4), the Fourier heatmaps reflect benefits
of multiple shots and rewinding (particularly near the centers of the images for all epsilons). For
LRR, there is greater similarity among the Rewinding and Initialization Fourier heatmaps at 90%
sparsity than at 95% sparsity, and this is reflected in their robustnesses in the captions, which are less
separated in the 90% sparsity case. Notably, however, all these robustness figures are consistent with
the aforementioned heatmap improvements in that they show the benefits of combining rewinding
with multiple pruning shots. Note that 10-shot pruning corresponds to the scheme / iterative pruning
rate (20%) we use to reach 90% sparsity in other sections (e.g., Figure[I0).

F Additional results with CARDS and CARD-Deck

In this section, we provide tables for all experimental results from Section[3] This includes tables
for individual CARDs on CIFAR-10 for ResNet-18 (Table [2)), ResNeXt-29 (Table [T3), ResNet-
50 (Table @), and WideResNet-18-2 (Table |'1§|) Additionally, we provide tables for CIFAR-10
CARD-Decks using ResNet-18 (Table [3), WideResNet-18-2 (Table ), and CIFAR-100 CARD-Decks
using WideResNet-18-2 (Table [5)). Breakdowns for the performance of CIFAR-10 ResNet-18 CARDs
and CARD-Decks on each of the 15 corruption types in CIFAR-10-C are provided in Tables [6] -
Tables[T1] As a reference, tables for individual CARDs provide results for dense baseline models. Due
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Figure 10: Visualizing the response of compressed models to perturbations at different fre-
quencies: The top three rows are Fourier heatmaps for error rate of ResNet-18 models trained on
CIFAR-10 with 90% of weights pruned. The bottom three rows are difference to the baseline with
blue regions indicating lower error rate than baseline.

Baseline CARD

Dense Edgepopup LRR LTH Biprop

- Layerwise Global Global Global Layerwise Global
5 s & P s & P . B £ =z .

Clean Acc. 955 951 939 943 937 924 949 944 93 96.1 956 938 956 949 935 939 937 924 945 941 932

§ Robust Acc. 892 737 856 87.8 76.7 851 884 744 857 89.8 757 864 894 744 858 875 76.1 85.1 87.8 743 853
“  Memory (Mbit) 358 358 358 223 223 223 223 223 223 715 715 715 715 715 715 223 223 223 223 223 223
< Clean Acc. 955 951 939 944 939 929 944 941 928 963 956 939 957 952 93.6 944 941 927 937 93.6 93
N Robust Acc.  89.2 737 856 88 756 852 879 76 854 89.8 76.1 863 89.7 743 86 87.8 751 85 871 746 842
@ Memory (Mbit) 358 358 358 1.2 112 112 112 112 112 358 358 358 358 358 358 1.2 112 112 L12 L12 LI2
< Clean Acc. 955 951 939 945 94 926 932 927 912 96.1 957 939 958 95.1 938 942 938 925 925 92.1 914
E Robust Acc.  89.2 737 85.6 87.8 73.1 843 857 734 839 89.6 756 863 89.7 743 86 875 73.8 844 847 734 831

Memory (Mbit) 358 358 358 0.56 0.56 0.56 0.56 056 0.56 17.9 179 179 179 179 179 056 056 0.56 0.56 0.56 0.56

Table 2: Performance comparison between dense baselines and CARDs using ResNet-18 architecture.
Clean and Robust Acc. refer to accuracy on CIFAR-10 and CIFAR-10-C, respectively. The best
performance for each method is shown in bold.

to the structure of the table these results are intentionally repeated at each sparsity level (the dense
baselines are not pruned so their performance remains constant).

F.1 Tables of CARD and CARD-Decks results for ResNet-18 and WideResNet-18

The clean and robust accuracies (averaged across three realizations) of CARDs for each pruning
scheme are provided in Table 2] We find that CARDs perform comparably to (and in some cases better
than) their dense counterparts in terms of accuracy and robustness but have a significantly smaller
memory footprint.
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CARD-Deck (Agnostic/Adaptive)

Edgepopup (Global) LRR LTH Biprop (Global)
2 4 6 2 4 6 2 4 6 2 4 6

. Clean Acc. 92.1/94.1  94/94.5 94.2/948  96/96  96.3/96.4 96.4/96.6 95.5/95.5 96/96.1 96.1/96.1 93.8/93.8 94.3/94.3 94.3/94.4
N Robust Acc. 85/88.9 88.4/89.8 88.9/90 89.7/90.9 91.7/91.8 91.9/92 89.4/90.4 91/91.2 91.2/91.4 87.5/88.6 88.8/89.3 89/89.6

° Memory (Mbit) 4.47 8.94 13.4 143 286 429 143 286 429 4.47 8.94 13.4

. Clean Acc. 92.9/94.4 94.6/94.8 94.7/94.8 96.3/96.3 96.4/96.4 96.4/96.6 95.7/95.7 95.9/95.7 96.2/96.2  94/94  94.6/94.4 94.5/94.6
s Robust Acc.  85.2/89.2 88.6/90.1 89.3/90.4 89.8/91.1 91.7/91.8 92/92.1 89.4/90.5 91/91.3 91.3/91.5 87.4/88.6 89.2/89.5 89.4/89.9
= Memory (Mbit) 223 4.47 6.70 71.5 143 215 71.5 143 215 223 4.47 6.70

. Clean Acc. 92.6/94.5 94.2/94.8 94.5/95.1 96.1/96.1 96.3/96.4 96.3/96.5 95.8/95.8 96/96.1 96.1/96.2  94/94  94.7/94.5 94.7/94.6
by Robust Acc.  84.3/88.6 87.7/89.5 88.4/89.9 89.6/91 91.6/91.8 91.9/92  89/90.3 90.8/91.1 91.1/91.4 87.2/88.5 88.9/89.4 89.2/89.7
= Memory (Mbit) 112 223 3.35 35.8 71.5 107 35.8 71.5 107 112 223 3.35

Table 3: Performance of domain-agnostic and domain-adaptive ResNet-18 CARD-Decks. Clean and
Robust Acc. refer CIFAR-10 and CIFAR-10-C accuracy, respectively.

CARD-Deck (Agnostic/Adaptive)

Edgepopup (Global) LRR LTH Biprop (Global)
2 4 6 2 4 6 2 4 6 2 4 6

. Clean Acc. 92.4/92.9 94.0/94.8 94.8/95.1 96.3/96.3 96.7/96.7 96.7/96.8 96.1/96.1 96.5/96.4 96.6/96.6 92.4/93.1 94.3/94.5 94.9/95.0
s Robust Acc.  85.1/86.2 88.6/90.0 90.1/90.6 90.6/91.7 92.3/92.3 92.5/92.6 90.1/91.2 91.6/91.8 91.9/92.1 85.3/86.2 88.7/89.8 89.9/90.5
 Memory (Mbit) 8.93 17.86 26.79 285.8 571.6 857.5 285.8 571.6 857.5 8.93 17.86 26.79

. Clean Acc. 92.8/93.4 94.6/94.9 95.1/953 96.3/96.3 96.8/96.8 96.6/96.8 96.1/96.1 96.5/96.4 96.6/96.7 92.3/92.8 94.2/94.5 95.0/95.2
N Robust Acc.  85.2/86.1 88.6/89.9 90.0/90.6 90.8/91.8 92.4/92.5 92.7/92.75 89.9/91.4 91.6/91.9 91.9/92.2 84.9/86.0 88.4/89.5 90.0/90.5
' Memory (Mbit) 4.46 8.93 13.39 142.9 285.8 428.7 142.9 285.8 428.7 4.46 8.93 13.39

Table 4: Performance of domain-agnostic and domain-adaptive WideResNet-18 CARD-Decks. Clean
and Robust Acc. refer to CIFAR-10 and CIFAR-10-C accuracy, respectively. The best performance
for each method is shown in bold. For reference, dense WideResNet-18 (AugMix) model achieves
(Clean Acc., Robust Acc., Memory) = (95.6%, 89.3%, 1429 Mbit).

CARD-Deck (Agnostic/Adaptive)

Edgepopup (Global) LRR LTH Biprop (Global)
2 4 6 2 4 6 2 4 6 2 4 6

. Clean Acc. 77.1/77.1 78.5/78.4 78.6/78.7 78.3/78.3 79.6/79.7 79.6/80.2 78.2/782 79.6/79.7 79.9/80.3 76.9/76.9 77.8/78.1 78.0/78.3
s Robust Acc.  66.3/67.8 69.5/69.6 69.9/70.3 66.9/68.8 70.5/70.7 71.0/71.2 66.2/68.6 69.8/70.4 70.6/71.0 65.8/67.3 68.7/69.0 69.1/69.6
= Memory (Mbit) 8.95 17.90 26.85 286.5 5729 859.3 286.5 5729 859.3 8.95 17.90 26.85

. Clean Acc. 77.1/77.1  78.5/78.5 78.7/79.1 78.7/78.7 79.9/80.2 80.1/80.6 78.2/78.2 79.7/80.0 79.8/80.4 76.0/76.0 77.4/77.1 77.9/77.8
N Robust Acc.  65.6/67.1 68.9/69.0 69.4/69.7 67.1/68.8 70.6/70.7 71.1/71.3 66.5/68.6 70.1/70.3 70.7/71.0 64.8/66.5 67.9/68.1 68.4/68.7
' Memory (Mbit) 4.48 8.95 13.43 143.2 286.5 429.7 143.2 286.5 429.7 4.48 8.95 13.43

Table 5: Performance of domain-agnostic and domain-adaptive WideResNet-18 CARD-Decks. Clean
and Robust Acc. refer to CIFAR-100 and CIFAR-100-C accuracy, respectively. The best performance
for each method is shown in bold. For reference, dense WideResNet-18 (AugMix) model achieves
(Clean Acc., Robust Acc., Memory) = (77.5%, 66.1%, 1433 Mbit).
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Figure 11: Visualizing the response of compressed models to perturbations at different fre-
quencies: The top three rows are Fourier heatmaps for error rate of ResNet-18 models trained on
CIFAR-10 with 95% of weights pruned. The bottom three rows are difference to the baseline with
blue regions indicating lower error rate than baseline.
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Figure 12: Comparing the resiliencies of Rewinding and Traditional methods to perturbations
at different frequencies: Fourier heatmaps for error rate of ResNet18 models trained on CIFAR-10
in which 95% of the weights are pruned.

F.2 Additional results for CARDs and CARD-Decks with ResNet-18

In this section, we provide a breakdown of the accuracy of ResNet-18 CARDs and CARD-Decks by
CIFAR-10-C corruption types. In particular, Tables[f]-[§]contain the performance of CARDs trained on
clean, Augmix, and Gaussian augmentations when tested on CIFAR-10-C corruption types. Tables 9]
to@contain the performance of LTH, LRR, EP, and BP CARD-Decks on individual CIFAR-10-C
corruptions.

As a note of interest, we found that the best performance on different CIFAR-10-C corruptions
changes for individual CARDs as the sparsity level increases. At 80% sparsity, a Gaussian CARD yields
the highest accuracy on impulse noise but at 90% and 95% sparsity levels Augmix CARDs deliver the
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Figure 13: Comparing the resiliencies of Rewinding and Traditional methods to perturbations
at different frequencies: Fourier heatmaps for error rate of ResNet18 models trained on CIFAR-10
in which 95% of the weights are pruned via LTH.
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Figure 14: Comparing the resiliencies of Rewinding and Traditional methods to perturbations
at different frequencies: Fourier heatmaps for error rate of ResNet18 models trained on CIFAR-10
in which 90% of the weights are pruned via LRR.
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Figure 15: Comparing the resiliencies of Rewinding and Traditional methods to perturbations
at different frequencies: Fourier heatmaps for error rate of ResNet18 models trained on CIFAR-10
in which 90% of the weights are pruned via LTH.
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highest accuracy on impulse noise. Further, at 95% sparsity the margin of difference in accuracy on
impulse noise provided by the Augmix CARD over the Gaussian CARD is more significant.

While pruning using FT and GMP were unable to yield CARDs, note that we include the accuracy and
robustness of ResNet-18 models pruned using FT and GMP with the same augmentation schemes in
Table|12|for comparison against the performance of ResNet-18 CARDs in Table

F.3 Achieving state-of-the-art performance on CIFAR-10-C using larger models

We report these results in Tables[I3] [T4]and [I5] To summarize, our results highlight the fact that the
accuracy/robustness gains due to the model compression (and ensembling) are compatible with the
gains from the existing strategies, i.e., data augmentation and the use of larger models. By combining
these strategies with the scheme proposed in this paper, we achieve even larger gains in terms of
robustness and accuracy, in turn, establishing a new SOTA. Note that we include performance of
WideResNet-18 CARD-Decks composed of layerwise pruned BP and EP models in Table[I6]

F.4 Note on gating function performance

In Table we provide a break down of the performance of the spectral-similarity based gating
function by CIFAR-10-C corruption type. For each augmentation scheme and corruption type,
the corresponding number indicates the percetage of data from that corruption selected by the
gating function averaged across the 5 severity levels in CIFAR-10-C. Based on the performance
of Augmix and Gaussian CARDs by CIFAR-10-C corruption type in Tables [6] —[8] entries in the
table are marked in bold whenever a model pruned to sparsity 80%, 90%, or 95% trained using that
data augmentation scheme achieved the highest accuracy averaged over all severity levels of that
corruption type. Bolding these entries in Table [1'/|indicates that the gating function typically selects
the best performing augmentation scheme, and thereby the CARDs in the deck trained on data most
similar to the incoming test data, for the domian-adaptive CARD-Decks. Improvements could be
made by determining a gating function that is more accurate on the frost and jpeg corruptions. As
noted in Section[F2] the augmentation scheme yielding the best performing models on impulse and
glass corruptions varies with the sparsity level of the pruned network. This observation indicates that
an alternative similarity metric that takes into account features of the trained CARDs, such as sparsity
level, could provide a gating function that offers improved performance on CIFAR-10-C corruptions.

G Theory

G.1 Proof of Corollary 2|

Using the triangle inequality, we have that

| X ridi@) = o nF G w) @) < o Allful@) - Bl w)@)]l, 5)
k=1 k=1 k=1
for any z € X. Hence, if
sup (@) — it w)(@)] < ¢ ©)
reX

for each 1 < k < n, then it immediately follows that

H i i fr(z) — Zn: )\iFk.(é,w)(az)H < i Nie = e, o
k=1 k=1 k=1

forall z € X. Under the hypotheses of Theorem 3 in [38] (Theorem 2 in [9]), foreach k € {1,...,n
we have that with probability (1 — d) there exists a full-precision (binary-weight) CARD satisfying
Thus, with probability (1 — &)™ there exists a collection of full-precision (binary-weight) networks

{fx} satisfying (I).

26



G.2 0OOD Robustness analysis
To understand the average OOD robustness better, we derive the following decomposition:

Rob(D,, ) Rob(Sa, f*)
[Rob(Dy, f*) — Rob(Sa, )]

[Rob(Ds, f*) — Rob(Da, £*)).

+

+
Next, using the triangle inequality a + (b — a) > a — ||b — a|| which is true because ||b —a|| > a—b
for a,b > 0, we have

Rob(D., f*) > Rob(S,, f*)

[|[Rob(Dg, f*) — Rob(Sa, f)|
—  [[Rob(De, f*) — Rob(Da, f*)]]-
By linearity of expectation, we can bound (2)) from below
[A] |C| .
Rob(DY, fP¢%) > 3" " wiRob(S,, f*) ®)
a=1c=1
[A] |C] .
— > wl|Rob(Dq, f*) — Rob(Sa, f*)] 9)
a=1c=1
[A] |C|
— > wl||Rob(De, f*) — Rob(Da, f*)]]. (10)
a=1c=1

Note that we have bounded (2) in terms of the following three error terms for a classifier-corruption
pair weighted by their gating (or selection) probabilities: 1) empirical robustness (), 2) generalization
gap (9), and 3) OOD-shift (T0).

Next, we aim to provide a bound on the OOD-shift that is independent of the classifiers in hand and
is only related to the properties of the distributions. To facilitate this, we define a notion of distance
between two distributions.

Definition 2 ( (Conditional Wasserstein distance). For two labeled distributions D and D' with
supports on X XY, we define conditional Wasserstein distance according to a distance metric d as
follows:

W(D,D')= E inf E d(z,2)|, (11
(y)~D | JeT(Dly,D'|y) (z,z")~J

where J (D, D’) is the set of joint distributions whose marginals are identical to D and D'.

Conditional Wasserstein distance between the two distributions is simply the expectation of Wasser-
stein distance between conditional distributions for each class.
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Noise Blur Weather Digital
, E
. %
S T | 8 2 | 3 g | g 2
Model c < 5|&% £ E|% % E g|% & & E|s5 < & &
2 | Dense (Augmix) 95.5 89.2 358 | 81.7 859 86.7|943 80.8 924 932]90.0 89.7 922 94.7|91.0 90.5 88.7 87.7
.m Dense (Gaussian) 939 856 358|913 91.8 883|858 81.0 80.9 849|864 883 819 923 |70.6 86.6 88.1 899
a | Dense (Clean) 95.1 7377 358 |46.5 59.1 54.0|81.8 551 78.1 76.4|824 782 882 935|782 84.0 76.1 793
LRR (Augmix) 96.1 89.8 715|785 850 88.6|951 813 93.6 942|914 90.8 932 952|921 91.7 894 887
LTH (Augmix) 95.6 89.4 715|805 86.0 853|94.6 809 93.1 93.6[90.5 903 925 948|914 912 89.5 883
EP (Layerwise Augmix) |94.9 884 2.23|834 873 843]93.6 77.8 91.6 923|883 882 90.8 939|895 90.0 889 88.5
BP (Layerwise Augmix) |94.5 87.8 2.23 823 863 82.6[93.0 774 909 919 |87.6 87.4 90.5 93.5|89.1 89.7 87.8 88.1
EP (Global Augmix) 943 87.8 223|835 87.1 828|929 781 909 917|874 872 89.7 93.0|874 89.6 88.6 88.3
BP (Global Augmix) 939 875 223|829 86.6 833|924 77.8 903 91.2|87.0 87.1 894 92.7|86.8 89.1 884 879
LRR (Gaussian) 93.8 86.4 715|917 922 89.1|879 818 832 86.7|87.5 88.8 798 924|68.8 875 894 90.9
LTH (Gaussian) 935 858 71.5|91.6 92.0 885|870 79.0 825 86.0|86.7 879 809 92.1|69.5 872 884 90.4
& | EP (Layerwise Gaussian) | 93.0 85.7 2.23|91.0 914 885|86.6 81.6 81.6 857|862 882 80.8 91.0|71.1 859 88.7 89.8
% | BP (Layerwise Gaussian) | 93.2 853 2.23[90.7 91.1 88.2[86.0 80.6 79.9 849|862 87.6 82.1 91.5|71.3 857 87.4 89.5
© | BP (Global Gaussian) 924 851 223|903 90.8 88.6|858 803 806 845|852 86.8 81.8 90.0|70.3 855 875 89.2
EP (Global Gaussian) 924 851 223|904 909 88.6|86.2 81.4 81.0 852|851 872 804 902|689 855 884 894
EP (Global Clean) 93.7 76.7 223|644 71.6 644|828 568 77.7 782|804 788 87.6 92.0|77.1 848 77.6 839
LRR (Clean) 95.6 763 715|482 61.0 557|852 585 819 815|845 80.5 89.6 942 |79.8 86.6 78.9 8&l1.5
BP (Global Clean) 93.7 76.1 223|612 70.1 629|826 56.6 782 793|805 78.6 873 91.7|757 844 76.6 82.6
LTH (Clean) 949 744 715|462 593 51.8 829 559 788 789|832 79.7 888 93.5|78.7 857 779 80.7
EP (Layerwise Clean) 944 744 223|50.6 62.0 55.7 828 51.1 78.0 78.1|809 77.3 883 929|812 842 76.6 819
BP (Layerwise Clean) 94.1 743 223|530 64.1 562|828 508 774 785(80.1 76.7 879 925|782 839 756 812

Table 6: Performance when using ResNet-18 architecture with 80% of weights pruned evaluated on

CIFAR-10 and CIFAR-10-C. Note: LTH and LRR model prune rates are 79%.

28



Noise Blur Weather Digital
, E
. %
] [ =] o » Q 2 Q
s % g7 2013 ., B =|: . £E1E g =
[} =1 ° (=9 < ] s o |7 o = 7]
Model c 2z 2|§% £ E£|3 5 £ |2 & & 5|8 2 & &
2 | Dense (Augmix) 95.5 89.2 358 | 81.7 859 86.7|943 80.8 924 932]90.0 89.7 922 94.7|91.0 90.5 88.7 87.7
.m Dense (Gaussian) 939 856 358|913 91.8 883|858 81.0 80.9 849|864 883 819 923 |70.6 86.6 88.1 899
a | Dense (Clean) 95.1 7377 358 |46.5 59.1 54.0|81.8 551 78.1 76.4|824 782 882 935|782 84.0 76.1 793
LRR (Augmix) 96.3 90.1 358|792 854 89.3|953 81.6 93.8 944|915 91.3 933 955|925 91.8 89.8 88.7
LTH (Augmix) 95.7 89.4 358|799 855 865|948 81.1 932 939 ]91.0 90.6 928 949 |91.7 91.4 89.9 88.6
EP (Global Augmix) 944 88.0 1.12|832 87.1 829|930 77.6 91.0 92.0|87.7 88.0 904 934 |88.8 89.6 889 882
EP (Layerwise Augmix) |94.4 879 1.12|83.1 865 84.5]93.0 77.6 909 919|877 875 90.1 933|885 89.5 88.1 88.1
BP (Global Augmix) 944 87.8 1.12|83.0 869 83.8|929 76.6 90.5 91.6|87.6 87.5 899 932 |88.7 895 88.1 87.8
BP (Layerwise Augmix) |93.7 87.1 1.12|81.9 858 823 ]922 76.8 90.0 91.0|87.0 865 89.5 925|869 89.0 872 87.8
LRR (Gaussian) 94.0 86.4 358|919 92,5 89.1 |88.0 813 829 86.7|87.8 88.7 809 923]|69.0 87.6 89.6 91.0
LTH (Gaussian) 93.8 86.0 35.8|91.8 922 885|874 792 828 86.6|87.0 884 81.8 924 |70.0 874 884 90.3
& | EP (Layerwise Gaussian) | 92.8 854 1.1290.6 91.1 883|862 81.0 80.9 852 |85.6 87.4 809 90.7|71.2 85.6 87.7 89.6
% | EP (Global Gaussian) 929 852 1.12]90.8 91.1 88.7|864 80.5 80.8 852|854 87.0 809 90.8|69.8 858 874 89.4
© | BP (Global Gaussian) 927 85.0 1.12]|904 909 885|851 802 79.8 839|855 874 815 904 |71.1 852 86.6 89.2
BP (Layerwise Gaussian) | 93.0 842 1.12 899 904 87.0|852 79.5 79.5 83.8|84.6 875 809 91.1|693 845 86.6 889
LRR (Clean) 95.6 76.6 35.8|47.6 605 552|851 61.1 82.0 81.4|849 812 903 943|814 864 79.7 813
EP (Layerwise Clean) 94.1 76.0 1.12|60.7 693 625|835 527 779 79.1|79.8 78.1 875 923 |78.0 84.2 757 82.1
EP (Global Clean) 939 756 112|555 66.1 599|842 523 786 804 |81.1 779 884 924 |79.1 84.1 76.7 82.3
BP (Global Clean) 94.1 75.1 1.12|569 66.8 62.0|82.6 543 772 779|80.6 785 879 922|769 834 749 813
BP (Layerwise Clean) 93.6 746 112|542 6477 59.3|83.0 508 77.0 782|795 76.6 875 919|770 835 750 81.8
LTH (Clean) 952 745 358|455 584 532|835 56.1 79.6 799|833 794 89.1 939|786 856 77.6 80.4

Table 7: Performance when using ResNet-18 architecture with 90% of weights pruned evaluated on

CIFAR-10 and CIFAR-10-C. Note: LTH and LRR model prune rates are 89%.
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Noise Blur Weather Digital
, E
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] [ =) o » Q 2
s % 2|73 2158 ., § 2. . E1E g £
] = ° o = @ = o |7 = = 7]
Model c 2z 2|§% £ E£|3 5 £ |2 & & 5|8 2 & &
2 | Dense (Augmix) 95.5 89.2 358 | 81.7 859 86.7|943 80.8 924 932]90.0 89.7 922 94.7|91.0 90.5 88.7 87.7
.m Dense (Gaussian) 939 856 358|913 91.8 883|858 81.0 80.9 849|864 883 819 923 |70.6 86.6 88.1 899
a | Dense (Clean) 95.1 7377 358 |46.5 59.1 54.0|81.8 551 78.1 76.4|824 782 882 935|782 84.0 76.1 793
LRR (Augmix) 96.1 90.1 179|792 853 89.6|95.2 815 93.8 943 |91.6 914 933 954|924 91.8 89.7 88.8
LTH (Augmix) 959 895 17.9|78.0 845 87.0|94.7 81.1 93.1 9381909 905 928 949|915 91.6 89.3 884
EP (Global Augmix) 945 87.8 0.56|82.1 86.5 83.1 932 77.1 909 92.0|87.8 87.7 903 933|885 895 88.1 875
BP (Global Augmix) 942 875 056|820 86.1 834|928 765 902 915|872 874 898 93.0|879 89.2 875 874
LRR (Gaussian) 94.0 86.5 179|919 923 889 |87.7 804 833 86.7|87.7 88.8 81.1 926|702 87.8 89.2 90.7
LTH (Gaussian) 93.8 86.0 17.9|91.7 92.1 884|875 77.6 829 865|867 87.8 822 923|705 875 87.6 90.3
EP (Layerwise Augmix) |93.2 85.7 0.56 | 81.7 85.1 829|913 735 882 89.8|856 854 884 918|855 87.7 854 86.9
BP (Layerwise Augmix) |92.5 84.7 0.56 |80.6 842 813 ]90.7 73.0 87.4 89.0|84.1 83.6 872 909 |83.6 869 854 86.8
& | BP (Global Gaussian) 925 844 0.56|90.1 90.7 88.2|852 788 79.0 84.0|85.0 86.5 80.7 90.2|69.1 849 856 89.0
% | EP (Global Gaussian) 92.6 843 056|903 90.7 882|853 786 789 842|851 86.6 79.8 90.2|68.0 84.8 857 89.0
© | EP (Layerwise Gaussian) | 912 83.9 0.56 | 88.8 89.6 86.5|85.6 79.5 79.6 84.5|842 857 79.0 892|679 844 858 882
BP (Layerwise Gaussian) | 91.4 83.1 0.56 | 88.6 89.2 858 |84.8 785 79.0 83.4|83.8 853 809 89.7|673 83.6 855 879
LRR (Clean) 95.7 758 179|46.1 59.4 564|850 589 8l.1 81.0|84.5 803 89.5 944|809 86.3 79.5 80.7
LTH (Clean) 952 75.1 17.9|48.0 60.8 53.7|83.2 56.0 78.0 787|834 79.8 889 939 |79.1 853 783 809
BP (Global Clean) 93.8 73.8 056|499 61.8 572|822 51.1 77.0 78.1|79.7 768 87.6 92.1 784 829 749 80.7
EP (Layerwise Clean) 92.7 73.4 0.56|56.1 649 633|821 486 769 772|781 735 863 909|772 824 738 8l.4
BP (Layerwise Clean) 92.1 734 056|614 693 64.1]|80.0 515 746 740|778 745 856 90.1 727 815 722 815
EP (Global Clean) 940 73.1 056|493 60.2 57.6|82.0 525 757 776|792 759 87.0 92.1|74.8 829 743 80.6

Performance when using ResNet-18 architecture with 95% of weights pruned evaluated on

CIFAR; 10 and CIFAR-10-C.

Table 8
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Noise Blur Weather Digital
.
] > = 9 - 5] - o
s % E|% . 202 2 & £l:z < E1E 2§ o
o |5} © = 8 ) ) 4 o0 = 4 I~
Model c z 2|&% £ E|%8 % & g§|% & & 5|8 5 & &
& | Dense (Augmix) | 95.5 892 358 | 81.7 859 86.7|94.3 80.8 924 932]90.0 89.7 922 94.7|91.0 90.5 887 87.7
9 | Dense (Gaussian) | 93.9 85.6 358 | 91.3 91.8 883|858 81.0 80.9 849864 883 819 923|706 86.6 88.1 89.9
& | Dense (Clean) 95.1 73.7 358 [46.5 59.1 54.0|81.8 55.1 78.1 76.4|824 782 882 935|782 840 76.1 79.3
< | LRR (6) 96.4 919 429 |88.8 91.5 91.6 |95.1 84.7 933 943922 923 923 955|90.5 92.6 91.6 92.1
Z | LRR 4) 96.3 91.7 286 |87.1 90.5 91.0|95.1 84.6 934 944|922 923 926 955|91.1 925 912 917
mo LTH (6) 96.1 91.2 429 [ 88.8 91.5 89.8 944 83.6 925 936|914 91.6 91.6 951 (89.6 92.1 909 91.6
< | LTH 4) 96.0 91.0 286 [87.7 90.6 889|945 834 927 938|914 915 919 950903 92.0 90.7 91.1
= | LRR (2) 96.0 89.7 143 | 779 843 87.1 951 813 93.6 94.1 914 90.8 93.1 952|919 915 892 887
@ | LTH (2) 955 89.4 143 [80.5 86.0 849 |94.6 809 93.0 93.6(90.5 902 924 948|914 91.1 895 879
| BP(6) 943 89.0 134 (89.7 91.2 889919 822 89.1 90.6 883 89.2 882 93.0|83.1 89.8 894 904
m BP (4) 943 88.8 894|889 90.6 88.1[92.0 814 894 90.8|88.1 889 884 929839 89.7 889 90.1
O | BP(2) 93.8 87.5 447|829 86.6 833|924 77.8 903 91.2|87.0 87.1 89.1 92.7|86.8 89.1 87.7 879

Table 9: Performance of data-agnostic CARD-Deck ensembles composed of 80% sparse ResNet-18

CARDs on individual CIFAR-10-C corruptions. For each corruption, entry is average over severity

levels 1 through 5.
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Noise Blur Weather Digital
.
o W/. =) o 1%} Q @2 2
S o} = 3 & = Z 5 o) ) 3 oo L2 S 3 X
Model c z 2|&% £ E|%8 % & g§|% & & 5|8 5 & &

& | Dense (Augmix) | 95.5 892 358 | 81.7 859 86.7|94.3 80.8 924 932]90.0 89.7 922 94.7|91.0 90.5 887 87.7
9 | Dense (Gaussian) | 93.9 85.6 358 | 91.3 91.8 883|858 81.0 80.9 849864 883 819 923|706 86.6 88.1 89.9
& | Dense (Clean) 95.1 737 358 |46.5 59.1 54.0|81.8 551 78.1 764|824 782 882 935|782 840 76.1 793
< | LRR (6) 96.4 92.0 215 (894 919 919|950 85.0 933 942922 924 922 95.6|90.5 92.6 91.5 92.1
Z | LRR 4) 96.4 91.7 143 |87.6 90.8 91.2|95.1 84.4 935 9431921 92.1 92.6 955|91.1 923 91.1 91.6
mo LTH (6) 96.2 91.3 215 889 91.6 89.8 944 83.7 925 937(91.6 91.8 91.7 952 (89.8 92.1 91.0 91.7
< | LTH 4) 959 91.0 143 | 874 90.5 883|945 83.1 929 938 |91.6 91.6 92.1 952|904 920 90.7 9I.1
= | LRR (2) 96.3 89.8 715|777 843 872|953 814 93.8 944|914 91.0 93.1 955|919 91.7 89.8 88.7
@ | LTH (2) 95.7 894 715|799 855 832|947 8I1.1 932 939[90.8 90.6 925 949 |91.7 912 899 87.8
2 | BP(6) 945 894 6.70 [ 89.9 91.5 89.1 [92.1 819 89.3 O91.1 89.0 89.7 88.8 935|851 90.0 89.5 90.7
m BP (4) 94.6 89.2 447 |88.8 90.7 88.2|923 81.0 89.7 912|887 89.4 892 934|857 90.0 89.3 90.2
O | BP(2) 940 874 223|820 863 827925 76.5 903 91.5|87.3 86.8 89.7 92.8 |87.8 89.5 88.1 87.6

Table 10: Accuracy of data-agnostic CARD-Deck ensembles composed of 90% sparse ResNet-18

CARDs on individual CIFAR-10-C corruptions. For each corruption, entry is average over severity

levels 1 through 5.
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Noise Blur Weather Digital
.
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= % £l s il2 oz £l oz L 3|E %3 .
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Model c z 2|&% £ E|%8 % & g§|% & & 5|8 5 & &
& | Dense (Augmix) | 95.5 892 358 | 81.7 859 86.7|94.3 80.8 924 932]90.0 89.7 922 94.7|91.0 90.5 887 87.7
9 | Dense (Gaussian) | 93.9 85.6 358 | 91.3 91.8 883|858 81.0 80.9 849864 883 819 923|706 86.6 88.1 89.9
& | Dense (Clean) 95.1 73.7 358 [46.5 59.1 54.0|81.8 55.1 78.1 76.4|824 782 882 935|782 840 76.1 79.3
< | LRR (6) 96.3 919 107 [89.3 91.6 919|949 84.5 932 94.1(92.2 922 92.1 95.6|90.3 924 91.5 92.0
Z | LRR 4) 96.3 91.6 71.5|87.0 903 91.3|95.0 84.0 934 9421922 922 926 955|90.8 924 914 91.6
mo LTH (6) 96.1 91.1 107 [89.0 91.6 90.1 |94.3 832 923 936|915 914 91.7 951|894 920 905 914
< | LTH 4) 96.0 90.8 71.5|87.3 90.6 88.8 945 82.8 927 93.6|91.3 91.3 919 950|90.1 92.0 90.0 90.8
= | LRR (2) 96.1 89.6 358|758 834 86.8(952 809 93.8 943|915 909 933 954|919 91.8 89.7 88.7
@ | BP (6) 947 89.2 335(89.5 912 887|924 810 89.2 913|887 89.5 88.7 93.5|84.8 89.9 88.8 90.6
2 | LTH (2) 95.8 89.0 358 |77.8 845 83.6|94.6 80.5 93.1 93.6(90.9 902 925 948|912 912 89.3 87.7
m BP (4) 947 889 223883 905 87.8[924 803 89.3 912|884 89.1 889 933|854 89.7 885 90.1
O | BP(2) 940 872 1.12|81.2 857 825|925 76.0 899 91.5|87.0 87.1 89.7 928 |87.6 889 874 874

Table 11: Accuracy of data-agnostic CARD-Deck ensembles composed of 95% sparse ResNet-18

CARDs on individual CIFAR-10-C corruptions. For each corruption, entry is average over severity

levels 1 through 5.

33



Baseline ResNet-18

Dense FT GMP

- Global Global
= = %2 E = 4 E = %
¥ 8 2 2 8 2 2 3 Z
< o U < O U <« O O
. Clean Acc.  95.5 95.1 939 95.6 94.6 94.1 95.1 943 934
% Robust Acc.  89.2 73.7 85.6 88.7 73.6 84.5 88.2 73 84.5
“  Memory (Mbit) 358 358 358 143 286 429 143 286 429
. Clean Acc.  95.5 95.1 939 94.7 94.1 93.1 948 94 934
S  Robust Acc. 892 73.7 85.6 87.2 71.5 83.5 87.7 729 83.7
< Memory (Mbit) 358 358 358 71.5 143 215 71.5 143 215
. Clean Acc.  95.5 95.1 939 93.8 934 922 94.6 939 929
S RobustAcc. 892 73.7 85.6 854 68 81.1 87.2 73 837
@ Memory (Mbit) 358 358 358 35.8 71.5 107 358 71.5 107

Table 12: Performance comparison between dense baselines and ResNet-18 models pruned using
fine-tuning (FT) and gradual magnitude pruning (GMP). Clean and Robust Acc. refer to accuracy on
CIFAR-10 and CIFAR-10-C, respectively.

Baseline CARD
Dense Edgepopup LRR LTH Biprop
- Layerwise Global Global Global Layerwise Global
£ g 2 £ < 2 £ g 2 £ = 2 £ g 2 g = 2 £ =] 2
» & 3 2 & $ 2 5 % 2% & : 2 3 2% 3 F ¥ 3 Z
< T ® < U ©® < T © < [} S < [} 8 < U © < U ©
. CleanAcc. 959 954 938 942 942 93 944 94 929 964 958 941 962 953 939 942 94 928 937 936 924
S RobustAcc. 882 712 843 865 72 83 867 721 83 891 724 852 888 715 842 862 715 831 8 715 827
> Memory (Mbit) 153 153 153 048 048 048 048 048 048 1528 1528 1528 1528 1528 1528 048 048 048 048 048 048
. CleanAcc. 959 954 938 937 937 93 917 915 904 962 956 941 961 951 938 936 935 924 909 912 902
% RobustAcc. 882 712 843 858 699 823 828 69 803 893 721 852 884 71.1 843 851 703 81.8 824 704 802
> Memory (Mbit) 153 153 153 024 024 024 024 024 024 7.64 7.64 764 764 764 764 024 024 024 024 024 024
Table 13: Performance comparison between dense baselines and CARDs for ResNeXt-29. Clean and
Robust Acc. refer to accuracy on CIFAR-10 and CIFAR-10-C, respectively.
Baseline CARD
Dense Edgepopup LRR LTH Biprop
- Layerwise Global Global Global Layerwise Global
< O © < U © < T O < [ S < o S < U O < ©O ©
. CleanAcc. 959 951 936 948 944 933 954 95 94 964 959 947 958 954 942 947 944 93 949 947 932
S RobustAcc. 889 744 852 88 758 848 89.1 766 863 903 761 869 898 756 86 879 746 851 886 756 856
> Memory (Mbit) 753 753 753 235 235 235 235 235 235 7527 7527 7527 7527 7527 7527 235 235 235 235 235 235
. CleanAcc. 959 951 936 924 936 922 95 948 934 964 958 947 958 954 942 946 946 932 944 939 926
% RobustAcc. 889 744 852 792 709 82.6 889 766 859 904 757 868 89.6 753 86 874 739 848 87.6 744 846
@ Memory (Mbit) 753 753 753 118 118 118 118 118 118 37.63 37.63 37.63 37.63 37.63 37.63 1.8 1.18 118 118 118 118

Table 14: Performance comparison between dense baselines and CARDs for ResNet-50. Clean and
Robust Acc. refer to accuracy on CIFAR-10 and CIFAR-10-C, respectively.
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Baseline CARD

Dense Edgepopup LRR LTH Biprop
- Layerwise Global Global Global Layerwise Global
5 . 3 s & 4 5 s & s 3 £z .

Clean Acc. 95.6 952 933 948 942 924 950 947 928 964 959 94 96.1 956 942 945 944 927 946 941 926
Robust Acc. 893 746 857 886 782 855 888 765 857 90.5 768 866 89.8 755 865 884 774 856 883 757 853
Memory (Mbit) 1429 1429 1429 447 447 447 447 447 447 1429 1429 1429 1429 1429 1429 447 447 447 447 447 447

90%

Clean Acc. 95.6 952 933 949 944 928 942 938 921 965 958 942 961 958 943 947 943 927 936 933 915
Robust Acc. 893 746 857 887 756 852 87.6 759 850 90.8 771 870 90.0 762 866 8.6 76.1 849 873 760 84.6
Memory (Mbit) 1429 1429 1429 223 223 223 223 223 223 7146 7146 7146 7146 7146 7146 223 223 223 223 223 223

95%

Table 15: Performance comparison between dense baselines and CARDs for WideResNet-18 (2x).
Clean and Robust Acc. refer to accuracy on CIFAR-10 and CIFAR-10-C, respectively.

CARD-Deck (Agnostic/Adaptive)

Biprop (Layerwise) Edgepopup (Layerwise)

2 4 6 2 4 6

Clean Acc. 92.3/93.0 94.0/94.5 94.8/95.1 92.6/93.3 94.3/95.0 95.2/95.4

§ Robust Acc.  85.2/86.2 88.4/89.8 89.9/90.5 853/86.6 89.0/90.4 90.6/91.0
= Memory (Mbit) 8.93 17.86 26.79 8.93 17.86 26.79

. Clean Acc. 91.4/92.0 93.3/93.6 94.0/94.1 92.1/92.2 93.8/94.1 94.7/94.8
E Robust Acc.  84.6/85.2 87.4/88.7 88.8/89.3 85.0/859 88.1/89.3 89.7/90.0

Memory (Mbit) 4.46 8.93 13.39 4.46 8.93 13.39

Table 16: Performance of additional domain-agnostic and domain-adaptive CARD-Decks containing
CARDs using WideResNet-18 architecture.

Noise Blur Weather Digital
= ) -
3 2 | 3 = £ 2 2
E oz 2|2z £ 503 3z 0w B|lE %2 % o
Augmentation | % % £ |8 @m & & | & & & & S © & 5
Augmix 0 32 0 |8 0 100 962|100 38.6 100 99.8 |100 98.2 99.6 100
Gaussian 100 96.8 100 |11 100 0 38| 0 614 0 02| 0 18 04 0

Table 17: Gating Function Selection by Corruption Type on CIFAR-10-C: The CARD-Decks
make use of models trained on Augmix and Gaussian augmented datasets. Here we provide the
percentage of CIFAR-10-C test data that was gated to the Augmix and Gaussian models in the
CARD-Deck based on the type of corruption. For each corruption type, the bold number indicates
which CARD achieves higher performance (on average) on that corruption. This highlights that our
spectral similarity based gating function typically selects the best performing model. Note that for
impulse and glass corruptions, the best performing models vary between those trained on Augmix
and Gaussian corruptions based on the sparsity level of the model. For each corruption type, the
percentage in the table gated to each augmentation method is an average over the gating percentages
on CIFAR-10-C corruption severity levels 1 through 5.
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