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Abstract

We propose a novel Frank-Wolfe (FW) procedure for the optimization of infinite-
dimensional functionals of probability measures - a task which arises naturally
in a wide range of areas including statistical learning (e.g. variational inference)
and artificial intelligence (e.g. generative adversarial networks). Our FW pro-
cedure takes advantage of Wasserstein gradient flows and strong duality results
recently developed in Distributionally Robust Optimization so that gradient steps
(in the Wasserstein space) can be efficiently computed using finite-dimensional,
convex optimization methods. We show how to choose the step sizes in order to
guarantee exponentially fast iteration convergence, under mild assumptions on the
functional to optimize. We apply our algorithm to a range of functionals arising
from applications in nonparametric estimation.

1 Introduction

Problems in artificial intelligence, statistics, and optimization often find a common root as an infinite
dimensional optimization problem in the form

inf
{
J (µ) : µ ∈ P

(
Rd
)}
, (1)

for the space P
(
Rd
)

of Borel probability measures over Rd. In recent years, quantitative statistical
and algorithmic treatments of these formulations have produced insights into modern computa-
tional methods– resulting in novel approaches to difficult, open problems. Recent works in robust
optimization [6, 44, 54, 55], probabilistic fairness [57, 53], reinforcement learning [63, 64], and
generative adversarial networks [42, 18, 19] highlight these gains and are linked by the following
theme: problems in the form of (1) provide access to rich infinite dimensional structure that sidesteps
brittle artifacts of finite dimensional formulations.

This paper provides the construction and analysis of a modified Frank-Wolfe algorithm for (1) that
operates from this infinite dimensional perspective and yields concrete convergence and complexity
guarantees for a sub-family of problems (1) which are well-behaved with respect to the Wasserstein
distance of order 2 (see Algorithm 1 and Theorem 1). Under canonical conditions of smoothness
and convexity we recover linear rates of convergence while, even for functionals which exhibit low
degrees of smoothness and for conditions that go beyond convexity, we recover sublinear rates that
are to be expected from finite dimensional analogues [36] (see Section 2.2).

The vanilla Frank-Wolfe method cannot work in probability space, in general, since the planar
derivative (i.e. the first variation also known as the influence function) can be unbounded when
distributions do not have compact support. To overcome this issue, we conduct a natural modification
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to introduce a tractable, local, linear constraint– inspired by efforts in DRO [44, 6, 25, 54]. Specifically,
the modified Frank-Wolfe step admits the prototypical DRO formulation as below,

sup

{∫
f dµ : Dc(µ, µ0) ≤ δ

}
, (2)

whereDc(µ, µ0) is the optimal transport cost between µ and µ0 (a reference measure) under some cost
function c. The form of (2), itself, immediately suggests the basis of an infinite dimensional Frank-
Wolfe procedure since it provides a “linear” objective subject to a local, “trust-region” constraint–
centered at µ0. The relevance of (2) in distributionally robust optimization (DRO) and mathematical
finance has resulted in a multitude of computational schemes [44, 34, 37, 54, 61] for solving (2).
However, hitherto, such works have failed to consider (2) within the context of a general variational
method for (1). What makes these efforts notable, within the scope of this work, is that they emphasize
that the solution of (2) can be highly non-trivial. Indeed, without particular assumptions, (2) can
disguise an computationally hard problem– despite being convex in a Banach sense on P(Rd). Even
in the case where the cost is the squared Euclidean norm c(x, y) = ‖x− y‖2 (the case of primary
concern for this work), computational trouble can lie dormant– an artifact of inherently difficult
problems in unconstrained optimization [14]. This should not be surprising, however, given specters
of computational hardness dating back to early formulations of DRO [22]. To resolve these issues,
we also provide a novel analysis of techniques from distributionally robust optimization (DRO)
which illustrate how such formulations can be used, in a computationally tractable way, to construct
first-order, variational methods. By localizing the problem to a Wasserstein ball, the new Local Linear
Minimization Oracle (LLMO) that we make in this paper not only makes the vanilla Frank-Wolfe
problem sensible, but it also renders the problem computationally tractable via finite dimensional
convex optimization.

1.1 Previous work

Distributionally robust optimization To navigate such pitfalls, one can consider particular in-
stances of (2) where the objective and constraints are sufficiently structured to preclude computational
intractability and permit solution via methods adapted to the provided structure. Early work with this
line [27, 22, 60], has recently been supplemented by approaches [13, 26, 7, 46, 37, 67, 35] which
focus directly on DRO formulations from particular contexts in machine learning and operations
research. Unfortunately, the techniques offered by these efforts require assumptions which are too
restrictive for this work. These assumptions typically relate to a specific form for the objective
function or constraints in (2) (e.g. linear/convex functions/piecewise-convex objectives or constraints
with support or density requirements, see [31, 66, 44, 34, 65, 4, 58] for additional examples). In
this instance, such limitations preclude their applicability since, in general, a “gradient object” for a
functional J (see Section 2) need not satisfy these conditions.

A second, more relevant, approach to compute DRO problems (2) is to restrict the level of robustness
δ for which the problem is solved. This technique has been used in works such as [6, 54] and we
apply this principle in a similar spirit to [54]. In that work, smoothness of the objective in (2) is used
to, qualitatively, argue that a sufficiently small δ provides a computationally-tractable optimization
problem. In contrast, we provide quantification of the level of robustness required to achieve this
tractability and we demonstrate that this level robustness is sufficiently large to achieve canonical
convergence rates for an infinite-dimensional Frank-Wolfe algorithm.

Variational methods Although formulation of a Frank-Wolfe method for (1) (with quantitative
bounds on complexity and convergence) has not appeared in previous literature, certain, tangentially-
related variational methods offer conceptual similarity. The first of these methods is [41], which
draws similar inspiration from finite-dimensional Frank-Wolfe procedures. However, the notion of
first-order variation in [41] appears to be induced by the total variation distance– requiring compact
support assumptions for the problem. Alternatively, we exploit Wasserstein geometry to provide a
weaker notion of first-order variation, namely, Wasserstein differentiability– allowing us to eliminate
restrictions to compact support. Hence, by balancing tractability of the analysis and fidelity of the
procedure, the proposed algorithm scheme can be applied a broad class of computational examples.
Indeed, [41] only discussed the Sinkhorn barycenter problem and it is still unclear how it can
be applied to our setting. The second, more closely related effort, is [39] where similar, infinite-
dimensional conditions (Section 2.2) are used to study particle-based methods for computing Nash
equilibria of zero-sum games. While the setting and procedures developed in this work are completely
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different, we note that, as a special case, our Frank-Wolfe method can also produce a particle-based
optimization procedure. This hints at possible insightful connections with other particle methods
[40, 24, 11, 10] which are left for future consideration.

2 Wasserstein geometry

This work considers the problem
min

ν∈P2(Rd)
J(ν) (3)

for functionals J : P2(Rd)→ R̄ over the subset of Borel measures P(Rd) defined by

P2(Rd) :=

{
µ ∈ P(Rd) :

∫
Rd
‖x‖2 dµ(x) <∞

}
(4)

In particular, we consider functionals J that are differentiable (Definition 1) with respect to Wasser-
stein distance of order 2

W2(µ, ν) := inf
γ∈Π(µ,ν)

∫
Rd×Rd

‖x− y‖2 dγ(x, y) (5)

where Π(µ, ν) is the set of all joint couplings with marginals µ, ν ∈ P2(Rd). Common examples of
functionals that can be cast within this framework are as follows.
Example 1 (Divergences). For any convex, lower-semicontinuous function f : R+ → R such that
f(1) = 0, one can consider a “f -divergence” of the form

J(µ) := Df (µ||ν) =

∫
Rd
f

(
dµ

dν

)
dν. (6)

For instance, if f(t) = t log t, (6) reduces to Kullback-Leibler divergence DKL.
Example 2 (Integral Probability Metrics). For a set of real valued functions F on Rd one can define
the discrepancy

J(µ) := IPM (µ, ν) = sup
f∈F

∫
Rd
f dµ−

∫
Rd
f dν (7)

for µ, ν ∈ P
(
Rd
)
, where ν is a fixed, reference measure. Such discrepancies are termed Integral

Probability Metrics (IPMs), although they may not strictly satisfy the requirements of a metric–
say, by failing to distinguish all pairs of measures. Instead, for a pair of measures µ, ν ∈ P

(
Rd
)
,

IPMs can be interpreted as measuring the extent to which µ and ν differ on functions in F– or,
rather, measuring the extent to which µ and ν can be distinguished by F . Concretely, consider
F = {f : ‖f‖H ≤ 1} where H is a reproducing kernel hilbert space (RKHS). In this case, one
obtains the dual formulation of Maximum Mean Discrepancy (MMD).

2.1 Properties and differentiability for Wasserstein space
Under the Wasserstein distance, P2(Rd) is a Polish space [59] and, more importantly, it is a geodesic
space. That is, for every µ, ν ∈ P2(Rd), there exists a constant-speed geodesic curve µt : [0, 1]→
P2(Rd) where µ0 = µ, µ1 = ν and

W(µt, µs) = |t− s|W(µ0, µ1) (8)
Moreover, there is a bijection between constant-speed geodesics and optimal transport plans [1,
Theorem 7.2.2]. Every geodesic corresponds to a unique, optimal transport plan γ ∈ Π (µ, ν) such
that

µt = ((1− t)x+ ty)# γ where W2(µ, ν) =

∫
Rd×Rd

‖x− y‖2 dγ(x, y), (9)

and µt is the distribution of the random variable (1 − t)X + tY with the pair (X,Y ) following
distribution γ. Conversely, every optimal transport plan gives rise to a unique geodesic via (9).

Since our Frank-Wolfe method minimizes a sequence of linear approximations, one must define
the notion of a gradient (of a functional J) to be compatible with respect to the geometry of these
geodesics. In particular, as P2(Rd) is curved underW (see Appendix A), gradients must be defined
in terms of a selection in an appropriate cotangent bundle. For Wasserstein space, this cotangent
bundle (denoted CoTanP2(Rd)) is essentially the set of vector fields on Rd that can be approximated
by gradients of smooth functions (see Appendix A for details). This results in the following definition.
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Definition 1 (Wasserstein differentiability). Let S be a geodesically convex set; that is, µt ∈ S for
any geodesic µt between µ, ν ∈ S. A functional J : P2(Rd) → R̄ is Wasserstein differentiable
on S if there is a map F : P2(Rd) → CoTanP2(Rd) such that for all µ, ν ∈ S and a geodesic
µt : [0, 1]→ P2

(
Rd
)

between µ and ν, one has

lim
α→0+

J (µα)− J(µ)

α
=

∫
Rd×Rd

F (µ;x)T (y − x) dγ(x, y), (10)

where γ is the unique optimal transport plan (9) corresponding to µt. Note that F (µ;x) = (F (µ)) (x)
provides an aesthetic way of representing the evaluation at x ∈ Rd of the output of F at µ. The map
F is called the Wasserstein derivative of J .
Remark 1. The description of differentiability provided by Definition 1 falls within the general frame-
work of metric derivatives and Wasserstein gradient flows, largely codified in [1]. This framework is
now a well-established component of the theory of Wasserstein spaces, while the relation (10), itself,
presents only a narrow structuring of ideas from this framework. Definition 1, however, is often how
works in statistical and algorithmic fields interact with this broader area [56, 16, 38, 39]. Moreover,
this literature demonstrates the most motivating feature of (10): a large number of functionals of
interest for machine learning and statistical inference exhibit Wasserstein gradients in the sense of
(10). The curious reader is referred to [1, 52, 9] for precise statements of conditions under which (10)
is guaranteed. However, F is intimately relative to the Gateaux differential for J [52, 56]. Recall, the
Gateaux differential for a functional J exists when there is an appropriate, dual space D∗ on a closed
subspace D ⊆ P(Rd) such that

〈dJ(µ), ν − µ〉 = lim
α→0+

J (µ+ α(ν − µ))− J(µ)

α
(11)

for some dJ(µ) ∈ D∗ and all µ in some set S such that S−S ⊆ D. In instances where the Gauteaux
differential dJ(µ) exists, the Wasserstein derivative F will usually exist [39] and be given by∇dJ(µ).
Here, we use the finite dimensional gradient operator∇(·) formally, and omit a rigorous exposition
on this operation in the context of CoTanP2(Rd).

It should be noted that computation of the Wasserstein derivative might be difficult. Indeed, for
a J in a variational form such as (7), computation of the Wasserstein derivative is equivalent to
finding a witness function that achieves the supremum [52]. In the case of a pathological sets (in
(7)), such a task might be intractable. To resolve this issue, and to simplify our treatment, this work
utilizes the existence of an oracle for the computation of a Wasserstein gradient. This oracle permits
a unified description of our Frank-Wolfe algorithm and abstracts away variation in functional-specific
computational cost. Recall that a function in the Hölder space C1(Rd) is called L-smooth if has
L-Lipschitz gradients.
Definition 2 (Wasserstein Derivative Oracle). Let J : P2(Rd)→ R be a Wasserstein differentiable
functional on a set S with Wasserstein derivative F : P2(Rd) → CoTanP2(Rd). A L-smooth
Wasserstein derivative oracle over S is an oracle which, given sample access to a distribution µ ∈ S
and an error parameter ε, returns an L-smooth function φ̂µ ∈ C1(Rd) satisfying∥∥∥∇φ̂µ − F (µ)

∥∥∥
L2(µ)

≤ ε (12)

where ‖·‖L2(µ) is the canonical norm on the space L2(µ) of square integrable functions with respect
to µ ∈ P(Rd). In this work, the output of this oracle is represented as Θ(µ, ε).
Remark 2. The qualification that the Wasserstein derivative oracle return an L-smooth function is
necessary to exclude the, aforementioned, possibility of a pathological Wasserstein derivative– that
would be intractable for use in a computational procedure. In some ways, this is representative of
the fact that the cotangent space CoTan(µ) at a point µ is too large. Such a condition is common in
other variational methods [3, 19, 64, 20] and is relatively superficial– when coupled with the degree
of approximation afforded by ε. Via smoothing techniques [51, 11, 38], functionals can often be
assumed to have Wasserstein derivatives which are C1(Rd) or are well-approximable by C1(Rd)
functions.

2.2 Smoothness and Łojasiewicz inequalities
In finite dimensions, iterative, gradient-based methods typically require the specification of two
conditions in order to achieve convergence.
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• The accuracy of local, linear approximations that are provided by the gradient.

• The extent to which local descent makes global progress on the objective.

Here, we state these conditions in the context of functionals over Wasserstein space.

Definition 3 (α-Hölder smoothness). Let S be a geodesically convex set and let J : P2

(
Rd
)
→ R

be a functional which is continuously Wasserstein differentiable on the set S. J is said to be locally α-
Holder smooth on S with parameters T and ∆ if for all µ ∈ S and all ν ∈ S such thatW(µ, ν) ≤ ∆,
there exists an optimal transport plan γ ∈ P2(Rd × Rd) such that

J(ν) ≤ J(µ) +

∫
Rd×Rd

F (µ;x)T (y − x) dγ(x, y) +
T

1 + α
W1+α (ν, µ) (13)

Definition 4 (Łojasiewicz inequality). A Wasserstein differentiable functional J on a set S ⊆ P2(Rd)
is said to satisfy a Łojasiewicz inequality with parameter τ and exponent θ if for all µ ∈ S and
J∗ := infµ∈S J(µ)

τ (J(µ)− J∗)θ ≤ ‖F (µ)‖L2(µ) (14)

where F is the Wasserstein derivative (10) of J .

Remark 3. More restrictive versions of both (13) and (14) commonly appear in previous literature to
establish the explicit converence rate [3, 32, 39, 19, 15]. In most cases, the α-Hölder smoothness
condition (13) is stated for α = 1 and required to hold globally (∆ =∞). This smoothness criterion is
considerably weaker since it requires that the Wasserstein gradient only provide a local approximation
that is slightly more than first-order accurate. Moreover, such a condition can be necessary when
the Wasserstein derivative (10) is not Lipschitz with respect toW in the cotangent space norm on
CoTanP2(Rd)– see [43] for such an example. Additionally, statement of the Łojasiewicz inequality
(14) is broader than canonical treatments due to the presence of the auxiliary power θ. Most often,
the specific instances of either θ = 1/2 or θ = 1 are considered. The case θ = 1 is implied
for (geodesically) convex functionals J with a W-bounded level set, while θ = 1/2 is implied
for strongly convex J [1, 32]. Although the notions of Holder smoothness condition (14) and
Łojasiewicz inequalities (13) have been well-studied in the literature [33, 5], the use of both of these
conditions with explicitly determined exponents α and θ to provide concrete convergence rates for
a computationally-implemented, infinite-dimensional descent method does not appear in related
literature as far as the authors are aware.

3 Modified Frank-Wolfe algorithm

Algorithm 1 provides our modified Frank-Wolfe procedure along with its associated convergence
guarantees and sample complexities in Theorem 1 and Proposition 1. It is worth mentioning that
the algorithm itself only requires a much weaker notion of differentiability to be applicable, namely,
Gateaux differentiability (i.e., dJ(µ) in (11) exists). In Section 4, we will provide several com-
putational examples which may not satisfy the following assumptions but work well in practice.
We have to admit there is a theoretical and computational gap. We will leave it as an open ques-
tion for our future work. However, to conduct the convergence analysis, we require the following
assumptions–phrased in the language from Section 2.

Assumption 1 (Smoothness assumption). The functional J : P2(Rd)→ R̄ is Wasserstein differen-
tiable (Definition 1) and locally α-Holder smooth (Definition 3) on a set S ⊆ P2(Rd) with parameters
T and ∆1 > 0 (Definition 3). Further, an L-smooth Wasserstein derivative oracle (Definition 2) for J
exists.

Assumption 2 (Local richness). The set S is rich enough to contain the solution to (2) for µ ∈ S,
L-smooth −f , and δ ≤ ∆2.

Remark 4. When S is not the whole set, it is necessary to invoke Assumption 2 to guarantee that the
iterates produced by our algorithm remain in S. This is a result of the fact that the solution of (15) is
optimal for some Wasserstein ball of size δ̃ ≤ δ. Hence, each of these iterates is guaranteed to lie in
S so long as δ ≤ ∆2.

Assumption 3 (Łojasiewicz assumption). The functional J satisfies a Łojasiewicz inequality (14) on
S ⊆ P2(Rd) with parameters τ > 0 and θ.
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Algorithm 1 Modified Frank Wolfe for (3)
Input: Wasserstein derivative oracle Θ, initial distribution µ0, smoothness parameter α, gradient

error ε̂, estimation error ε̄, iterate error ε̃, stopping threshold r, step sizes (β1, β2, β3), number of
iterations k
for 1 ≤ i ≤ k do

Let φ̂µi−1
← Θ(µi−1, ε̂) (.) Definition 2

Compute
∥∥∥∇φ̂µi−1

∥∥∥
L2(µi−1)

− ε̄ ≤ s ≤
∥∥∥∇φ̂µi−1

∥∥∥
L2(µi−1)

if s ≤ r, then break
else δ ← min

(
β1, β2s, β3s

1/α
)
, ζ ← δε̃

Compute µi satisfying W (µi, µi−1) ≤ δ and (.) Proposition 1∫
φ̂µi−1

dµi − inf
W(ν,µi−1)≤δ

∫
φ̂µi−1

dν ≤ ζ (15)
return µi

Theorem 1. Under Assumptions 1, 2, 3, and an appropriate choice of input parameters, Algorithm 1
computes a distribution µ∗ satisfying

r(µ∗) := J(µ∗)− inf
µ∈S

J(µ) ≤ ε (16)

in at most
k = Õ

(
ε−p−

)
(17)

iterations, where p− denotes the negative part of p = 1−α∗θ for the dual exponent α∗ = (1 +α)/α.
The notation Õ(·) omits logarithmic factors in it’s arguments.

Remark 5. In the case of a (geodescially) strongly-convex and 1-Hölder smooth functional J , the
Łojasiewicz inequality (14) holds with θ = 1/2 and one obtains standard Õ(1) complexity (in terms
of ε). This is to be expected from finite dimensional analogues [36]. Similarly, for J which is only
convex (with aW-bounded level set), (14) holds with θ = 1 and (17) yields a Õ(ε−1) complexity
that mimics canonical results. The step size required to achieve these complexities is illustrated by
the choice of δ in Algorithm 1.

For functionals which are α-Hölder smooth for α < 1, the dependence on the dual exponent α∗ in
(17) can be rather punishing for small α. It is natural to ask if this exponent could be improved within
the scope of Assumptions 1, 2, and 3. Moreover, in finite dimensions, it is well known that first-order
methods for convex and α-Hölder smooth functions (also known as weakly smooth functions) can
obtain ε-optimal solutions in O(ε−2/(1+3α)) iterations [47]. Hence, it could even be considered
whether, given geodesic-convexity assumptions on J , a better iteration complexity for Algorithm 1
would be obtainable.

We conjecture that such improvements are unlikely - particularly those that would draw on analogy
from finite dimensional techniques. The motivation for this is as follows. A common approach
to establishing improved iteration complexities for convex, α-Hölder smooth functions, in finite
dimensions is to consider their gradient oracles as inexact oracles for convex, 1-Hölder smooth
functions [23]. Using either averaging arguments or accelerated methods, more rapid progress on
an underlying objective can then be made with these inexact oracles. Our Frank-Wolfe method
already utilizes an inexact step (15) so, conceptually, such an approach could be applied to Algorithm
1. Unfortunately, however, such finite dimensional analogies fail due to the difficulty of averaging
distributions in Wasserstein space. Indeed, in finite dimensions, averaging is crucial to prevent
error accumulation from outpacing objective progress. Since Wasserstein space is positively curved
(Appendix A) computing analogous convex combinations of the µi in Algorithm 1 is, itself, a
variational problem that might be as expensive to compute as the original problem (3).

3.1 Computation of the Frank-Wolfe step

An algorithm for computation of the Frank Wolfe step (15) is given in Appendix C and the net result
of this procedure is as follows.
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Proposition 1. Under the assumptions of Theorem 1, there exists a stochastic algorithm which (with
high probability) provides sample access to a distribution satisfying (15). Moreover, in the setting of
(17), this algorithm requires Õ

(
ε−2α∗θ

)
samples and gradient evaluations.

Crucially, the property enabling Proposition 1 is duality. The Frank-Wolfe problem (15) exhibits a
dual of the form

sup
λ≥0

[∫
Rd

(
inf
y∈Rd

f(y) +
λ

2
‖x− y‖2

)
dµ(x)− δ2λ

2

]
(18)

and (18) is amenable to computation using techniques from finite dimensional optimization. This
approach derives from distributionally robust optimization [6, 54, 25, 34] where such techniques have
been used to produce methods in optimization and machine learning that are robust to adversarial
perturbations.

In general, solution of (15) for any level of δ could be computationally hard [6, 54]. However, since a
Frank-Wolfe procedure need only solve local problems, not global ones, we show: there is a δ which
is, simultaneously, small enough to enable the efficient computation of (18)), yet large enough to
produce (17). The techniques used to achieve these results most closely resemble ideas from [54].
However, we provide a precise quantification of the δ in (15) that is required to achieve computation
tractability and develop a procedure which yields guarantees on the primal-dual gap of (15) and (18).
In turn, the theoretical insights that we obtain suggest an empirical procedure in which λ in (18) can
be updated relatively infrequently within our Frank-Wolfe algorithm, provided that it is chosen on a
proper scale. Such an implementation is investigated in Section 4 and yields significant computational
savings.

It is also worth noting that the implementation in Appendix C requires only sample access to µ0 in
order to provide sample access to a distribution satisfying (16). Thus, all operations in Algorithm 1
can be implemented using only sample access to µ0. Practically, however, it is often more efficient
to maintain approximations to the iterates µi via a non-parametric estimator. When this is done, it
results in an additional, additive error in the residual (16) at each step of Algorithm 1. If this error is
on the order of the error produced by the Wasserstein derivative oracle Θ, the iteration complexity
(17) remains unaffected. Moreover, analysis of the error induced by a particular non-parametric
approximation of the µi is highly problem dependent– so we do not consider it in the context of
Theorem 1.

4 Computational examples

In this section, we demonstrate the application our Frank-Wolfe algorithm to several non-parametric
estimation problems in statistics and machine learning. All simulations are implemented using Python
3.8 on a high performance computing server running Ubuntu 18.04 with a Gen10 Quad Intel(R)
Xeon(R) Platinum 8268 CPU @ 2.90GHz processor. As we mentioned in Section 3, the proposed
algorithm just needs a very weak of differentiability to be applied (i.e., Gateaux differentiability). The
computational examples we conduct in this section aim to show attractive performance in applications
where the assumptions required for theoretical convergence are unknown, instead of corroborating
our theoretical results.

4.1 Gaussian deconvolution

A classical task in nonparametric statistics [12, 8] is to infer a latent, data-generating distribution
µ ∈ P2

(
Rd
)

from a set of observations that are corrupted by independent, additive Gaussian noise.
For observations Y1, . . . , Yn such that Yi = Xi + Zi where Xi ∼ µ,Zi ∼ N

(
0, σ2

)
. One seeks to

compute a non-parametric estimate of µ — the variance of the noise σ2 is considered known. Since
Zi is independent of Xi, this task amounts to “deconvolving” µ from the distribution of Zi. A natural
candidate for µ is the maximum-likelihood estimator (MLE),

µ̂ := arg max
µ∈P2(Rd)

n∑
i=1

log

∫
Rd
gσ (Yi − x) dµ(x) (19)
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where gσ is the density of Zi. We refer the reader to [50, Section 3] for further details but note that it
was shown in [50] that µ̂ has an equivalent characterization

µ̂ = arg min
µ∈P2(Rd)

Dσ2(µ, P̂Y ) (20)

where

Dσ2(µ1, µ2) := inf
π∈Π(µ1,µ2)

1

2

∫
‖x− y‖2 dπ(x, y) + σ2DKL(π ||µ1 ⊗ µ2) (21)

is the entropic optimal transportation distance [21] and P̂Y is the empirical distribution of the Yi.
The problem (20) readily lies within the framework of (3) for J(µ) := Dσ2(µ, P̂Y ). Moreover, it is
known [41] that the Wasserstein derivative (10) of Dσ2(µ, P̂Y ) with respect µ is given by

∇φ̂µ(x) = σ2 log

(
1

n

n∑
i=1

exp
((
v∗i − ‖x− yi‖2/2

)
/σ2
))

(22)

where v∗ ∈ Rn is dual variable (corresponding to P̂Y ) which is optimal for Dσ2(µ, P̂Y ). This
provides a Wasserstein derivative oracle for (20) as the vector v∗ can be readily approximated using
sinkhorn or stochastic gradient algorithms [49].

Toy example On 2D Gaussian mixture A simple, two dimensional instance of (19) is shown in
Figure 1 on a dataset Yi of 50 samples with mixture of 4 Gaussians — illustrated by the kernel density
estimator of the Yi, shown in red. The behavior of our Frank-Wolfe Algorithm is depicted over the
course of several iterations, where the foreground contours provide the density of the iterate, µi, that
is maintained by the algorithm. It can be easily observed that despite the small overlap between our
initial distribution and target one, our method reaches the global optima very quickly.
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Figure 1: Toy Example on a 2D Gaussian Mixture. Note that the initial distribution is set as
N([10, 10], σ2I) for σ2 = 0.4 and the number of particles is 200. The bisection method of Appendix
C is used with tolerance set to 1e−3. The objective value Dσ2(µi, P̂y) is below to each sub-figure.

Uniform strategy for λ and sensitivity analysis on high-dimensional examples Since the num-
ber of bisection ascent step for λ in (18) that arises during the search can be large, the original
algorithm may be computationally rather demanding for high-dimensional cases. Thus, we are
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Figure 2: High-dimensional Gaussian deconvolution for d = 64. For 50 data points, Yi, sampled
from a mixture of 7-Gaussians, 200 particles are used in a non-parametric estimate the µi. In Figure
2(a), the tolerance for the ascent method is 1e−3 and the shaded bands show the standard derivation
over 10 independent runs with random initializations. In Figure 2(b), the step size δ is 0.5.

motivated to develop an approach that makes λ as a constant which only depends on the step size
λ = ε/δ1/2 without other one-dimensional optimization methods as an inner solver, where ε is
the scaling factor. Figure 2(a) provides a convergence behavior comparison between the vanilla
Algorithm 1 and the modification leveraging this new uniform strategy. Not surprisingly, the modified
Frank-Wolfe algorithm can get to the local region around the global optima faster but with a larger
variance, as the uniform strategy is indeed a more aggressive strategy at the early stage. To further
support the uniform strategy and our Frank-Wolfe framework, we conduct extensive sensitivity
experiments on the hyperparameter (e.g., step size δ and scaling factor ε). Both Figure 2(b) and 2(c)
demonstrate that our algorithm is robust to these crucial hyperparamter. We can also observe that it is
better not to choose a relatively large step size although we can converge faster at the beginning but
suffer from the risk of divergence, as the maximum step size is controlled by the smooth parameter in
theory. Hence, our experiment results here also corroborate the theoretical findings.

It is worth mentioning that this new uniform strategy can make our Frank-Wolfe framework be
extended to an asynchronous decentralized parallel setting easily and thus can further meet the
requirements of large-scale applications. Based on the superior performance, we left its rigorous
convergence analysis as an open question.

4.2 Nonparametric learning with student-teacher networks

The rise of generative adversarial networks (GANs) [28] and efforts connecting neural networks and
kernel regression [17], have generated interest in maximum mean discrepancy (MMD), particularly
with respect to it’s role in constructing high-dimensional, distributional embeddings [20, 45]. This
development is predicated on the observation that any neural network (x, θ) → ψ(x, θ), which
produces an output ψ(x, θ) ∈ Rd from input data x ∈ X ⊆ Rd and parameters θ ∈ Θ ⊆ Rm, yields
a kernel on the parameter set Θ:

k(θ1, θ2) := Ex
[
ψ(x, θ1)Tψ(x, θ2)

]
(23)

where the expectation over x is taken with respect to a data generating distribution. Via MMD,
k(·, ·) induces a natural discrepancy measure between distributions over network parameters θ. Thus,
learning of a generative image model can be expressed as minimizing MMD with respect to latent,
generative distribution for ν. We refer to [45, 3] for further descriptions of these applications.

Being an integral probability metric (7), squared MMD lies well within the framework of this paper

J(µ) := MMD2(µ, ν). (24)

and the Gateaux derivative (i.e., influence function) of J admits a natural expression [3] as the
difference between the mean embeddings of µ and ν

f∗µ(x) = Ez∼µ [k(z, x)]− Ez∼ν [k(z, x)] (25)

Indeed, f∗µ can be readily computed via sampling methods– even when µ or ν are continuous
or are large, discrete distributions [29]. Note that, as discussed in Remark 1, the Wasserstein
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Figure 3: Student-Teacher Network; The detailed implementation set up is same as [3, Appendix G].
The left one is the result for our Frank-Wolfe method with the uniform strategy λ = 0.05

δ and the step
size δ is 0.5. The number of particle is 200.

derivative is, under sufficient regularity, the gradient of the Gateaux differential∇f∗µ(·). Perhaps the
most advantageous consequence of (25), however, is that the Wasserstein gradient directly inherits
regularity present in k. Indeed, should ∇xk(x, y) be L-Lipschitz in x (uniformly for all y), J (24)
is naturally L-smooth [3]. This has led to the development of several variational or particle-based
methods for minimizing (24) [3, 45, 20].
Remark 6. For general MMD functionals, the smoothness and Łojasiewicz inequalities (i.e., Assump-
tions 1 and 3 ) are shown in [3]. Nevertheless, the MMD experiments in our paper, following the
setup in [3], fail to satisfy the differentiability assumptions in [3] due to the ReLU terms present in
the network defining the kernel.

However, despite a possible violation of the assumptions, Figure 3 demonstrates the competitive
performance of our method with two of baselines showcased in [3] on Student-Teacher network
problem. Our method is shown on the left, the center plot shows the “MMD gradient flow” algorithm
from [3], and the right plot provides the “Sobolev Descent” algorithm of [45]. Performance is
evaluated in terms of MMD error on a validation dataset and is shown as a function of the total
gradient evaluations performed by each method. This provides a better proxy for relative performance
and convergence since an iteration of Algorithm 1 performs multiple solves that are, each, similar in
terms of gradient complexity to a single iteration of MMD gradient flow or Sobolev descent. Further,
the total number of gradient evaluations should not be viewed as a proxy for wall-time as, for each
gradient evaluation, the number of operations performed by each method can vary widely. Indeed,
for each gradient evaluation in Sobolev descent an entire linear system solve is performed, which
is computational demanding in practice. Also, note that, as both MMD gradient flow and Sobolev
descent are particle-based, Algorithm 1 was, for the purposes of comparison, instantiated with a
particle distribution of equal size.

5 Conclusion

This paper introduces and studies a Frank-Wolfe procedure for the minimization of functionals of
probability measures. While these methods have been widely studied in the finite-dimensional setting;
our current environment presents both significant benefits and opportunities. First, many problems of
interest can be posed in terms of the types of formulations that we study [18, 19, 6, 54, 20, 39, 64,
55, 57, 11]. Second, our algorithm can naturally be asynchronously parallelized. This is a research
avenue of significant promise that we plan to explore in future work, especially in connection with
the wide range of applications mentioned earlier.

Acknowledgements Material in this paper is based upon work supported by the Air Force Office
of Scientific Research under award number FA9550-20-1-0397. Additional support is gratefully
acknowledged from NSF grants 1915967, 1820942 and 1838576.
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A Properties of Wasserstein space

The following properties of Wasserstein space make Definition 1 precise and are using in the
convergence proofs in Appendix B.
Proposition 2 (Properties of Wasserstein space).

• For a constant-speed geodesic µt : [0, 1] → P2(Rd) with respect to W , there exists a
(µt-almost surely) unique Borel vector field vt : [0, 1]× Rd → Rd which satisfies

W2(µ0, µ1) =

∫ 1

0

∫
Rd
‖vt(x)‖2 dµt(x) dt = min

vt∈Vµ

∫ 1

0

∫
Rd
‖vt(x)‖2 dµt(x) (26)

for

Vµ :=

{
vt :

dµt
dt

+∇ · (vtµt) = 0

}
(27)

defined as the set of all Borel vector fields which solve the continuity equation for µt. The
continuity equation is understood in duality with C∞c (Rd).

• For any constant-speed geodesic µt, the corresponding optimal transport plan γ ∈
Π(µ0, µ1) and the corresponding vector field vt (given by (26)) satisfy the relation

vt((1− t)x+ ty) = y − x, γ-almost surely (28)

for Lebesgue-almost every t.

• The space P2(Rd) is positively curved underW and at each point µ ∈ P2(Rd), the tangent
space

Tan(µ) := {∇ψ : ψ ∈ C∞c (Rd)}
L2(µ)

(29)
is the closure in L2(µ) of the gradients of smooth functions with compact support. Via
the Riesz isomorphism, CoTan(µ) = Tan(µ) where CoTan(µ) denotes the cotangent
space. The tangent and cotangent bundles will be denoted TanP2(Rd) and CoTanP2(Rd),
respectively.

Proof of Proposition 2. To verify the first bullet, we first establish the existence of such a vt. Let µt
be the constant speed geodesic and define the set of functions

Aµ :=

{
z ∈ L2 ([0, 1]) :W (µt, µs) ≤

∫ t

s

z(r) dr ∀ 0 ≤ s ≤ t ≤ 1

}
It is clear that the function m(r) :=W(µ0, µ1) is in A and satisfies

m = arg minz∈A

∫ 1

0

zp(r) dr (30)

for any p ≥ 1. Hence, the metric derivative |µ′| of µt fulfills

|µ′|(t) = d(µ0, µ1) Lebesgue almost everywhere for t ∈ [0, 1]

By Theorem 8.3.1 in [1], there exists Borel vector field vt : [0, 1]×Rd → Rd satisfying the continuity
equation (27) such that

‖vt‖L2(µt)
= |µ′|(t) =W(µ0, µ1) Lebesgue almost everywhere for t ∈ [0, 1] (31)

Combined with (30), this implies that vt is a solution of (26). Uniqueness of vt follows directly from
the second bullet.

For a constant-speed geodesic µt from µ to ν. Theorem 2.4 in [2] gives that, for any σ ∈ P2(Rd),

d

dt

1

2
W2 (µt, σ) =

∫
〈vt(x), x− y〉 dγ̄(x, y) ∀ γ̄ ∈ Πo(µt, σ) (32)

where Πo(µt, σ) ⊆ P(Rd × Rd) is the set of optimal transport plans between µt and σ. Setting
σ = ν, the fact that µt is a geodesic implies that there is a unique optimal coupling γ ∈ P

(
Rd × Rd

)
between µ and ν such that

((1− t)x+ ty, y)# γ ∈ Πo(µt, σ)
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Hence, (32) gives

−(1− t)W2(µ, ν) =

∫
〈vt(x), x− y〉 dγ̄(x, y) = −(1− t)

∫
〈vt((1− t)x+ ty), y − x〉 dγ(x, y)

(33)

⇒ W2(µ, ν) =

∫
〈vt((1− t)x+ ty), y − x〉 dγ(x, y) (34)

For t satisfying (31), the fact that ‖vt‖L2(µt)
= W(µ, ν) and ‖y − x‖L2(γ) = W(µ, ν) means that

(34) gives equality for Cauchy-Schwarz. Thus, vt((1− t)x+ ty) = y − x, γ-almost surely and (28)
follows for Lebesgue almost every t ∈ [0, 1].

The final bullet is a direct restatement of the results of Section 8.4 in [1].

B Proof of iteration complexity (17)

In this section, we provide a proof of Theorem 1. Consider the following lemma which quantifies the
stability of the sub-problems that are used in Algorithm 1.
Lemma 2. Let γ ∈ Π(µ, ν) be an optimal transport plan between µ ∈ P2(Rd) and ν ∈ P2(Rd). If
φµ ∈ C1(Rd) is L-smooth

‖∇φµ(x)−∇φµ(y)‖ ≤ L ‖x− y‖ (35)

then ∣∣∣∣∫
Rd
〈∇φµ(x), y − x〉 dγ(x, y)−

(∫
Rd
φµ dν −

∫
Rd
φµ dµ

)∣∣∣∣ ≤ L

2
W2(ν, µ) (36)

Proof. First, it will be shown that∣∣∣∣∫
Rd
〈∇φµ(x), y − x〉 dγ(x, y)−

∫ 1

0

〈∇φµ, vt〉µt dt
∣∣∣∣ ≤ L

2
W2(ν, µ) (37)

for µt and vt which correspond (26) to the unique-constant speed geodesic given by γ ∈ Π(µ, ν) (9).
Notice that, since∇φµ has at most linear growth, therefore both terms in the left-hand side of (37)
are finite. Moreover, by (28), one has∫ 1

0

〈∇φµ, vt〉µt dt =

∫ 1

0

∫
Rd×Rd

〈∇φµ((1− t)x+ ty), y − x〉 dγ(x, y) dt (38)

Thus, Cauchy-Schwarz and (35) give∣∣∣∣∫ 1

0

〈φµ, vt〉µt dt−
∫
Rd×Rd

〈∇φµ(x), y − x〉 dγ(x, y)

∣∣∣∣ =∣∣∣∣∫ 1

0

∫
Rd×Rd

〈∇φµ((1− t)x+ ty)−∇φµ(x), y − x〉 dγ(x, y) dt

∣∣∣∣ ≤∫ 1

0

∫
Rd
tL ‖x− y‖2 dγ(x, y) dt =

L

2
W2(ν, µ)

To obtain (36), it only remains to show that∫ 1

0

〈∇φµ, vt〉µt dt =

∫
φµ dν −

∫
φµ dµ (39)

Moreover, since vt satisfies (27), Lemma 8.1.2 in [1] gives∫ 1

0

〈∇ψ, vt〉µt dt =

∫
ψ dν −

∫
ψ dµ (40)

for every ψ ∈ C1
c (Rd)– where C1

c (Rd) denotes the space of continuously differentiable functions on
Rd with compact support. Hence, (39) will be obtained from (40) by the following approximation
argument.
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Define the functions:

β−(x) :=

(√
‖x‖2 + 1−

√
2

)−1

and β+(x) :=

(√
5−

√
‖x‖2 + 1

)−1

and

η(x) :=


1 if ‖x‖ ≤ 1

eβ−(x)

eβ−(x)+eβ+(x) if 1 < ‖x‖ < 2

0 if ‖x‖ ≥ 2

It is easy to verify that η ∈ C∞c
(
Rd
)

and ‖∇η(x)‖ ≤ B for all x ∈ Rd and some constant B.
Moreover, η provides a sequence of mollified approximations of φµ

ψk(x) := φµ(x)ηk(x) for ηk(x) := η
(x
k

)
where ψk ∈ C1

c (Rd). Clearly, (40) holds for all such ψk. Thus, if

lim
k→∞

∫
ψk dν −

∫
ψk dµ =

∫
φµ dν −

∫
φµ dµ (41)

and

lim
k→∞

∫ 1

0

〈∇ψk, vt〉µt dt =

∫ 1

0

〈∇φµ, vt〉µt dt (42)

then (39) will follow directly from (40).

The relations (41) and (42) are straight-forward consequences of dominated convergence. Indeed, as
ηk → 1 and ∇ηk → 0 (pointwise), clearly

ψk → φµ and ∇ψk → ∇φµ (43)

Quadratic growth of φµ yields φµ ∈ L2(µ) ∩ L2(ν) and combined with

|ψk(x)| ≤ |φµ(x)| ∀x ∈ Rd

(41) clearly holds via dominated convergence. One also has

‖∇ψk(x)‖ ≤ ‖∇φµ(x)‖+
B|φµ(x)|

k
1{‖x‖<2k} (44)

Using the quadratic growth of φµ, linear growth of ‖∇φµ‖, and the bound ‖x‖1{‖x‖<2k}/k ≤ 2,
(44) yields

‖∇ψk(x)‖ ≤ ‖∇φµ(x)‖+ C ‖x‖1{‖x‖<2k} +D ≤ E ‖x‖+ F (45)
for some constants C,D,E ∈ R+. Recalling (38), (45) provides∫
Rd×Rd

|〈∇ψk((1− t)x+ ty), y − x〉| dγ(x, y) ≤
∫
Rd×Rd

‖∇ψk((1− t)x+ ty)‖ ‖y − x‖ dγ(x, y)

≤
∫
Rd×Rd

(E ‖(1− t)x+ ty‖+ F ) ‖y − x‖ dγ(x, y)

≤ H (46)

for some H ∈ R+; where the last inequality is a result of Cauchy-Schwarz. The combination of
pointwise convergence (43) and (46) then immediately yield (42) by dominated convergence and
(38).

We also require the following elementary results regarding the convergence of certain polynomial
sequences.
Lemma 3. Let ri ∈ R+ be a sequence of non-negative numbers satisfying

ri+1 ≤ ri − κrpi (47)

for some constants κ > 0 and p ≥ 0. Then,

rn ≤

e
−κn/r1−p0 r0 if p ≤ 1(
κn+ r1−p

0

)−1/(p−1)

if p > 1
(48)
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Proof. If p ≤ 1, then (47) combined with the fact that ri is a non-increasing sequence implies

ri ≤

(
1− κ

r1−p
0

)
ri−1

Iterating this inequality from 1 to n yields the first part of (48). Next, let p > 1 and notice that, by
taking the reciprocals of both sides of (47) and rearranging, one obtains

κrp−2
i−1

1− κrp−1
i−1

≤ r−1
i − r

−1
i−1

Summing this inequality over i (from 1 to n),

κnrp−2
k ≤

n∑
i=1

κrp−2
i−1

1− κrp−1
i−1

≤ r−1
k − r

−1
0

where the first inequality is a result of ri being non-increasing. Algebraic manipulation then provides

rn ≤
(
κn+ r1−p

0

)−1/(p−1)

Proof of Theorem 1. Recall the parameters specified in Assumptions 1 and 3 and let ε be the desired
tolerance with which (16) should hold. Let Algorithm 1 be run with the following parameters:

β1 = min (∆1,∆2) , β2 = α(4L)−1, β3 = (1− α/2)1/αT−1/α (49)

and
r = τεθ/2, ε̂ = (2α∗)

−1
r, ε̄ = αr/2, ε̃ = (4α∗)

−1
r, k = dMe (50)

where α∗ = (1 + α)/α is the dual exponent of 1 + α and M is defined in (65). It will be shown that
the last iterate, µl, computed by Algorithm 1 satisfies (16).

First, we bound the decrease in J at each step of Algorithm 1. Let δi be the ith value of δ that is
computed by Algorithm 1 and let si denote the ith value of s. One has the relation

δi = min
(
β1, β2si, β3s

α∗−1
i

)
(51)

and, since δi ≤ ∆2 for all i, µ0 ∈ S implies µi ∈ S for all i. Via the smoothness of J on S and
δi ≤ ∆1, it follows that

J(µi) ≤ J(µi−1) +

∫
Rd×Rd

〈F (µi−1;x), y − x〉 dγ(x, y) +
T

1 + α
δ1+α
i

for any optimal transport plan γ ∈ Π(µi, µi−1) between µi and µi−1. Recognizing (12),∫
Rd×Rd

〈
F (µi−1;x)−∇φ̂µi−1(x), y − x

〉
dγ(x, y) ≤

∥∥∥F (µi−1;x)−∇φ̂µi−1

∥∥∥
L2(µi−1)

W (µi, µi−1) ≤ δiε̂

and therefore

J(µi) ≤ J(µi−1) +

∫
Rd×Rd

∇φ̂µi−1(x)T (y − x) dγ(x, y) +
T

1 + α
δ1+α
i + δiε̂

Via Lemma 2,

J(µi) ≤ J(µi−1) +

∫
φ̂µi−1 dµi −

∫
φ̂µi−1 dµi−1 +

T

1 + α
δ1+α
i +

L

2
δ2
i + δiε̂ (52)

Now, since φ̂µi−1 is L-smooth, it is a Kantorovich potential [1, Section 6.1] for µi−1– under the cost
function L ‖x− y‖2 /2. Thus, there exists a geodesic νt (Proposition 2) such that: ν0 = µi−1 and
the transport plan γt ∈ Π(µi−1, νt) between µi−1 and νt satisfies [1, Section 8.3]∫
Rd×Rd

〈
∇φµi−1

(x), y − x
〉
dγt(x, y) = − t

L

∥∥∥∇φ̂µi−1

∥∥∥2

L2(µi−1)
and W (νt, µi−1) =

t

L

∥∥∥∇φ̂µi−1

∥∥∥
L2(µi−1)
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for 0 ≤ t ≤ 1. For the sake of notation, define gi−1 :=
∥∥∥∇φ̂µi−1

∥∥∥
L2(µi−1)

and set t = Lδi/gi−1.

Clearly, t ≤ 1 since δi ≤ β2si ≤ β2gi−1.

By construction, µi also satisfies∫
φ̂µi−1

dµi −
∫
φ̂µi−1

dµi−1 ≤
∫
φ̂µi−1

dνt −
∫
φ̂µi−1

dµi−1 + ζi

for ζi = δiε̃. Hence, with another application of Lemma 2, one obtains∫
φ̂µi−1

dµi −
∫
φ̂µi−1

dµi−1 ≤
∫ t

0

〈
∇φ̂µi−1

, vs

〉
νs
ds+ ζi

≤
∫
Rd×Rd

〈
∇φ̂µi−1

(x), y − x
〉
dγ(x, y) +

L

2
W(νt, µi−1)2 + ζi

= − t
L

(
1− t

2

)
g2
i−1 + ζi (53)

Combining (53) with (52) and recalling δi = tgi−1/L gives

J(µi) ≤ J(µi−1)− t

L

(
C − t− D

1 + α
tα
)
gi−1 + ζi (54)

for the values
C := 1− ε̂ and D :=

T

Lαg1−α
i−1

Rewriting (54) using the residual term
r(ν) := J(ν)− inf

µ∈S
J(µ) (55)

one obtains

r (µi) ≤ r (µi−1)− t

L

(
C − t− D

1 + α
tα
)
gi−1 + ζi (56)

This relation will now be used to show that Algorithm 1 makes sufficient progress on J , prior to the
termination of it’s loop.

Let l be the index of the last iterate µi which is computed by Algorithm 1. First, observe that
if sl+1 ≤ r, then early termination of the loop in Algorithm 1 has occurred. Using (14) and the
definitions (50), it follows that

τ (r (µl))
θ ≤ ‖F (µl)‖L2(µl)

≤ gl + ε̂

≤ r + ε̄+ ε̂ ≤ τεθ (57)
and, hence, sufficient progress on J has been made– µl satisfies (16). Thus, we need only analyze the
case where early termination in Algorithm 1 does not occur and l = k (50).

If l = k, then si > r for all i ≤ k and, by extension, gi−1 > r for all i ≤ k since si is a lower bound
for gi−1. In this case, the definitions of ε̂ and r (50) imply C ≥ 1− α/ (2(1 + α)) and the choices
for β2 and β3 (49) provide

t ≤ min

(
α

2(1 + α)
,

(1− α/2)
1/α

D1/α

)
This gives

C − t− D

(1 + α)
tα ≥ (2α∗)−1

from which substitution into (56) yields

r (µi) ≤ r (µi−1)− t

2Lα∗
gi−1 + ζi

≤ r (µi−1)− δi
2α∗

gi−1 + ζi

≤ r (µi−1)− δi
4α∗

gi−1 (58)
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where the last inequality is a result of the definition of ε̃ (50), ζi, and gi−1 > r. As δi is the minimum
of three different terms (51), (58) will be used to analyze the amount of progress, that is made on the
objective J , corresponding to each of these three terms. Note, the following identities that will be
used in the analysis of each term:(

1− α

2

)
gi−1 ≤ gi−1 −

αr

2
≤ gi−1 − ε̄ ≤ si (59)

and

−gpi−1 ≤ −
(
‖F (µi−1)‖L2(µi−1) − ε̂

)p
≤ −

(
1− α

2 + α

)p
‖F (µi−1)‖pL2(µi−1) ≤ −

1

2e
‖F (µi−1)‖pL2(µi−1) (60)

for all 1 ≤ p ≤ α∗. The relation (59) simply observes that si is a multiplicative approximation to
gi−1 in Algorithm 1, while (60) is a consequence of r − ε̂ ≤ ‖F (µi−1)‖L2(µi−1).

First, consider the case where δi = β1. Substitution into (58), coupled with (60), provides

r (µi) ≤ r (µi−1)− β1

8eα∗
‖F (µi−1)‖L2(µi−1) (61)

Applying (14) to (61) and defining ri := r (µi) (for the sake of notation) yields

ri ≤ ri−1 − κ(1)rθi−1 for κ(1) := ωβ1 (62)

for the constant ω = (8eα∗)−1τ . In the cases (51) corresponding to β2 and β3, similar applications
of the previous identities (along with (59)) give

ri ≤ ri−1 − κ(2)r2θ
i−1 for κ(2) := ωτ(1− α/2)β2 (63)

ri ≤ ri−1 − κ(3)rα
∗θ

i−1 for κ(3) := ω (τ(1− α/2))
1/α

β3 (64)

Now, for the sake of notation, define the function

z(u, v) := u−1ε−(1−v)−
(
r0 log1/(1−v)(r0/ε)

)(1−v)+

where (·)+ and (·)− denote the positive and negative parts. Using Lemma 3, it follows that, if (62)
occurs for more than ω−1z(β1, θ) iterations of Algorithm 1, then rk ≤ ε, where k is the index of the
last loop iteration in Algorithm 1. Similar deductions for (63) and (64) lead to the conclusion that, if

k ≥ ω−1
(
z(β1, θ) + z(τ(1− α/2)β2, 2θ) + z((τ(1− α/2))

1/α
β3, α

∗θ)
)

:= M (65)

then either (62), (63), or (64) has occurred sufficiently many times during the execution of Algorithm
1 to guarantee rk ≤ ε. As k has been chosen exactly so that k = dMe (50), one obtains that µk
satisfies (16). The desired complexity bound (17) on M now follows by plugging in for β1, β2, and
β3 in (65) and then, taking asymptotic estimates as ε → 0; the term z((τ(1− α/2))

1/α
β3, α

∗θ)
clearly dominates.

C Computational solution of the Frank-Wolfe problem (15)

This section provides a concrete, computational procedure and complexity guarantee for the subrou-
tine (15) in Algorithm 1 which, for µ ∈ P2(Rd), requires solution of the problem

inf
ν∈P2(Rd),W(ν,µ)≤δ

∫
f dν (66)

The starting point to solve this problem is duality. The dual of (66) is

D(f) := sup
λ∈R+

[∫
Rd
fλ(x) dµ(x)− (δ2λ)/2

]
, where fλ(x) := inf

y∈Rd
f(y) +

λ

2
‖x− y‖2

(67)
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where fλ is the Moreau-Yosida envelope [62] for f . The problem (67) permits practical computation
since it requires only finite dimensional optimization procedures to calculate fλ and perform ascent
in λ. Moreover, strong duality between (66) and (67) holds under quite general circumstances [6]
and, particularly for any of the circumstances in this work where f is assumed to be smooth.

Previous work [6, 54] has noted that, in general, solution of (67) might still be computationally
infeasible for smooth f ; for arbitrary λ, fλ could obscure a computationally difficult problem
with many local minima. However, for large enough λ, fλ is quite computable since it’s defining
minimization problem becomes convex. So long as all relevant λ in (67) are large enough, this means
that (67) will be efficiently computable. This is equivalent to ensuring that the trust-region size δ in
(66) is not too large.

With the following results, we establish a bound on δ which is simultaneously small enough to achieve
computational tractability for (67), but large enough to permit the iterative complexities of Theorem
1. Algorithms 2 and 3 are also provided to leverage these results and yield a computational procedure
with concrete complexity for solving (66). For simplicity, rewrite (67) as

D(f) = sup
λ∈R

g(λ)−
(
δ2λ
)
/2, where g(λ) :=

∫
Rd
fλ dµ (68)

Recall that a function φ : Rd → R̄ is called semiconvex if

x −→ φ(x) +
λ

2
‖x− x0‖2 (69)

is convex for some λ ≥ 0 and some x0 ∈ Rd. Further, a continuously differentiable function φ is
called L-smooth if it has L-Lipschitz gradients:

‖∇φ(y)−∇φ(x)‖ ≤ L ‖y − x‖ (70)

Lemma 4. If f is differentiable and ρ∗-semiconvex (69), the function g (68) is differentiable on
(ρ∗,∞) and

g′(λ) =
1

2

∫
Rd

∥∥y∗λ,x − x∥∥2
dµ(x), y∗λ,x := arg miny∈Rd f(y) +

λ

2
‖y − x‖2 (71)

where the unique minimizer y∗λ,x satisfies

1

2

∥∥y∗λ,x − x∥∥2 ≤ 2

(λ− ρ∗)2 ‖∇f(x)‖2 (72)

Additionally, for any ρ∗ < λ1 ≤ λ2 one has(
1− 2

√
λ2 − λ1

λ2 − ρ∗

)
g′(λ1) ≤ g′(λ2) (73)

That is, for any t∗ > ρ∗, g′ is 1/2-Holder continuous on [t∗,∞) with a constant depending only on
t∗ and ρ∗.

Proof. Define the functions

aλ(y;x) := f(y) +
λ

2
‖y − x‖2 and zx(λ) := inf

y∈R
aλ(y;x)

Since f is ρ∗-semiconvex (69), aλ(y;x) is λ− ρ∗ strongly convex in y for λ > ρ∗. Therefore, the
minimizer yλ,x is unique. Further, semiconvexity and differentiability of f provide the lower bound

aλ(y;x) ≥ f(x) + lλ(y;x) where lλ(y;x) := ∇f(x)T (y − x) +
λ− ρ∗

2
‖y − x‖2

Noticing lλ(y;x) > 0 for any y ∈ Rd such that ‖y − x‖ > (2 ‖∇f(x)‖) / (λ− ρ∗), one obtains
(72).

For open subsets O ⊂ (ρ∗,∞) whose closure does not contain ρ∗, (72) implies that the radius of the
ball containing y∗λ,x is uniformly bounded for all λ ∈ O. Danskin’s theorem [30] can, therefore, be
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applied to the function zx(λ) := fλ(x) (67) to conclude that zx(λ) is differentiable on (ρ∗,∞) with
derivative

z′x(λ) =
1

2

∥∥y∗λ,x − x∥∥2

Observing that g(λ) = Ex∼µ [zx(λ)], the conclusion (71) then follows from (72) and dominated
convergence.

Finally, let ρ∗ < λ1 ≤ λ2. Since zx(λ) is concave in λ
|z′x(λ1)− z′x(λ2)| = z′x(λ1)− z′x(λ2)

and it is enough to show a one-sided bound on the quantity z′x(λ1)− z′x(λ2). To this end, observe

z′x(λ1)− z′x(λ2) ≤
∥∥y∗λ1,x − x

∥∥ ∥∥y∗λ2,x − y
∗
λ1,x

∥∥ (74)

Hence, (73) can be provided by producing a bound on
∥∥∥y∗λ2,x

− y∗λ1,x

∥∥∥. Strong convexity of aλ(y;x)

in y yields the identity

aλ2(y∗λ2,x;x)+
λ2 − ρ∗

2

∥∥y∗λ2,x − y
∗
λ1,x

∥∥2 ≤ aλ2(y∗λ1,x;x) = aλ1(y∗λ1,x;x)+
λ2 − λ1

2

∥∥y∗λ1,x − x
∥∥2

which, when combined with the fact that aλ1
(y∗λ1,x

;x) ≤ aλ2
(y∗λ1,x

;x) (zx(λ) is non-decreasing in
λ), gives ∥∥y∗λ2,x − y

∗
λ1,x

∥∥ ≤√λ2 − λ1

λ2 − ρ∗
∥∥y∗λ1,x − x

∥∥ (75)

Applying (75) to (74) and rearranging produces(
1− 2

√
λ2 − λ1

λ2 − ρ∗

)
z′x(λ1) ≤ z′x(λ2) (76)

Taking the expectation with respect to x on both sides of (76) yields (73).

Lemma 5. If f is L-smooth (70) and L < λ then any optimizer

f(y∗) +
λ

2
‖y∗ − x‖2 = inf

y∈Rd
f(y) +

λ

2
‖y − x‖2

satisfies ‖y∗ − x‖ ≥ ‖∇f(x)‖
2λ .

Proof. From L-smoothness and the fact λ > L, the function

v(y) := f(y) +
λ

2
‖y − x‖2

is (λ− L)-strongly convex. To show ‖∇f(x)‖ / (2λ) ≤ ‖y∗ − x‖ notice
∇f(y∗) + λ(y∗ − x) = 0 (77)

by first-order optimality conditions for y∗. Combining (77) with the L-smoothness of f , one obtains

‖∇f(x)−∇f(y∗)‖2 ≤ L2 ‖x− y∗‖2

⇒ ‖∇f(x)‖2 +
(
λ2 − L2

)
‖x− y∗‖2 ≤ 2λ∇f(x)T (x− y∗) ≤ 2λ ‖∇f(x)‖ ‖x− y∗‖ (78)

Using the fact that λ > L, the desired result then follows directly from (78).

The properties provided by Lemma 4 and Lemma 5 now enable establishment of a relationship
between trust region size δ (66) and the decision variables in (67).
Proposition 3. If f is differentiable and ρ∗-semiconvex then, for any ε > 0, there exists a λε ≤
ρ∗ + ‖∇f(x)‖2L2(µ) /(2ε) such that(

sup
λ∈R

g(λ)−
(
δ2λ
)
/2

)
−
(
g(λε)−

(
δ2λε

)
/2
)
≤ ε (79)

Further, if f is L-smooth (70) and δ = ‖∇f(x)‖L2(µ) /C for C ≥ 2L, then λε can be chosen in the
interval [l, u] ⊆ R for

l = ρ∗ and u = min (β, ρ∗ + C) (80)
where β = ρ∗ + ‖∇f(x)‖2L2(µ) /(2ε)
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Proof. For any λ̂ ≥ ρ∗, ρ∗-semiconvexity of f and the definition of g (68) provide the lower and
upper bounds

g(λ̂) =

∫
Rd
fλ dµ ≥

∫
Rd
f dµ−

‖∇f(x)‖2L2(µ)

2(λ̂− ρ∗)
and g(λ) ≤

∫
f dµ, ∀λ ∈ R

These allow one to obtain the identity

g(λ̂)−
(
δ2λ̂
)
/2 ≥

(
g(λ)−

(
δ2λ
)
/2
)
−
‖∇f(x)‖2L2(µ)

2(λ̂− ρ∗)
+
δ2
(
λ− λ̂

)
2

(81)

for any λ̂ ≥ ρ∗ ≥ 0. Via (81), Proposition 3 can be easily established; indeed let us first show (79).

Define λn ∈ R to be an optimizing sequence for (68)

lim
n→∞

g(λn)−
(
δ2λn

)
/2 = D(f)

and set β := ρ∗ + ‖∇f(x)‖2L2(µ) /(2ε). Since g is upper-semicontinuous, it is sufficient to show
that there exists a λε ≤ β satisfying (79) if β < lim inf

n→∞
λn. Since β < lim infn→∞ λn, one can

assume without loss of generality that β < λn for all n ∈ N. Substituting λ̂ = β and λ = λn in (81)
simplifying provides

g(β)−
(
δ2β
)
/2 ≥ g(λn)−

(
δ2λn

)
/2− ε (82)

Taking the limit in (82) and setting λε = β gives the desired result (79).

To show the second half of Proposition 3, observe that the previous result implies one can assume
lim infn→∞ λn ≤ β for an optimizing sequence λn– otherwise, β is ε-optimal. The immediate
consequence of this assumption is that an optimizer λ∗ of (68) exists. Indeed, L-smoothness of f
provides g(λ) = −∞ for any λ < −L and, combined with lim infn→∞ λn ≤ β, the optimizing
sequence λn can be assumed to be bounded. Via Bolzano-Weierstrauss, the sequence is therefore
convergent to some λ∗ ≤ β and upper-semicontinuity of g along with lower-semicontinuity of ψ∗
then imply that λ∗ is an optimizer of (68).

The main consequence of the existence of λ∗ is that, in combination with (81), one has the upper
bound

δ2(λ∗ − λ)

2
− 1

2(λ− ρ∗)+
‖∇f(x)‖2L2(µ) + g(λ∗)−

(
δ2λ∗

)
/2 ≤ g(λ)−

(
δ2λ
)
/2

⇒ δ2 (λ∗ − λ)

2
≤
‖∇f(x)‖2L2(µ)

2(λ− ρ∗)+

⇒ δ2(λ− ρ∗)+ (λ∗ − λ) ≤ ‖∇f(x)‖2L2(µ) (83)

if λ ≤ λ∗. Taking λ = (λ∗ + ρ∗)/2 above will lead to the desired conclusion of Proposition 3– so
long as ρ∗ ≤ λ∗. To show that C ≥ 4L implies ρ∗ ≤ λ∗, observe that Lemma 5, in combination with
Lemma 4, implies

1

8λ2
‖∇f(x)‖2L2(µ) ≤ ∂+g(λ), λ ≥ L (84)

where ∂+(·) denotes the derivative of g from the right. Under C ≥ 4L, (84) produces the relation

δ2

2
≤ 1

8L2
‖∇f(x)‖2L2(µ) ≤ ∂+g(L) ≤ ∂+g(ρ∗) (85)

since ρ∗ ≤ L. As g is concave, (85) immediately gives g(ρ∗) −
(
δ2ρ∗

)
/2 ≥ g(λ) −

(
δ2λ
)
/2 for

all λ < ρ∗. Hence, λ∗ can be chosen so that ρ∗ ≤ λ∗. Finally, using the fact that ρ∗ ≤ λ∗ and
substituting λ = (λ∗ + ρ∗)/2 into (83), one obtains

λ∗ ≤ ρ∗ +

(
4 ‖∇f(x)‖2L2(µ)

δ2

)1/2

≤ ρ∗ + C (86)

After combining (86) with the bounds ρ∗ ≤ λ∗ and λ∗ ≤ β, the final conclusion of Proposition 3
follows.
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With the bounds of Proposition 3 in hand, a suitable gradient oracle for g (68) can be provided.
Definition 5 (Gradient oracle with high probability). A function θg : R → R is called a (ε, γ)-
gradient oracle with high probability for g if, when queried with a λ, it returns an independent random
sample θg(λ) satisfying

P
([
|θg(λ)− g′(λ)| ≥ ε

max (λ− l, 1)

])
≤ γ (87)

Algorithm 2 Gradient oracle for g (68)
Input: Distribution µ, point λ, semi-convexity parameter ρ∗, smoothness parameter L, error toler-

ance ε
Sample x ∼ µ
y0 ← x, κ←

√
(λ+ L)/(λ− ρ∗)

k ← max (d4κ log(12κ ‖∇f(x)‖ /ε)e , 0)
for 1 ≤ i ≤ k do

zi = yi−1 − 1
κ (∇f(yi−1) + λ(yi−1 − x))

yi = zi + κ−1
κ+1 (zi − zi−1)

return θ = 1
2 ‖yk − x‖

2

Proposition 4. For a ρ∗-semiconvex function f : Rd → R, which is also L ≥ ρ∗ smooth (70), the
mean of

K ≥
64 ‖∇f(x)‖4L4(µ)

(λ− ρ∗)2 min ((λ− ρ∗)2, 1) γε̃2
(88)

independent calls to Algorithm 2 with inputs λ > ρ∗ and ε = ε̃/(2 max(λ − ρ∗, 1)), provides a
(ε̃, γ)-gradient oracle with high probability (5) on the interval (ρ∗,∞).

Proof. Consider the sample x which is computed by Algorithm 2. In light of Lemma 4, it is clear that

θ∗ :=
1

2

∥∥y∗λ,x − x∥∥2

is an unbiased estimate of g′(λ). Hence, to prove establish Proposition 4, it will first be shown that
the output of Algorithm 2, θ, satisfies

|θ − θ∗| ≤ ε and θ ≤
(

4 ‖∇f(x)‖
λ− ρ∗

)2

(89)

when λ ∈ (ρ∗,∞).

To this end, notice that Algorithm 2 performs Nesterov’s accelerated gradient descent [48] on the
λ− ρ∗-strongly convex and λ+ L-smooth function aλ(y;x). Strong convexity yields the identity

λ− ρ∗
2

∥∥y∗λ,x − y∥∥2 ≤ aλ(y;x)− aλ(y∗λ,x;x) (90)

while the convergence guarantees of accelerated gradient descent [48, Theorem 2.2.3] give

aλ(yk;x)− aλ(y∗λ,x;x) ≤
(
1− κ−1

)k
(λ+ L)

∥∥y∗λ,x − x∥∥2
(91)

for κ =
√

(λ+ L) /(λ− ρ∗). Combining these relations and setting C = 2 ‖∇f(x)‖ /(λ− ρ∗)

∥∥y∗λ,x − yk∥∥2 ≤
2
(
aλ(yk;x)− aλ(y∗λ,x;x)

)
λ− ρ∗

≤ 2
(
1− κ−1

)k
κ2
∥∥y∗λ,x − x∥∥2 ≤ 2

( ε

6C

)2

(92)

since k ≥ 4κ log (6κC/ε) and
∥∥∥y∗λ,x − x∥∥∥ ≤ C via (72). Completing the analysis,

|θ − θ∗| = 1

2

∣∣∣‖yk − x‖2 − ∥∥y∗λ,x − x∥∥2
∣∣∣ ≤ 1

2

∥∥yk − y∗λ,x∥∥ (‖yk − x‖+
∥∥y∗λ,x − x∥∥) (93)

≤ 3

2

∥∥yk − y∗λ,x∥∥ ∥∥y∗λ,x − x∥∥ ≤ ε (94)
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where triangle inequality provides both (93) and

‖yk − x‖ ≤ 2
∥∥y∗λ,x − x∥∥ ≤ 2C (95)

Moreover, (94) is the desired left-hand inequality of (89) while (95) contains the desired right-hand
inequality.

Establishing Proposition 4 is now a straightforward consequence of Chebyshev’s inequality using
(89). Indeed, one has

|E [θ]− g′(λ)| ≤ ε̃

2 max (λ− ρ∗, 1)
and θ ≤ 16

(λ− ρ∗)2
‖∇f(x)‖2 (96)

when ε = ε̃/ (2 max (λ− ρ∗, 1)). Letting θ̄ be the average of K independent calls to Algorithm 2,
Chebyshev’s inequality gives

P
(∣∣θ̄ − E [θ]

∣∣ ≥ ε̃

2 max(λ− ρ∗, 1)

)
≤

64 ‖∇f(x)‖4L4(µ)

(λ− ρ∗)2 min
(

(λ− ρ∗)2
, 1
)
ε̃2K

≤ γ (97)

The supergradient oracle of Proposition 4 provides a mechanism to perform ascent steps in λ to solve
(68). Indeed, one can now perform bisection ascent for this problem. For the sake of our Frank-Wolfe
procedure, it is of importance that this ascent procedure implicitly maintains a primal-feasible iterate
for

inf
π∈Π(µ)

∫
f dπ + ψ

(∫
1

2
‖y − x‖2 dπ

)
(98)

and makes progress on the primal-dual gap between (98) and (67). For this reason, we title the
algorithm a “primal-dual” algorithm.

Algorithm 3 Primal-dual, bisection ascent for (68)
Input: Supergradient oracle θg , error tolerance ε, termination width B
η ←∞, b← l
while u− l > ε/B do

λ← (l + u) /2
η ← θg(λ), η ←

(
η − (ψ∗)

′
(λ)
)

if η < −ε/max (λ− b, 1) then u← λ
else l← λ

return u

Remark 7. The primal iterate that this algorithm maintains can be clarified by recalling that the
conditions of Proposition 3 guarantee that λ∗ > ρ∗ for any ρ∗-semiconvex f and optimal λ∗ in (67).
Since the function y 7→ f(y) + λ/2 ‖x− y‖2 is strictly convex for λ > ρ∗, the distribution given by

(X,m(X)) ∼ πλ,µ, X ∼ µ, mλ(x) = arg miny∈Rd f(y) +
λ

2
‖y − x‖2 (99)

provide the unique coupling such that∫
Rd×Rd

f(y) +
λ∗

2
‖y − x‖2 dπλ,µ(x, y) =

∫
Rd

min
y∈Rd

(
f(y) +

λ∗

2
‖y − x‖2

)
dµ(x) (100)

Through λ, Algorithm 3 implicitly maintains πλ,µ and the criterion used for bisection of an interval
in Algorithm 3 is designed to make progress on the primal-dual gap between the current dual iterate
λi and πλi,µ:

G(λi) :=

∫
f dπλi,µ +∞1(δ,∞)

(∫
‖y − x‖2 dπλi,µ

)
−
(
g(λi)−

(
δ2λi

)
/2
)

(101)

This stands contrary to other approaches [54] for solving (67) where the computed dual feasible
iterate λi need not provide a primal feasible iterate.
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Theorem 6. If µ ∈ P2

(
Rd
)
, f is L-smooth (70), and δ ≤ ‖∇f‖L2(µ) / (2L), there exists a

stochastic algorithm which (for any probability γ < 1) computes a λ∗ such thatW (νλ∗ , µ) ≤ δ and∫
f dνλ∗ − inf

W(ν,µ)≤δ

∫
f dν ≤ ε (102)

where νλ∗ is second marginal of πλ∗,µ in (99). This algorithm requires at most
Õ(L2 ‖∇f‖4L4(µ) /((1−γ)ε2)) independent samples from µ and executes Õ(L5/2 ‖∇f‖4L4(µ) /((1−
γ)ε2)) gradient evaluations of f in expectation.

Lemma 7. Under the assumptions of Theorem 6, let Algorithm 3 be run with a (ε, τ )-gradient
oracle (Definition 5) and B = 4(g′(l))2 on the interval [l, u]. Recalling (99), if 1 ≤ l − L and
g′(u)− δ2/2 ≤ 0 ≤ g′(l)− δ2/2, the output λ∗ of Algorithm 3 satisfies (recall (101))

G(λ∗) ≤ (4 + l)ε (103)

with probability at least 1− τ (log2 (B(u− l)/ε) + 1).

Proof. Let λi, ui, li and ηi denote the ith values of λ, u, l and η which are computed by Algorithm
3– the indexes l0, u0 denote the initial values of these variables. Let k denote the total number of
iterations performed by the loop of Algorithm 3. Since ui − li = (ui−1 − li−1) /2, it is clear that
k ≤ log2 (B(u0 − l0)/ε) + 1. Thus, using (87) and the fact that λi depends only on θg(λj) for j < i,
one obtains the union bound

P

⋃
i≤k

[
|θg(λi)− g′(λi)| ≥

ε

max(λi − l0, 1)

] ≤ τ (log2 (B(u0 − l0)/ε) + 1) (104)

Hence, it need only be shown that (103) holds when

|θg(λi)− g′(λi)| ≤
ε

max (λi − l0, 1)
∀ i ≤ k (105)

For brevity, set ελi = ε/max(λi− l0, 1) and recall ηi = θg(λi)− δ2/2. Define η∗i := g′(λi)− δ2/2
to be the true supergradient of (68) which ηi approximates. From (105)

ηiη
∗
i ≤ 0 ⇒ max (|ηi| , |η∗i |) ≤ ελi (106)

Hence, at all iterations prior to the last iteration (iteration k), ηi and η∗i have the same sign. Since
λ 7→

(
g(λ)−

(
δ2λ
)
/2
)

is concave, this gives

sup
λ∈[li,ui]

g(λ)−
(
δ2λ
)
/2 = sup

λ∈[li−1,ui−1]

g(λ)−
(
δ2λ
)
/2 (107)

for all 1 < i < k. Additionally, if ηkη∗k > 0 then (107) also holds for i = k.

From Algorithm 3, it is clear that either uk = λi for some i > 0 such that ηi < −ελi or uk = u0.
Similarly, lk = λj for some j > 0 such that ηj ≥ −ελj or lk = l0. One can assume, without loss of
generality, that lk = λj for some j > 0 and, in combination with (106) and g′(u0) − δ2/2 ≤ 0 ≤
g′(l0)− δ2/2, this gives

−ελj ≤ g′(lk)− δ2/2 and g′(uk)− δ2/2 ≤ 0 (108)

Thus,

G(uk) =

∫
f dπuk,µ −

(
g(uk)−

(
δ2uk

)
/2
)

= uk
(
δ2/2− g′(uk)

)
and using (73), one obtains

G(uk) ≤ uk
(
δ2/2−

(
1− 2√

uk − ρ∗
(uk − lk)1/2

)
g′(lk)

)
≤ ukελj +

2uk(uk − lk)1/2

√
uk − ρ∗

g′(lk) (109)
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where the last inequality is a result of (108). To bound the first term on the left side of (109), notice
that lk 6= l0 implies there exists a minimal t > 0 such that lt 6= l0. Clearly,

ukελj =
ukε

max(λj − l0, 1)
≤ ukε

max(λt − l0, 1)
≤ ε ut − l0

max(λt − l0, 1)
+ l0ε ≤ (2 + l0)ε

Combining this with the termination condition

uk − lk ≤
ε

B
≤ ε

4g(l0)2
≤ ε

4g(lk)2

to bound the second term of (109), one obtains

T ≤ (4 + l0)ε

Proof of Theorem 6. Let l = L+ 1 and u = L+ 1 + 4L and apply Algorithm 3 to the interval [l, u]
with the supergradient oracle given by Proposition 4. Set the error tolerance used by Algorithm
3 to ε/ (4 + L+ 1) and the termination width to B := 16 ‖∇f(x)‖4L2(µ). Likewise, the error
tolerance used in Proposition 4 should be be ε/ (4 + L+ 1) and the error probability should be
(1− γ)/(log2 (B(u− l) (4 + L+ 1) /ε) + 1).

Under this setting of parameters, Lemma 7 establishes that the output of λ∗ of Algorithm 3 satisfies

G(λ∗) ≤ ε (110)

with probability γ so long as

g′(u)− δ2/2 ≤ 0 ≤ g′(l)− δ2/2 (111)

To see that (111) is fulfilled for the chosen l and u, notice that the conditions of Theorem 6 guarantee
that Lemma 4 holds. Hence, (85) gives

g′(l)− δ2/2 ≥ 0

Similarly, (72) provides

g′(u)− δ2/2 ≤ 2 ‖∇f(x)‖2L2(µ) / (u− L)
2 − δ2/2 ≤ ‖∇f(x)‖2L2(µ) /

(
16L2

)
− δ2/2 ≤ 0

Hence, (111) holds and the output λ∗ of Algorithm 3 obeys (110) with probability γ.

It remains to compute a bound on the number of samples from µ which are required by this procedure.
Clearly, by the definition of Algorithm 3, at most dlog2 (B(u− l) (4 + L+ 1) /ε)e calls are made to
the supergradient oracle given by Proposition 4. Via (88), this yields that at most

(8(4 + L+ 1)(log2 (B(u− l) (4 + L+ 1) /ε) + 1))
2 ‖∇f(x)‖4L4(µ)

(1− γ)ε2
(112)

invocations of Algorithm 2 are performed with an error parameter which is at least
ε/ (2 (4 + L+ 1) (max (u− L, 1))). Since each invocation of Algorithm 2 requires a single sample
of µ, it follows from (112) that

Õ

(
L2 ‖∇f(x)‖4L4(µ)

(1− γ)ε2

)
samples are used by Algorithm 3– where Õ suppresses logarithmic factors in
L,C,M, ‖∇f(x)‖2L2(µ) , and ε.

Finally, to compute a bound on the expected number of gradient evaluations of f that are performed
notice that, for an error parameter of ε, each of the k calls to Algorithm 2 (with error tolerance
ε/(4(u− l))) executes at most

t = max

(⌈
4κ log

(
48κ ‖∇f(x)‖ (u− l)

ε

)⌉
, 0

)
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gradient evaluations of f ; x and κ are the random sample and condition number, respectively, which
are used in Algorithm 2. Both x and κ are random variables, but κ = ((λ+ L)/(λ− ρ∗))1/2 ≤
(1 + 2L)1/2 and (due to Jensen)

E [max (log (z) , 0)] ≤ logE [max (z, 1)]

for any non-negative random variable z. Hence, the expected number of gradient evaluations
performed by Algorithm 2 obeys the bound

Eµ [t] ≤ 4 (1 + 2L)
1/2

logEµ
[(

max

(
48(1 + 2L)1/2 ‖∇f(x)‖ (u− l)

ε
, 1

)])
(113)

Summing over the k calls to Algorithm 2 and using the identity u ≤ l + 4L, one obtains

Eµ [t] = Õ

(
L5/2 ‖∇f(x)‖4L4(µ)

(1− γ)ε2

)
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