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A Contributions

We would like to list Wolf Contributions:

1) Framework and Evaluation Metric. We designed a novel world summarization framework, Wolf, for
video captioning and introduced an LLM-based metric, CapScore, to evaluate the quality of captions. The
results show that our method significantly improves CapScore.

2) Datasets and Benchmark. We introduce the Wolf benchmark (leaderboard) and four human-annotated
benchmark datasets. These datasets include autonomous driving, general scenes from Pexels, robotics videos,
and human-annotated captions, collectively referred to as the Wolf Dataset.

3) Intended Uses. We believe Wolf can serve as one of the best practices (auto-labeling tool) for creating
and curating paired datasets and benchmarks.

4) Hosting, licensing, and maintenance plan. The code, data, and leaderboard will be open-sourced
and maintained. Continuous efforts will be made to refine the Wolf Dataset, Wolf codebase, and CapScore.
We hope that Wolf will raise awareness about the quality of video captioning, set a standard for the field,
and boost community development.

B Pexel Dataset Categories

We categorize videos from pexel into the following types: Travel & Events, Sports, Education, Pets &
Animals, People & Blogs, Nonprofits & Activism, News & Politics, Music, Science & Technology, Comedy,
Entertainment, Film & Animation, Gaming, Robotics, How to Styles.

C Qualitative Caption Comparison on Interactive Nuscenes Driving Videos

We display the details of Figure 4 of the paper (Wolf example for driving videos that focus on interactive
operations) in Figure 1.

D Wolf Efficiency Optimization

We consider three primary areas: Low-Hanging Fruit, Batched Inference, and Model Quantization
as optimizations which make Wolf a unified and efficient framework. Using the optimizations detailed in
this section we were able to increase the speed of CogVLM by a factor of approximately 10x (450s/video to
41s/video), VILA throughput was similarly improved to only about 3s per video.

Low-Hanging Fruit. These are primarily systems concerns and work arounds for simplistically written
APIs. For example, the off-the-shelf CogVLM (Hong et al., 2024) and VILA (Lin et al., 2023b) supporting
code is heavily based on loading PIL images to present to a huggingface pipeline (Wolf et al., 2019). In
the naive pipeline, videos would need to be decoded and then converted to PIL images before input to
the respective pipelines, which in turn convert them to GPU PyTorch (Ansel et al., 2024) tensors. This
is extremely inefficient. Instead, we can leverage the hardware video decoder present in modern GPUs to
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CogAgent: The picture shows a three-panel scene of a city street. In the first panel, a white truck is driving on the road, and
there are several cars and motorcycles on the street. In the second panel, the white truck is still driving on the road, and
there are several cars and motorcycles on the street. In the third panel, the white truck is driving on the road, and there are
several cars and motorcycles on the street.

: The video presents a sequence of images showing a street view with a pedestrian crossing. The images feature a
white truck parked on the left side of the frame, a pedestrian crossing the street, and a pedestrian crossing sign visible on
the right side. The sky is clear with few clouds, and the buildings in the background have a modern architectural style. The
street is lined with trees and there are multiple cars parked on the right side of the street. The pedestrian is wearing dark
clothing and is seen walking from one side of the street to the other.

GPT-4: It appears that you‘ve provided a series of stillimages which seem to be sequential frames from a video that
captures a scene at a traffic intersection. The visual elements include the following: a road with multiple lanes, white lane
markings, and a variety of vehicles, including cars and a truck, navigating the intersection. The vehicles are captured in
various positions in the lanes, implying movement through the area. There appears to be a tree-lined median or central
island, and trees and buildings can be seen in the background, contributing to an urban landscape setting. The motion
behavior depicted across these frames suggests the typical flow of traffic through an intersection. Vehicles are movingin a
coordinated manner, adhering to lane directions and traffic signals that are implied rather than visible in the images. The
sequence likely shows vehicles accelerating and decelerating as they approach and leave the intersection in response to
traffic signals or the flow of other vehicles. The spatial positioning of the vehicles changes progressively, implying a real-
time capture of their movements. If the sequence was put together as a continuous video, you would see vehicles entering
the frame from one side and exiting on the other, with varying speeds and some vehicles possibly turning, illustrating the
dynamic and fluid nature of traffic movement within a regulated urban environment.

Gemini-Pro-1.5: The video is a wide-angle shot of a street intersection. The image is split into three sections, providing a
panoramic view. Here‘s a breakdown: Visual Elements: Perspective: The three-partimage creates a wide-angle
perspective, simulating the view a driver might have at the intersection. The left section shows the road the (assumed)
viewer is on, the center focuses on the intersection itself, and the right section provides a view of the crossing traffic. Color
Palette: The video appears to be in color, but the colors are somewhat muted, giving it a realistic but slightly desaturated
feel. Lighting: The lighting suggests a sunny day. The left section has a bright spot from the sun, possibly late afternoon,
while the right section is more evenly lit. Static Elements: Elements like trees, buildings, lampposts, and road markings
provide context and a sense of place. Dynamic Elements: Vehicles, including cars and a truck, move through the
intersection, creating a dynamic scene. Narrative Elements/Motion Behavior: Traffic Flow: The video captures the typical
flow of traffic at an intersection. Vehicles approach, some wait their turn while others proceed through the intersection
when it’s clear. Right-Hand Drive: The cars driving on the right side of the road suggest the location might be a country
where right-hand drive is the standard. Implied Viewer: While there is no visible camera or person, the perspective of the
shot implies the viewer is positioned within a vehicle approaching the intersection. No Sound: The absence of sound
enhances the focus on the visual information and allows the viewer to interpret the scene without auditory cues. Overall
Impression: The video provides a snapshot of everyday life at a busy intersection. The wide-angle perspective and focus on
movement create a sense of dynamism and highlight the complexities of navigating a traffic intersection.

Wolf: The video presents a series of scenes depicting city streets bustling with various vehicles such as cars, trucks,
motorcycles, and a person riding a bicycle. The scenes are often divided into panels, each showcasing a different vehicle in
motion, including a yellow taxi, a blue car, a red car, a white truck, and a silver car. The streets are marked with white lines
and are surrounded by green trees and buildings, contributing to an urban landscape setting. The video captures the
typical flow of traffic through a four-way intersection, with vehicles moving in different directions. The vehicles are shown
in various positions in the lanes, implying movement through the area. The sequence likely shows vehicles accelerating
and decelerating as they approach and leave the intersection in response to traffic signals or the flow of other vehicles.
The video is a wide-angle shot of the street intersection, split into three sections, providing a panoramic view. The left
section shows the road the viewer is on, the center focuses on the intersection itself, and the right section provides a view
of the crossing traffic. The lighting suggests a sunny day, with a bright spot from the sun on the left section and more even
lighting on the right. The video captures the typical flow of traffic at an intersection, with vehicles approaching, some
waiting their turn while others proceed through the intersection when it's clear. The cars driving on the right side of the
road suggest the location might be a country where right-hand drive is the standard. The absence of sound enhances the
focus on the visual information and allows the viewer to interpret the scene without auditory cues. Overall, the video
provides a snapshot of everyday life at a busy intersection, highlighting the complexities of navigating a traffic intersection.
The wide-angle perspective and focus on movement create a sense of dynamism.

Figure 1: Comparison of CogAgent, VILA-1.5, GPT-4, Gemini-Pro-1.5, and Wolf on Interactive Nuscenes
Driving Videos, Corresponding to Figure 4 of the Paper.
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Model ‘ CLIP-Score T ‘ CapScoregt ‘ CapScoreq T ‘ N-avg?
MiniGPT-4 0.601 0.330 0.359 0.19
InstructBLIP 0.599 0.360 0.355 0.18
LLaVA-1.5 0.601 0.385 0.450 0.67
mPLUG-Owl12 0.597 0.397 0.400 0.49
Qwen2-VL 0.618 0.373 0.432 0.82

Table 1: Comparison on CapScore and CLIP-Score for text-image alignment. CapScoreg represents CapScore
Similarity; CapScoreg represents CapScore Quality (such as reduced hallucination); N-avg represents
noun/verb average. We observe that CapScore aligns with trends observed in other metrics but highlights a
larger performance gap between models, suggesting it serves as a more effective evaluation metric. Note: All
scores are scaled to the range [0, 1].

decode the videos directly to GPU tensors and rewrite the preprocessing pipelines to operate on these tensors
directly. This has the additional benefit of shifting preprocessing transform work from CPU to GPU.

Batched Inference. Simplifying Wolf into the simplest terms, we are essentially performing repeated neural
network inference. Surprisingly, most VLM supporting code is designed to run inference on only a single
example at a time. However, just as in other deep-learning problems, there fundamentally no reason why
we cannot processes multiple videos at a single time in batches. This step is crucial to maximizing the use
of GPU resources. Processing a single example may only use as little as 25% of a modern datacenter GPU
which would either increase the time to process a dataset or the number of GPUs required to complete a task
in a fixed time budget. We can reimplement more of the supporting code to enable processing batches of as
many videos as will fit in GPU memory at a single time yielding a linear speedup in processing. For example,
if we can fit batches of 4 in GPU memory we observe a speedup of 4x over processing single examples.

Model Quantization. The final optimization we consider is to reduce the size of the model weights. Several
recent works (Lin et al., 2023a; Dettmers et al., 2024; Ma et al., 2024) have noted that LLMs and VLMs
can produce highly accurate results even when their weights are quantized to low bit-depths. Therefore, we
quantize all constituent models used in Wolf to 4-bits to further improve efficiency. This has two benefits.
First, it reduces the bandwidth required for computation. These algorithms work by packing two 4-bit
numbers into a single 8-bit type, so when moving data on the GPU only half the number of bits need to be
moved. Since all currently released GPUs support native instructions on 8-bit floating point numbers, the
two 4-bit numbers are extracted and expanded by each kernel. In other words, two computations can be
performed for every move operation. Next generation GPUs will natively support 4-bit datatypes and we
expect further efficiency improvements from having dedicated 4-bit multiply and add instructions. Next, it
synergizes with batched inference since the model weights, which are traditionally 16-bit, now only require
one quarter of the GPU memory they would ordinarily use. This allows us to fit larger batch sizes on each
GPU and process more videos in parallel.

E Comparing CapScore with Other Metrics

To verify the efficiency of CapScore, we compare CapScore with the two most widely used captioning scores:
‘CLIP-Score’ (Hessel et al., 2021) and ‘Noun and verb coverage’ (N-avg) (). Using CLIP, the CLIPScore
between the image I and all the generated captions is computed. Recall@k is calculated to determine whether
the corresponding generated caption y’ appears within the top-k most similar captions. N-avg assesses how
well a caption 3’ covers key objects (nouns) and actions (verbs) present in an image by comparing it to the
groundtruth y.

Noun coverage is calculated as:
[N(y) " N(y)|
IN(y)l

where N(y') is the set of all nouns in y’. Verb coverage is calculated for verbs likewise.

Noun Coverage =

(1)

We evaluate various popular models on a wide-used image dataset COCO Karpathy test set (Karpathy &
Fei-Fei, 2015): MiniGPT-4 (Chen et al., 2023), InstructBLIP (Dai et al., 2023), LLaVA-1.5 (Liu et al., 2024),
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mPLUG-Owl2 (Ye et al., 2024) and Qwen2-VL (Wang et al., 2024). As is shown in Table 1, we observe
that CapScore aligns with trends observed in other metrics but highlights a larger performance gap between
models, suggesting it serves as a more effective evaluation metric.

F Updated Results and Documentation

We will regularly update Wolf results and documentation on our webpage. We will release the initial version
of our captioning leaderboard upon publication. Thank you for your time and patience in reviewing our

paper!
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