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A PROOFS

A.1 RADEMACHER COMPLEXITY

We define the Rademacher complexity over the hypothesis space J to facilitate the theorem proof.

Definition A.1 (Rademacher Complexity). Let D,, = {x1, ...,z } be a set of identically indepen-
dently distributed instances that are drawn from target distribution P(X ). The empirical Rademacher
complexity of F with respect to D, is defined as

S?E(ff;@m): —E.
m

sup Z Y eiif(xi) ] (©6)
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where f7 (x;) is the j-th model prediction of x; € D.,; €;,5 is the independent Rademacher random
variables uniformly sampled from {—1,+1}. The Rademacher complexity is the expectation of this
empirical complexity:

R(T) :=Ep, ~px)R(F; D) @)

A.2 LIPSCHITZNESS

Lemma A.2 (Contraction lemma (Lemma 5 from Cortes et al. (2016))). Let N and m be two
positive integers. Let also 3} be a set of functions that map X to RN . Suppose that for each i € [m],
function U; : RN — R is p;-Lipschitz with the 2-norm, i.e.,

[T (v) — Uy (0)| < pil|v” —vll2 Vo,0" € RY 8

Then, for any set of m points x1, ..., T, € X, the following holds:
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where the o;’s and the €;;’s are independent Rademacher variables uniformly distributed over

In the following lemma, we consider the Lipschitzness of the SAT loss.
Lemma A.3 (Lipschitzness). Given a classifier f : X — Y, with data sample ¥(x, s) € D, let f(x)
be the prediction ouput. ForVf, f' € F, we have:

54T (f (@), 8) = L5AT (' (), )] < Vsl f (i) = f' (), ©

where s is the corresponding candidate label set; |s| denotes the number of the candidate labels.

Proof. Given (z, s) sampled from a partial label dataset D, we use s to represent the candidate label
set and f*(z), f7(z) to indicate the prediction probabilities of class ¢ and class j by a classifier f.
We first find the gradient of the SAT loss function £547 with respect to the classifier prediction f(z).
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Now, the derivative of the product inside:

0 [H(l—fj(x))]= T - F)- (1) (10)
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So, combining these:

orSAT - [Tjes (1 — f(x))
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By Equation 11, we have the derivative of the SAT loss as:
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Known that a function f is Lipschitz continuous if there exists a constant L such that for all x, y in
the domain of function h:

[h(x) = h(y)| < Lljz -yl

where ||z — y/|| denotes the norm of the vector difference between x and y.

By mean value theorem, we have:

h(z) — h(y) = Vh(c) - (z —y) (13)

for some c in the line segment between x and y. Given the bound on the derivatives, this can be
written as:

[h(z) = h(y)| < [[VA(e)[lx =yl

ESAT

Since ’ i) ’ < 1 for all j, the norm of the gradient V at any point is bounded by the square

root of the number of components 7 in s, each component being bounded by 1. Thus:

IVESAT (o)) < Vs (14)

Let |s| represents the number of candidate classes for which the probabilities f7(z) are being
estimated, the Lipschitz constant L can be set as v/|s|, which effectively bounds the change in the

loss function #°47" in terms of the change in the probablhtles Hence:
AT (f (@), 8) = 54 (@), ) < Vsl f (@) = (@) (15)
This ends the proof of Lemma A.3 O

A.3 PROOF OF PROPOSITIONS

Proposition 5.3. [Low entropy preference] Let H(f(x);s) 1= — Y ;cq f? /(x) log f7(x) denote the
entropy of the PLL sample (x, s) subject to f. Then {347 (f(x),s) oc H(f(x);s).

To prove the proposition stated, we need to demonstrate that as the maximum prediction probability
among the candidate labels increases, the SAT loss decreases, and this loss is proportional to the
entropy of the candidate label set s.
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Proof. ¢°AT and Maximum Prediction Probability

Let f(z) = max;e, f7(x). To analyze the behavior of /547, consider the function [T, (1— f7(x)).
As f%(z) increases, at least one term (1 — f7(z)) decreases, thereby decreasing the entire product
[1;cs(1 = f7(x)). Consequently, the term 1 — [T, (1 — f/(x)) increases. Applying the negative
logarithm, which is a monotonically decreasing function, we observe that ¢5AT decreases. Thus, an
increase in f*(x) leads to a decrease in £47

Relationship between /547 and Entropy H (f(x); s)

To establish the relationship with entropy, consider the expression for entropy H(f(z);s). High
entropy indicates a more uniform distribution of probabilities across the labels 7 € s. As entropy
decreases, indicating less uniformity, there tends to be a dominant label j with a high fj (z), which is
close to fi(z).

From Part 1, we know that an increase in f(x) (associated with low entropy) leads to a decrease in
¢5AT  Hence, we can infer that £547 is inversely related to the entropy of the candidate label set s.
Specifically, lower entropy (more certainty and less uniformity among label probabilities) results in a
lower ¢547,

To summarize, 347 (f(x;); s) o< H(f(x);s) indicates that as the entropy of the probability distribu-
tion of the labels in s decreases (implying increasing certainty or predictability among the labels), the
SAT loss decreases, validating the proposed relationship. O

A.4 PROOF OF ERROR BOUND UNDER SMALL AMBIGUITY DEGREE

Proposition A.4 (Partial loss bound via ambiguity degree). (Proposition 1 in Cour et al. (2011b))
For any classifier f € F, with a partial label dataset Dy and small ambiguity degree -y, we have:

1
RS DN) < TR (i D) (16)

where (91 and (Y} are the zero-one loss and partial zero-one loss separately.
Lemma A.5. ForVf € F, the partial labeled data instance (x, s) € D, its candidate label set s, we

have
(5 (f(x),s) < 54T (f(2),s) < LEF(f(2),s) (17)

Proof. Let Fy =T (1 — f7(x)) and Fy = [];¢, f7(x), where f7(x) is the prediction probability
of class j that always smaller than 1. We have —log(1 — Fy) < —log(F»), Thus:

AT (f(2),8) < LEF(f(x),5) (18)
The SAT loss lower bounds the Partial Cross Entropy Loss.

Since the zero-one loss ¢} is either 0 or 1 we have:
lp (f(w),5) <L (f(2), 5) (19)
This concludes the proof of Lemma A.5 O

Theorem 5.4. [Error bound under small ambiguity degree] Given partial labeled dataset D  with
small ambiguity degree v € (0, 1), Ve, 6§ € (0, 1), with probability at least 1 — 6, we have:

ROl(f;ivN)s1_17<§zSAT<f;®N>+2m%N<9>+ l92<1/5>> )

RS AT(f: D) is the empirical risk of SAT loss (54T over an arbitrary partial labeled dataset D y;
R(F) denotes the Rademacher complexity (Definition A.1) of hypothesis space F.
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Proof. For an arbitrary partial labeled dataset Dy = (z, s)fil, we have the below inequality holds
with probability at least 1 — §, where § € (0, 1), according to the standard Rademacher complexity

bounds.
log(1/9)

REAL(f; D) < RFAT(£; D) + 20 (9) + 14/ =5

(20)
Here F = {(z,s) = 547 (f(2);s) : f € F}.

Combined with Lemma A.2 and Lemma A.3, we have:

sup Z Y. Vlsleis f (i ] @1
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From Proposition A.4, we have
1
RO (f5 D) < 7 (RF (5 D) (22)
where + is the small ambiguity level within range [0, 1) .

By Lemma A.5, we have (% (f(x),s) < £54T(f(x),s). As the risk is the expectation of the loss
function, we can get:

Rp (f; D) < R¥AL(f;Dy) (23)
In addition, we have the risk bound of partial cross-entropy loss as

REAT(f; D) < REF(f5Dw) (24)
By integrating the above inequalities, we conclude the proof of Theorem 5.4. O

B ADDITIONAL EXPERIMENTS

B.1 EMPIRICAL RESULT ON NOISY PARTIAL LABEL DATA

We evaluate the performance of SAT loss and SAT-integration methods on noisy partial labels, where
the ground truth label may not always be in the candidate label set. The noise rate 7 represents the
probability that the true label is not included in the candidate label set. we set the uniform partial
label rate for CIFAR-100 and CUB-200 as p = 0.2 and p = 0.05 separately, and change the noisy
rate ) from 0.05 to 0.2.

Table 3 demonstrates the superiority of /547 under varying noise conditions. Specifically, the
integration of 47 into PICO™ improves the accuracy by 13.06% on CIFAR-100 for 1 = 0.2. For
CIFAR-100, PAP1sAT outperforms all other configurations, achieving the best results under all noise
rates, which highlights £°47"s resilience to noise. Conversely, on CUB-200, PICO*gar provides
the most significant improvements, particularly at higher noise rates.

B.2 EMPIRICAL RESULT ON REAL-WORLD DATASET

The Pascal VOC 2007 dataset(Everingham et al.) is a widely used benchmark in visual object classifi-
cation and detection tasks. It contains 9, 963 images with 20 object categories, including animals,

17



Under review as a conference paper at ICLR 2025

Table 3: Mean classification accuracy on CIFAR-100 and CUB-200 for noisy and uniform partial
labels. Best results across all baselines are in red.

METHODS CIFAR-100 (¢ = 0.2) CUB-200 (g = 0.05)
n = 0.05 n=0.1 n =0.2 n = 0.05 n=0.1 n=0.2
CcC 57.20% 50.73%  37.86% 43.94% 41.82% 30.48%
RC 50.01% 44.18%  32.88% 53.05% 47.45% 36.64%
SAT 67.84% 60.08 % 39.75% 65.21% 60.00% 53.15%
PAPI 72.77% 72.26% 71.06% 34.79% 27.38% 17.85%

PAPIgaT 74.89 % 74.10 % 73.66 % 60.92% 46.87 % 28.96 %

PICO™ 54.01% 49.33%  45.07% 65.87% 63.95%  60.04%
PICOT sar 66.61% 62.92% 58.13% 68.43% 65.88% 63.19 %

Table 4: Mean classification accuracy on PASCAL VOC 2007.

METHODS PAascAL VOC 2007
q=0.1 q=0.3 q=20.5
PAPI 85.06%  66.21%  30.04%

PAPIsaT 85.46% 73.22% 46.39%

PICO™ 65.60%  33.31%  26.43%
PICOtsar 68.54% 42.88% 35.02%

vehicles, and household items, making it diverse and representative of real-world environments. The
dataset is challenging due to the presence of multiple objects in varying scales, occlusions, and
cluttered backgrounds. Its inherent ambiguity in object labels and annotations makes it an ideal
testbed for evaluating PLL methods under real-world conditions, where accurate and unambiguous
labeling is often impractical. We provide some image examples in Figure 5 In the experiment, we
consider partial label rate ¢ € {0.1,0.3,0.5}.

In Table 4, the empirical results on Pascal VOC 2007(Everingham et al.), are presented to demonstrate
the efficacy of the proposed SAT loss in handling PLL under real-world conditions. The table
summarizing the results reveals that the integration of SAT loss into existing PLL methods significantly
improves classification accuracy across different ambiguity levels. In particular, PAPIgar consistently
outperformed other methods, achieving the highest accuracy at each partial label rate, with an
improvement of over 15% when ¢ = 0.5 compared to other methods.

person

o

plant sheep sofa train 13

Figure 5: Exemplar images from Pascal VOC 2007 dataset
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