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A PROOFS

A.1 RADEMACHER COMPLEXITY

We define the Rademacher complexity over the hypothesis space F to facilitate the theorem proof.

Definition A.1 (Rademacher Complexity). Let Dm = {x1, . . . , xm} be a set of identically indepen-
dently distributed instances that are drawn from target distribution P (X). The empirical Rademacher
complexity of F with respect to Dm is defined as

ℜ̂(F;Dm) :=
1

m
Eε

[
sup
f∈F

m

∑
i=1

∑
j∈Y

εi,jf
j(xi)

]
(6)

where f j(xi) is the j-th model prediction of xi ∈ Dm; εi,j is the independent Rademacher random
variables uniformly sampled from {−1,+1}. The Rademacher complexity is the expectation of this
empirical complexity:

ℜ(F) := EDm∼P (X)[ℜ̂(F;Dm)] (7)

A.2 LIPSCHITZNESS

Lemma A.2 (Contraction lemma (Lemma 5 from Cortes et al. (2016))). Let N and m be two
positive integers. Let also H be a set of functions that map X to RN . Suppose that for each i ∈ [m],
function Ψi : R

N → R is µi-Lipschitz with the 2-norm, i.e.,

|Ψi(v
′)−Ψi(v)| ≤ µi∥v′ − v∥2 ∀v, v′ ∈ RN (8)

Then, for any set of m points x1, . . . , xm ∈ X, the following holds:

1

m
Eσ

[
sup
h∈H

m

∑
i=1

σiΦi(h(xi))

]
≤

√
2

m
Eϵ

[
sup
h∈H

m

∑
i=1

N

∑
j=1

ϵijµijhj(xi)

]
where the σi’s and the ϵij’s are independent Rademacher variables uniformly distributed over
{−1,+1}.

In the following lemma, we consider the Lipschitzness of the SAT loss.

Lemma A.3 (Lipschitzness). Given a classifier f : X → Y, with data sample ∀(x, s) ∈ D, let f(x)
be the prediction ouput. For ∀f, f ′ ∈ F, we have:

|ℓSAT (f(x), s)− ℓSAT (f ′(x), s)| ≤
√

|s|f(xi)− f ′(xi)2 (9)

where s is the corresponding candidate label set; |s| denotes the number of the candidate labels.

Proof. Given (x, s) sampled from a partial label dataset D, we use s to represent the candidate label
set and f i(x), f j(x) to indicate the prediction probabilities of class i and class j by a classifier f .
We first find the gradient of the SAT loss function ℓSAT with respect to the classifier prediction f(x).

∂ℓSAT

∂f i(x)
=

∂

∂f i(x)

[
− log

(
1− ∏

j∈s

(1− f j(x))

)]

= − 1

1− ∏j∈s(1− f j(x))
· ∂

∂f i

[
∏
j∈s

(1− f j(x))

]
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Now, the derivative of the product inside:

∂

∂f i(x)

[
∏
j∈s

(1− f j(x))

]
= ∏

j∈s,j ̸=i

(1− f j(x)) · (−1) (10)

So, combining these:
∂ℓSAT

∂f i(x)
=

∏j∈s,j ̸=i(1− f j(x))

1− ∏j∈s(1− f j(x))
(11)

By Equation 11, we have the derivative of the SAT loss as:

∂ℓSAT (x, s)

∂f j(x)
=

∏k∈s\{j}(1− fk(x))

1− ∏j∈s(1− f j)
(12)

=
1

1
∏k∈s\{j}(1−fk(x))

− (1− f j(x))
≤ 1

Known that a function f is Lipschitz continuous if there exists a constant L such that for all x, y in
the domain of function h:

|h(x)− h(y)| ≤ L∥x− y∥
where ∥x− y∥ denotes the norm of the vector difference between x and y.

By mean value theorem, we have:

h(x)− h(y) = ∇h(c) · (x− y) (13)

for some c in the line segment between x and y. Given the bound on the derivatives, this can be
written as:

|h(x)− h(y)| ≤ ∥∇h(c)∥∥x− y∥

Since
∣∣∣ ∂ℓSAT

∂fj(x)

∣∣∣ ≤ 1 for all j, the norm of the gradient ∇ℓSAT at any point is bounded by the square
root of the number of components j in s, each component being bounded by 1. Thus:

∥∇ℓSAT (c)∥ ≤
√

|s| (14)

Let |s| represents the number of candidate classes for which the probabilities f j(x) are being
estimated, the Lipschitz constant L can be set as

√
|s|, which effectively bounds the change in the

loss function ℓSAT in terms of the change in the probabilities. Hence:

|ℓSAT (f(x), s)− ℓSAT (f ′(x), s)| ≤
√

|s|∥f(x)− f ′(x)∥2 (15)

This ends the proof of Lemma A.3

A.3 PROOF OF PROPOSITIONS

Proposition 5.3. [Low entropy preference] Let H(f(x); s) := −∑j∈s f
j(x) log f j(x) denote the

entropy of the PLL sample (x, s) subject to f . Then ℓSAT (f(x), s) ∝ H(f(x); s).

To prove the proposition stated, we need to demonstrate that as the maximum prediction probability
among the candidate labels increases, the SAT loss decreases, and this loss is proportional to the
entropy of the candidate label set s.

15
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Proof. ℓSAT and Maximum Prediction Probability

Let f i(x) = maxj∈s f
j(x). To analyze the behavior of ℓSAT , consider the function ∏j∈s(1−f j(x)).

As f i(x) increases, at least one term (1− f j(x)) decreases, thereby decreasing the entire product
∏j∈s(1− f j(x)). Consequently, the term 1− ∏j∈s(1− f j(x)) increases. Applying the negative
logarithm, which is a monotonically decreasing function, we observe that ℓSAT decreases. Thus, an
increase in f i(x) leads to a decrease in ℓSAT .

Relationship between ℓSAT and Entropy H(f(x); s)

To establish the relationship with entropy, consider the expression for entropy H(f(x); s). High
entropy indicates a more uniform distribution of probabilities across the labels j ∈ s. As entropy
decreases, indicating less uniformity, there tends to be a dominant label j with a high f j(x), which is
close to f i(x).

From Part 1, we know that an increase in f i(x) (associated with low entropy) leads to a decrease in
ℓSAT . Hence, we can infer that ℓSAT is inversely related to the entropy of the candidate label set s.
Specifically, lower entropy (more certainty and less uniformity among label probabilities) results in a
lower ℓSAT .

To summarize, ℓSAT (f(xi); s) ∝ H(f(x); s) indicates that as the entropy of the probability distribu-
tion of the labels in s decreases (implying increasing certainty or predictability among the labels), the
SAT loss decreases, validating the proposed relationship.

A.4 PROOF OF ERROR BOUND UNDER SMALL AMBIGUITY DEGREE

Proposition A.4 (Partial loss bound via ambiguity degree). (Proposition 1 in Cour et al. (2011b))
For any classifier f ∈ F, with a partial label dataset DN and small ambiguity degree γ, we have:

R01(f ;DN ) ≤ 1

1− γ
R01

P (f ;DN ) (16)

where ℓ01 and ℓ01P are the zero-one loss and partial zero-one loss separately.
Lemma A.5. For ∀f ∈ F, the partial labeled data instance (x, s) ∈ D, its candidate label set s, we
have

ℓ01P (f(x), s) ≤ ℓSAT (f(x), s) ≤ ℓCE
P (f(x), s) (17)

Proof. Let F1 = ∏j∈s(1− f j(x)) and F2 = ∏j∈s f
j(x), where f j(x) is the prediction probability

of class j that always smaller than 1. We have −log(1− F1) ≤ −log(F2), Thus:

ℓSAT (f(x), s) ≤ ℓCE
P (f(x), s) (18)

The SAT loss lower bounds the Partial Cross Entropy Loss.

Since the zero-one loss ℓ01P is either 0 or 1 we have:

ℓ01P (f(x), s) ≤ ℓSAT (f(x), s) (19)

This concludes the proof of Lemma A.5

Theorem 5.4. [Error bound under small ambiguity degree] Given partial labeled dataset DN with
small ambiguity degree γ ∈ (0, 1), ∀ϵ, δ ∈ (0, 1), with probability at least 1− δ, we have:

R01(f ;DN ) ≤ 1

1− γ

(
R̂SAT (f ;DN ) + 2

√
(C − 1)γ + 1ℜN (F) +

√
log(1/δ)

2N

)
. (5)

R̂SAT (f ;DN ) is the empirical risk of SAT loss ℓSAT over an arbitrary partial labeled dataset DN ;
ℜ(F) denotes the Rademacher complexity (Definition A.1) of hypothesis space F.
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Proof. For an arbitrary partial labeled dataset DN = (x, s)
N
i=1, we have the below inequality holds

with probability at least 1− δ, where δ ∈ (0, 1), according to the standard Rademacher complexity
bounds.

RSAT (f ;DN ) ≤ R̂SAT (f ;DN ) + 2RN (F) +

√
log(1/δ)

2N
(20)

Here F =
{
(x, s) 7→ ℓSAT (f(x); s) : f ∈ F

}
.

Combined with Lemma A.2 and Lemma A.3, we have:

ℜN (F) =
1

N
EDN

Eε

[
sup
f∈F

N

∑
i=1

∑
j∈Y

√
|s|εijf j(xi)

]
(21)

=

√
|s|
N

EDN
Eε

[
sup
f∈F

N

∑
i=1

∑
j∈Y

εijf
j(xi)

]
=
√

|s|ℜN (F)

From Proposition A.4, we have

R01(f ;DN ) ≤ 1

1− γ
(R01

P (f ;DN ) (22)

where γ is the small ambiguity level within range [0, 1) .

By Lemma A.5, we have ℓ01P (f(x), s) ≤ ℓSAT (f(x), s). As the risk is the expectation of the loss
function, we can get:

R01
P (f ;DN ) ≤ RSAT (f ;DN ) (23)

In addition, we have the risk bound of partial cross-entropy loss as

R̂SAT (f ;DN ) ≤ R̂CE
P (f ;DN ) (24)

By integrating the above inequalities, we conclude the proof of Theorem 5.4.

B ADDITIONAL EXPERIMENTS

B.1 EMPIRICAL RESULT ON NOISY PARTIAL LABEL DATA

We evaluate the performance of SAT loss and SAT-integration methods on noisy partial labels, where
the ground truth label may not always be in the candidate label set. The noise rate η represents the
probability that the true label is not included in the candidate label set. we set the uniform partial
label rate for CIFAR-100 and CUB-200 as p = 0.2 and p = 0.05 separately, and change the noisy
rate η from 0.05 to 0.2.

Table 3 demonstrates the superiority of ℓSAT under varying noise conditions. Specifically, the
integration of ℓSAT into PICO+ improves the accuracy by 13.06% on CIFAR-100 for η = 0.2. For
CIFAR-100, PAPISAT outperforms all other configurations, achieving the best results under all noise
rates, which highlights ℓSAT ’s resilience to noise. Conversely, on CUB-200, PICO+

SAT provides
the most significant improvements, particularly at higher noise rates.

B.2 EMPIRICAL RESULT ON REAL-WORLD DATASET

The Pascal VOC 2007 dataset(Everingham et al.) is a widely used benchmark in visual object classifi-
cation and detection tasks. It contains 9, 963 images with 20 object categories, including animals,
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Table 3: Mean classification accuracy on CIFAR-100 and CUB-200 for noisy and uniform partial
labels. Best results across all baselines are in red.

METHODS
CIFAR-100 (q = 0.2) CUB-200 (q = 0.05)

η = 0.05 η = 0.1 η = 0.2 η = 0.05 η = 0.1 η = 0.2

CC 57.20% 50.73% 37.86% 43.94% 41.82% 30.48%
RC 50.01% 44.18% 32.88% 53.05% 47.45% 36.64%
SAT 67.84% 60.08% 39.75% 65.21% 60.00% 53.15%

PAPI 72.77% 72.26% 71.06% 34.79% 27.38% 17.85%
PAPISAT 74.89% 74.10% 73.66% 60.92% 46.87% 28.96%

PICO+ 54.01% 49.33% 45.07% 65.87% 63.95% 60.04%

PICO+
SAT 66.61% 62.92% 58.13% 68.43% 65.88% 63.19%

Table 4: Mean classification accuracy on PASCAL VOC 2007.

METHODS
PASCAL VOC 2007

q = 0.1 q = 0.3 q = 0.5

PAPI 85.05% 66.21% 30.04%
PAPISAT 85.46% 73.22% 46.39%

PICO+ 65.60% 33.31% 26.43%
PICO+

SAT 68.54% 42.88% 35.02%

vehicles, and household items, making it diverse and representative of real-world environments. The
dataset is challenging due to the presence of multiple objects in varying scales, occlusions, and
cluttered backgrounds. Its inherent ambiguity in object labels and annotations makes it an ideal
testbed for evaluating PLL methods under real-world conditions, where accurate and unambiguous
labeling is often impractical. We provide some image examples in Figure 5 In the experiment, we
consider partial label rate q ∈ {0.1, 0.3, 0.5}.

In Table 4, the empirical results on Pascal VOC 2007(Everingham et al.), are presented to demonstrate
the efficacy of the proposed SAT loss in handling PLL under real-world conditions. The table
summarizing the results reveals that the integration of SAT loss into existing PLL methods significantly
improves classification accuracy across different ambiguity levels. In particular, PAPISAT consistently
outperformed other methods, achieving the highest accuracy at each partial label rate, with an
improvement of over 15% when q = 0.5 compared to other methods.

Figure 5: Exemplar images from Pascal VOC 2007 dataset
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