
A Preliminaries

In this section, we recall some standard concepts and results in statistical learning theory.
Definition A.1 (growth function). Let F be a class of functions from X ⊂ Rd to {−1,+1}. For any
integer m ≥ 0, we define the growth function of F to be

ΠF (m) = max
xi∈X ,1≤i≤m

|{(f(x1), f(x2), · · · , f(xm)) : f ∈ F}| .

In particular, if |{(f(x1), f(x2), · · · , f(xm)) : f ∈ F}| = 2m, then (x1, x2, · · · , xm) is said to be
shattered by F .
Definition A.2 (Vapnik-Chervonenkis dimension). Let F be a class of functions from X ⊂ Rd

to {−1,+1}. The VC-dimension of F , denoted by VC-dim(F), is defined as the largest integer
m ≥ 0 such that ΠF (m) = 2m. For real-value function class H, we define VC-dim(H) :=
VC-dim(sgn(H)).

The following result gives a nearly-tight upper bound on the VC-dimension of neural networks.
Lemma A.3. (Bartlett et al., 2019, Theorem 6) Consider a ReLU network with L layers and W
total parameters. Let F be the set of (real-valued) functions computed by this network. Then we
have VC-dim(F ) = O(W log(WL)).

The growth function is connected to the VC-dimension via the following lemma; see e.g. (Anthony
et al., 1999, Theorem 7.6).

Lemma A.4. Suppose that VC-dim(F) = k, then Πm(F) ≤
∑k

i=0

(
m
i

)
. In particular, we have

Πm(F) ≤ (em/k)
k for all m > k + 1.

Lemma A.5. (Mohri et al., 2018, Corollary 3.4) Let H be a family of functions taking values
in {−1,+1} with V C-dimension k. Then, for any δ > 0, with probability at least 1 − δ over
m−samples training dataset S i.i.d. drawn from the data distribution D, the following holds for all
h ∈ H :

LD(h) ≤ LS(h) +

√
2k log em

k

m
+

√
log 1

δ

2m
,

where LD(h) and LS(h) denote the standard test error and training error, respectively.

For deriving upper and lower bounds in the context of ℓ2-robustness, we also need to introduce the
following concepts.
Definition A.6 (ϵ-covering). Given a set Θ ⊂ Rd, we say that X = {x1,x2, · · · ,xn} ⊂ Θ is a
δ-covering of Θ if Θ ⊂ ∪n

i=1B2(xi, δ). The covering number C(Θ, δ) is defined as the minimal size
of a δ-covering set of Θ.

The following proposition is straightforward from the definition.
Proposition A.7. Let Θ ⊂ Rd has volume (i.e. Lebesgue measure) V , then

C(Θ, δ) ≥ vd · δ−dV,

where vd is the volume of a d-dimensional unit ball.
Definition A.8 (ϵ-packing). Given a set Θ ⊂ Rd, we say that X = {x1,x2, · · · ,xn} ⊂ Θ is a
δ-packing of Θ if ‖xi − xj‖2 ≥ δ, ∀i 6= j. The packing number P(Θ, δ) is defined as the maximal
size of a δ-packing set of Θ.

The relationship between the covering and packing number is given by the following result. For
completeness, we also provide a simple proof.
Proposition A.9. For any δ ≥ 0, we have P(Θ, δ) ≥ C(Θ, δ).

Proof. Consider a maximal packing X = {x1,x2, · · · ,xn}. Pick any x ∈ Θ, then there must
exists some xi ∈ X such that ‖x− xi‖2 ≤ δ; otherwise, X ∪ {x} is a larger packing set, which
contradicts the definition of X .

Hence it must holds that Θ ⊂ ∪n
i=1B2(xi, δ) i.e. X is a δ-covering of Θ. The conclusion follows.
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B Proofs for Section 2

To prove Theorem 2.2, we first recall some well-known results of neural networks for approximating
simple functions.

Lemma B.1. Let ε > 0, 0 < a < b and B ≥ 1 be given.

(1). (Yarotsky, 2017, Proposition 3) There exists a function ×̃ : [0, B]2 → [0, B2] computed by a
ReLU network with O

(
log2

(
ε−1B

))
parameters such that

sup
x,y∈[0,B]

∣∣×̃(x, y)− xy
∣∣ ≤ ε,

and ×̃(x, y) = 0 if xy = 0.

(2). (Telgarsky, 2017, Lemma 3.5) There exists a function R : [a, b] → R+ computed by a ReLU
network with O

(
log4

(
a−1b

)
log3(ε−1b)

)
parameters such that sup[a,b]

∣∣R(x)− 1
x

∣∣ ≤ ε.

The following lemma establishes uniform approximation of polynomials and is a slight generaliza-
tion of (Telgarsky, 2017, Lemma 3.4).

Lemma B.2. Let ε ∈ (0, 1). Suppose that P (x) =
∑s

k=1 αk

∏rk
i=1 (xk,i − ak,i) is a polynomial

with maxk rk = r and αk, ak,i ∈ [0, 1], ∀1 ≤ k ≤ s, 1 ≤ i ≤ rk, and P (x) ∈ [−1,+1] for ∀x ∈
[0, 1]d. Then there exists a function N(x) computed by a ReLU network with O

(
sr log

(
ε−1sr

))
parameters such that sup[0,1]d |P (x)−N(x)| ≤ ε.

Proof. It suffices to show that each monomial Pk(x) =
∏rk

i=1 (xk,i − ak,i) can be ε-approximated
using O

(
r log

(
ε−1r

))
parameters. Firstly, we need at most rk ≤ r parameters to obtain xk,i −

ak,i, 1 ≤ i ≤ rk from a linear transformation. We can then apply Lemma B.1 to perform successive
multiplication. Note that we still have |xk,i − ak,i| ≤ 1, which can be used to control the cumulative
error of ×̃.

We are now ready to prove Theorem 2.2. For convenience, we restate this theorem below.

Theorem B.3. Suppose that D ⊂ Bp(0, 1) with p ∈ {2,+∞} consists of N data, and the two
classes in D are 2ϵ-separated (cf. Definition 1.1), where ϵ ∈

(
0, 12

)
is a constant. Let robustness

radius δ < 1
2ϵ, then there exists a classifier f represented by a ReLU network with at most

O
(
Nd log

(
δ−1d

)
+N · polylog(δ−1N)

)
parameters, such that L̂p,δ

D (f) = 0.

Proof. (1). The case p = 2. First, we choose C, ε1, ε2 > 0 and m ∈ Z+ that satisfy

C
(
(δ2 + ε1)

m + ε2
)
≤ 1

4
< 4N ≤ C

(
(R2 − ε1)

m − ε2
)
. (2)

These constants will be specified later. Since for ∀x0 ∈ [0, 1]d, x → ‖x − x0‖2 is a polyno-
mial that consists of d monomials and with degree 2, satisfying the conditions in Lemma B.2, there
exists a function ϕ1 computed by a ReLU network with O

(
d log

(
ε−1
1 d

))
parameters such that

supx∈[0,1]d

∣∣ϕ1(x)− ‖x− x0‖2
∣∣ ≤ ε1. We may further assume that ϕ

(
[0, 1]d

)
⊂ [0, 1], or other-

wise we can consider σ (ϕ1(x))− σ (ϕ1(x)− 1) instead.

Applying Lemma B.2 again, we can see that the function x → xm on [0, 1] can be approximated
with error ε2 by a function ϕ2 computed by a ReLU network with O

(
m log

(
ε−1m

))
parameters.

Now we can see that 1 + C · ϕ2 ◦ ϕ1 is computable by a ReLU network and takes value in
[
1, 54

]
when x ∈ B(x0, δ) and in (4N + 1, C + 1) when x /∈ B(x0, R) (since R ≤ 1).

The final step is to choose ϕ3 computed by a ReLU network with O
(
log4 C log3 (NC)

)
parameters

such that it approximates 1
x on [1, C + 1] with error < 1

4N . Hence ϕ3 ◦ (1 + C · ϕ2 ◦ ϕ1) is larger

17



than 3
4 inside B(x0, δ) and smaller than 1

2N outside B(x0, R). This construction uses a total of
O(W ) parameters, where

W = d log
(
ε−1
1 d

)
+m log

(
ε−1
2 m

)
+ log4 C log3(NC). (3)

Finally, we choose

ε1 =
Rδ(R− δ)

R+ δ
, m = max

{
1, log

32Nδ

R

}
, ε2 =

1

33N

(
R(R2 + δ2)

R+ δ

)m

,

and C = 4N
(R2−ε1)m−ε2

= O
(
Nδ−2m

)
, which satisfies (2). Plugging all expressions into (3), we

can see that
W = O

(
d
(
log d+ log δ−1 + log(R− δ)−1

)
+ log7

(
δ−1N

))
.

We denote this construction by ψ(x;x0,θ), where θ consists of all parameters. The ar-
guments above show that there exists θ = θ(x0) such that ψ(x;x0, θ) > 3

4 when
x ∈ B(x0, δ) and ψ(x;x0,θ) < 1

2N when x /∈ B(x0, R). Consider the function
Ψ(x;θ1:N ) = 4

∑N
i=1 ψ(x;xi,θi) − 5

2 . The total number of parameters in Ψ is Õ (Nd).
Moreover, if we choose θi = θ(xi) when yi = 1 and θi = 0 when yi = −1, then Ψ satisfies the
condition in Theorem B.3.

(2). The case p = ∞. To obtain the same result under the ℓ∞ norm, it suffices to construct a neural
network with size O(d) parameters to represent the function x → ‖x− x0‖∞; the remaining steps
are exactly the same with the ℓ2 case.

Let x(i) denote the i-th coordinate of x, then ‖x− x0‖∞ = max1≤i≤d

∣∣∣x(i) − x
(i)
0

∣∣∣. Since

|a| = 1

2
(max{a, 0}+max{−a, 0}) ,

we can see that x(i) →
∣∣∣x(i) − x

(i)
0

∣∣∣ can be represented by a constant-size ReLU network. More-

over, the function max{a, b} = 1
2 (|a+ b|+ |a− b|), so that the function (a1, a2, · · · , ad) →

max1≤i≤d ad can be represented with O(d) parameters. To summarize, x → ‖x− x0‖∞ can
be represented using a ReLU network of size O(d), as desired.

In the following, we prove Theorem 2.3.
Theorem B.4 (Restatement of Theorem 2.3). Let p ∈ {2,+∞} and Fn be the set of functions
represented by some ReLU network with at most n parameters. If for any 2ϵ-separated data set
D under ℓp norm, there exists a classifier f ∈ Fn such that L̂p,δ

D (f) = 0, then it must hold that
n = Ω(

√
Nd).

Proof. It follows from the assumption that given any data points x1,x2, · · · ,xN which are pair-
wise 2ϵ-separated, there exists f ∈ Fn being able to achieve zero training error for any binary label.
It directly follows from (Gao et al., 2019, Theorem 6.1) that

VC-dim(Fn) = Ω(Nd).

On the other hand, suppose that L 6= n is the depth of the neural network, then we have
VC-dim(Fn) = O(nL log(nL)) = O(n2).

As a result, it follows that n = Ω̃(
√
Nd), as desired.

C Proofs for Section 3

C.1 Proof of Theorem 3.3

The proof idea of Theorem 3.3 has two key steps. First, we construct a Lipschitz classifier f∗ based
on distance function between a point and a close set that can ϵ− robustly classify A,B. Then we
regard f∗ as the target function and use a ReLU network to approximate it to derive the cϵ−robust
classifier. Before proving the theorem, we first introduce the two following useful conclusions,
which also corresponding to the two steps of proof.
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Proposition C.1. For the separable A,B ⊂ [0, 1]d, we define f∗(x) := d∞(x,B)−d∞(x,A)
d∞(x,A)+d∞(x,B) , which

has the following properties:

1. f∗(x) can classify A,B correctly i.e. f∗(x) =
{

1, x ∈ A
−1, x ∈ B

.

2. f∗(x) is a ϵ-robust classifier i.e. for any perturbed input x′ that satisfies ||x′ − x||∞ ≤ ϵ
can also be classified correctly.

3. f∗(x) is 1
ϵ -Lipschitz w.r.t. ℓ∞ norm.

We can check these properties by the continuity and 1-Lipschitz property of distance function
d∞(p, S).

Lemma C.2. For any L−lipschitz function f in [0, 1]d, there exists a function f̃ implemented by
ReLU network with at most c1(c2ϵ/L)−d(d2+d log d+d log(1/ϵ)) parameters that satisfies |f(x)−
f̃(x)| ≤ ϵ for any x ∈ [0, 1]d, where c1 and c2 are constants.

This lemma provides a useful approximation tool for us, which is an improved version of Theorem
1 in Yarotsky (2017). Compared with Theorem 1 in Yarotsky (2017), we use Lipschitz property
of function instead of high-order differetiability and focus on not the bound order when ϵ goes to
zero but also more accurate bound order depending on ϵ, L and d. By a refined analysis of total
approximation error, we can derive this lemma.

Proof of Theorem 3.3. By Lemma C.2, we can approximate f∗ in Lemma C.1 satisfying uniform
error at most 1−c via a ReLU network f with at most c1(c2(1−c)ϵ)−d(d2+d log d+d log(1/(1−c)))
parameters. Then, we prove the theorem by contradiction. Assume that there exists some perturbed
input x′ that is mis-classified and the original input x is inA. So we know f(x′) < 0 and f∗(x) < ϵ′.
This impiles d∞(x′, A) < d∞(x′, B) < 1+ϵ′

1−ϵ′ d∞(x′, A) Combined with d∞(x′, A)+d∞(x′, B) ≥
d∞(A,B) ≥ 2ϵ, we have d∞(x′, A) > (1− ϵ′)ϵ = cϵ, which is the contradiction.

C.2 Proof of Theorem 3.4

The main idea of proof is to estimate the lower bound of the family’s VC-dimension via the definition
of cϵ-robust family.

Proof of Theorem 3.4. The key idea is to find some discrete points that can be shattered by the
function family Fn.

(1). The p = ∞ case. We use K to denote b 1
2ϵc + 1, and we can divide [0, 1]d into (K − 1)d

non-overlapping sub-cubes. Let S be the set of all the vertices of sub-cubes, which has Kd elements
and can be represented by

S = {x1,x2, · · · ,xKd} = {(2ϵi1, 2ϵi2, · · · , 2ϵid)|0 ≤ i1, i2, · · · , id < K}.

For any partition I, J of [Kd] (I ∩ J = Φ, I ∪ J = [Kd]), let A = {xi|i ∈ I} and B = {xj |j ∈ J}
be the positive and negative classes. Then we have d∞(A,B) ≥ 2ϵ. By the definition of
cϵ-robust classifier family, there exists a classifier f ∈ F classify A,B correctly. Thus, the
family F shatter the subset S ⊂ [0, 1]d. By using the conclusion of Lemma A.3, we have
Kd ≤ VC-dim(F ) = O(WL log(N)) = O(W 2 log(W )) where L is the depth of networks and W
is the total number of parameters.

(2). The p = 2 case. Similar to the case of p = ∞, we need to construct a set S ⊂ B2(0, 1) such
that the ℓ2-distance between any two points in S is as least 2ϵ.

Specifically, we choose S to be a 2ϵ-packing of B2(0, 1) with maximal size. Then we have that
|S| ≥ P(B2(0, 1), 2ϵ) ≥ C(B2(0, 1), 2ϵ) ≥ (2ϵ)−d, by Propositions A.7 and A.9. Similar to the
p = ∞ case, robustness implies that S can be shattered by Fn, so that Kd = O(W 2 logW ) and the
conclusion follows.
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D Proofs for Section 4

In this section, we present the proof of Theorem 4.3 and 4.4.
Theorem D.1 (Restatement of Theorem 4.3). Let ϵ ∈ (0, 1) be a small constant, p ∈ {2,∞} and
Fn be the set of functions represented by ReLU networks with at most n parameters. There exists
a sequence Nd = Ω

(
(2ϵ)−

d−1
6

)
, d ≥ 1 and a universal constant C > 0 such that the following

holds: for any c ∈ (0, 1), there exists two linear separable sets A,B ⊂ [0, 1]d that are 2ϵ-separated
under ℓp-norm, such that for any µ0−balanced distribution P on the supporting set S = A∪B and
robust radius cϵ we have

inf {Lp,cϵ
P (f) : f ∈ FNd

} ≥ Cµ0.

Proof. (1). The p = ∞ case. Define

Sϕ =

{(
i1
K
,
i2
K
, · · · , id−1

K
,
1

2
+ cε · ϕ(i1, i2, · · · , id−1)

)
: 1 ≤ i1, i2, · · · , id−1 ≤ K

}
,

and

S̃ =

{(
i1
K
,
i2
K
, · · · , id−1

K
,
1

2

)
: 1 ≤ i1, i2, · · · , id−1 ≤ K

}
,

where K = b 1
2εc, and ϕ : {1, 2, · · · ,K}d−1 → {−1,+1} be an arbitrary mapping. For a vector

x ∈ Rd, we use x(i) to denote its i-th component. Let Aϕ = Sϕ ∩
{
x ∈ Rd : x(d) > 1

2

}
, Bϕ =

Sϕ−Aϕ and µ be the uniform distribution on S. It’s easy to see thatA andB are linear separable by
the hyperplane x(d) = 1

2 . Moreover, we clearly have d(A,B) ≥ 2ε. We will show that there exists
some choice of ϕ such that robust classification of Aϕ and Bϕ with (cε, 1− α)-accuracy requires at
least Ω

(
K(d−1)/6

)
parameters.

Assume that for any choices of ϕ, the induced setsAϕ andBϕ can always be robustly classified with
(cε, 1 − α)-accuracy by a ReLU network with at most M parameters. Then, we can construct an
enveloping network Fθ with M − 1 hidden layers, M neurons per layer and at most M3 parameters
such that any network with size ≤ M can be embedded into this envelope network. As a result, Fθ

is capable of (cε, 1 − α)-robustly classify any sets Aϕ, Bϕ induced by arbitrary choices of ϕ. We
use Rϕ to denote the subset of Sϕ = Aϕ ∪Bϕ satisfying |Rϕ| = (1−α) |Sϕ| = (1−α)Kd−1 such
that Rϕ can be cε-robustly classified.

Consider the projection operator P onto the hyperplane x(d) = 1
2 . For any set C ∈ Rd, we use C̃ to

denote P(C). Then cε-robustness implies that the labelled data set

R+
ϕ =

{
(x, y) : x ∈ R̃ϕ, y = ϕ

(
Kx(1), · · · ,Kx(d−1)

)}
can be correctly classified by Fθ , with appropriate choices of parameters.

Let V = 1
2K

d−1 and R̂ϕ be the collection of all labelled V -subset (i.e. subset of size V ) ofR+
ϕ . For

each V -subset R of S̃, we use G(R) to denote the set of all labelings of R, so that |G(R)| = 2V .

Note that for each labelled V -subset T , there exists at most 2K
d−1−V different choices of ϕ such

that T ⊂ R+
ϕ (or, equivalently, T ∈ R̂ϕ): this is because the value of ϕ on data points in T has been

specified by their labels, and there are two choices for each of the remaining Kd−1 − V points in
{1, 2, · · · ,K}d−1. As a result, we have∣∣∣∪ϕR̂ϕ

∣∣∣ ≥ 2−(Kd−1−V )
∑
ϕ

∣∣∣R̂ϕ

∣∣∣ = 2V
(
(1− α)Kd−1

V

)
.

On the other hand, the total number of V -subset of S̃ is
(
Kd−1

V

)
, thus there must exists a V -subset

V0 ⊂ S̃, such that at least(
Kd−1

V

)−1

· 2V
(
(1− α)Kd−1

V

)
≥

(
2
(
(1− α)kd−1 − V

)
Kd−1 − V

)V

(4)
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different labelings of V0 are included in ∪ϕR̂ϕ. Since Fθ can correctly classify all elements (which

are V -subsets) in ∪ϕR̂ϕ, it can in particular classify the set V0 with at least
(

2((1−α)kd−1−V )
Kd−1−V

)V

different assignments of labels. Let dV C be the VC-dimension of Fθ , then by Lemma A.4, either
dV C ≥ V = 1

2K
d−1, or

(2(1− 2α))
V ≤

(
2
(
(1− α)Kd−1 − V

)
Kd−1 − V

)V

≤ ΠFθ
(V ) ≤

(
eV

dV C

)dV C

,

where Π is the growth function. The RHS is increasing in dV C as long as dV C ≤ V . When
α ≤ 1

10 , we have 2(1 − 2α) > (10e)1/10, so that dV C ≥ 1
10V = 1

20K
d−1. Finally, since Fθ

has at most M3 parameters, classical bounds on VC-dimension (Bartlett et al., 2019) imply that
M = Ω

(
K(d−1)/6

)
, as desired.

(2). The p = 2 case. Let P be an 2ϵ-packing of the unit ball Bd−1 in Rd−1. Since the packing
number P(Bd−1, ‖ · ‖, 2ϵ) ≥ C(Bd−1, ‖ · ‖2, 2ϵ) ≥ (2ϵ)−(d−1) by Propositions A.7 and A.9, where
C(Θ, ‖·‖, ϵ) is the ϵ-covering number of a set Θ. For any λ ∈ (0, 1), we can consider the construction

Sϕ =

{(
x,

1

2
+ ϵ0 · ϕ(x)

)
: x ∈ P

}
,

where ϕ : P → {−1,+1} is an arbitrary mapping. It’s easy to see that all points in Sϕ with first d−1

components satisfying ‖x‖2 ≤
√

1− ε20 are in the unit ball Bd, so that by choosing ε0 sufficiently
small, we can guarantee that |Sϕ ∩ Bd| ≥ 1

2 (2ϵ)
−(d−1). For convenience we just replace Sϕ with

Sϕ ∩ Bd from now on.

Let Aϕ = Sϕ ∩
{
x ∈ Rd : x(d) > 1

2

}
, Bϕ = Sϕ − Aϕ. It’s easy to see that for arbitrary ϕ, the

construction is linear-separable and satisfies 2ϵ-separability. The remaining steps are just identical
to the ℓ∞ case.

Theorem D.2 (Restatement of Theorem 4.4). For any two linear-separable A,B ⊂ [0, 1]d, a distri-
bution P on the supporting set S = A∪B, δ > 0 and β > 0, let H be the family of d−dimensional
hyperplane classifiers. Then, there exists a poly-time efficient algorithm A : 2S → H , for
N = Ω(d/β2) training instances independently randomly sampled from P , with probability 1 − δ

over samples, we can use the algorithm A to learn a classifier f̂ ∈ F such that

LP (f̂) ≤ β,

where LP (f) := P(x,y)∼P {y 6= f(x)} denotes the standard test error.

Proof. We i.i.d. sample N instances from the data distribution P , and use T to denote the training
dataset. By Lemma A.5, with probabililty at least 1− δ, we have

LP (h) ≤ LT (h) +O

(√
d

N

)
, ∀h ∈ H

By conclusions of Boser et al. (1992) and results of convex optimization, we have a poly-time
algorithm A : 2S → H such that LT (A(T )) ≤ β

2 , and we use f̂ to denote A(T ). Finally, when
N = Ω(d/β2) is sufficient large, we have LP (f̂) ≤ β

2 + β
2 = β.

E Proofs for Section 5

E.1 Proof of Lemma 5.6

Theorem E.1 (Restatement of Lemma 5.6). Let M ⊂ [0, 1]d be a k−dimensional compact poly-
partitionable Riemannian manifold with the condition number τ > 0. For any small δ > 0 and a
L−lipschitz function f : M → R, there exists a function f̂ implemented by ReLU network with at
most

Õ
(
(
√
dL/δ)−k̃

)
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parameters, such that |f − f̂ | < δ for any x ∈ M, where k̃ is the same as Theorem 5.5.

Proof. The full proof has six steps, and we finally construct a ReLU network as the following form

f̂ =

N∑
i=1

(f̂i ◦ ϕi)×̂(ρ̂i ◦ Ti)×̂(Îθ ◦ d̂2i ),

where all f̂i, ϕi, ρ̂i, Ti, Î∆, d̂2i and ×̂ are implemented by sub ReLU networks, and these notation’s
detail will be introduced step by step.

As the above form shows, three sub-network groups will be combined by multiplication approxima-
tor ×̂, where each group corresponds to a factor in the partition-of-unity-based decomposition of f
(i.e. f =

∑N
i=1 f × ρi × I{x ∈ Ui}, and where {ρi}i∈[N ] satisfying

∑
i∈[N ] ρi = 1 is a partition of

unity on an atlas {Ui}i∈[N ]).

Step 1: Construct poly-partition of unity on M
Consider a open cover {Br(x)}x∈M on M, where we use Br(c) to denote the Euclidean neighbor-
hood with center c and radius r. Due to the compactness of manifold M, we know there exists a fi-
nite open cover {Br(xi)}i∈I indexed by a finite sub-index set I , which satisfies M ⊂

⋃
i∈I Br(xi).

Then, we estimate the cardinal number of index set. By the conclusions of Niyogi et al. (2008),
when we select radius r satisfying r < τ/2, we have the following lemma, which gives an lower
bound of k−dimensional volume of the local neighborhood of M.

Lemma E.2. (Niyogi et al., 2008, Lemma 5.3) Let c ∈ M. Now consider U = M∩ Br(c). Then
vol(U) ≥ (cos(θ))k vol

(
Bk

r (c)
)

where Bk
r (c) is the k-dimensional ball in Tc centered at c, θ =

arcsin(r/2τ). All volumes are k-dimensional volumes where k is the dimension of M.

Recall the relation between the covering number N (M, d2, r) and the packing number P(M, d2, r),
and then we have

N (M, d2, r) ≤ P(M, d2, r/2)

≤ vol(M)

(cos(θ))k vol
(
Bk

r/2(c)
)

≤ cN
vol(M)

rk
,

where cN is a constant that only exponentially depends on k log k.

By the poly-partitionable and smoothness properties of Riemannian manifold M, there exists a
collection {Ui, Ti, ρi}i∈N (M,d2,r) such that {Ui, Ti} compose a tangent-space-induced atlas and
{ρi} also compose a poly-partition of unity on M. So we can decompose f as f =

∑N
i=1 fρi,

where we use notation N to denote N (M, d2, r) so as to simplify the written process.

Step 2: Local almost isotropic transformation via random projection

To achieve dimensional reduction of f in the local neighborhood Ui, we will use the following
random projection technique proposed by Baraniuk and Wakin (2009).

Lemma E.3. (Baraniuk and Wakin, 2009, Theorem 3.1)

Let M be a compact k-dimensional sub-manifold of Rd having condition number 1/τ . Fix 0 < δ <

1 and 0 < η < 1. Let A be a random orthoprojector from Rd to Rk̃ with

k̃ = O

(
k log

(
d vol(M)τ−1δ−1

)
log(1/η)

δ2

)
.

If k̃ ≤ d, then with probability at least 1 − η the following statement holds: For every distinct pair
of points x, y ∈ M,

(1− δ)

√
k̃

d
≤ ‖Ax−Ay‖2

‖x− y‖2
≤ (1 + δ)

√
k̃

d
.
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Since we can select η is very close to 1 in order to the probability 1− η > 0, there exists a orthopro-
jector Ai for sub-manifold Ui by applying Lemma E.3. And we use Vr to denote the uniform upper
bound of vol(Ui), which makes the uniform dimension k̃ = O (k log d) for each i ∈ [N ]. Let local
almost isotropic transformation ϕi(x) = 1

2Ai(x − ci) +
1
2⊮, where we use ⊮ to denote the vector

(1, 1, ...1) ∈ Rk̃, and then we know ϕi(Ui) ⊂ [0, 1]k̃.

Step 3: Approximate Lipschitz mapping f ◦ ϕ−1
i by f̂i

To approximate f ◦ ϕ−1 : [0, 1]k̃ → R via ReLU networks, we first caculate the Lipschitzness of it.
For any pair x, y of ϕi(Ui), we have

|f ◦ ϕ−1(x)− f ◦ ϕ−1(y)| ≤ L‖ϕ−1(x)− ϕ−1(y)‖∞
≤ L‖ϕ−1(x)− ϕ−1(y)‖2

≤ 2L

1− δ

√
d

k̃
‖x− y‖2

≤ 2L
√
d

1− δ
‖x− y‖∞.

The first inequality is due to the Lipschitzness of function f . The second and last equality is the
equivalence between ℓ2 norm and ℓ∞ norm. The third inequality uses the isotropic property of the
orthoprojector Ai. So f ◦ ϕ−1

i is a 2L
√
d

1−δ Lipschitz mapping from [0, 1]k̃ to R.

By using Lemma C.2, there exists a ReLU network f̂i with at most

c1

(
c2ϵ1(1− δ)

2L
√
d

)−k̃

(k̃2 + k̃ log k̃ + k̃ log
1

ϵ1
)

parameters such that for any x ∈ ϕi(Ui), we have the uniform error ϵ1 as

|f ◦ ϕ−1
i (x)− f̂i(x)| ≤ ϵ1.

Notice that ϕi is a linear mapping so that we can use a ReLU network with only one layer to represent
it, which shows that we can approximate f efficiently in the local neighborhood Ui.

Step 4: Approximate simple piecewise polynomial ρi ◦ T−1
i by ρ̂i

According to the poly-partitionable property of manifold M and Lemma B.2, there exists a ReLU
network ρ̂i with at most O(k log(k/ϵ2)) parameters such that for any x ∈ Ti(Ui) ⊂ [0, 1]k, we have
the uniform error ϵ2 as

|ρi ◦ T−1
i (x)− ρ̂i(x)| ≤ ϵ2,

where Ti is composed by the tangent vectors of ci and is scaled and translated to ensure Ti(Ui) ⊂
[0, 1]k.

Step 5: Determine the corresponding neighborhood for input

Notice that supp(ρi) ⊂ Ui but ρ̂i may be non-zero for some point [0, 1]k/Ti(Ui), so we need to
determine the corresponding chart for input x ∈ M by ReLU networks. Inspired by Chen et al.
(2019), we construct indicate approximator Îθ and ℓ2 distance approximators {d̂2i }i∈[N ] based on
quadratic approximator in Lemma B.1 to approximate the neighborhood’s indicator I{x ∈ Ui},
which relies upon the following identical equations

I{x ∈ Ui} = I{‖x− ci‖22 < r2} = I{(·) < r2} ◦ d2i (x),

where d2i (x) denotes the square of ℓ2 distance between x and ci. Then, if Îθ ≈ I{(·) < r2} and
d̂2i ≈ d2i , we have Îθ ◦ d̂2i ≈ I{(·) < r2} ◦ d2i = I{x ∈ Ui}, which determines the corresponding
chart approximately.

Assume that the uniform error of square distance approximator is ϵq (i.e. |d2i − d̂2i | ≤ ϵq for any
x ∈ [0, 1]d). In fact, functions computed by ReLU networks are piecewise linear but the indicator
functions are not continuous, so we need to relax the indicator such that Îθ(x) = 1 for x ≤ r2+ϵq−θ,
Îθ(x) = 0 for x ≥ r2 − ϵq and Îθ is linear in (r2 + ϵq − θ, r2 − ϵq).
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To correct the difference between indicator and its approximator, we will bound the value of func-
tion f such that the magnitude of f(x) is sufficient small when x is nearly on the boundary of Ui.
Intuitively, for any y ∈ ∂(Ui), we have

fρi(y) = 0.

This is due to supp(ρi) ⊂ Ui, which implies that we only need estimate the upper bound of ‖x−y‖2
for the Lipshcitzness of f and smoothness of ρi, where x is nearly on ∂Ui. Indeed, we can prove
that for any xU ′

i :=∈ Ui/B√
r2−θ(ci), there exists y ∈ ∂Ui such that ‖x−y‖2 = O(θ) (Chen et al.,

2019, Lemma 3).

Step 6: Estimate the total error

We combine three sub-network groups as

f̂ =

N∑
i=1

(f̂i ◦ ϕi)×̂(ρ̂i ◦ Ti)×̂(Îθ ◦ d̂2i ).

Next, we estimate the total error between f and f̂ . For any x ∈ M , we use gi to denote (f̂i ◦
ϕi)×̂(ρ̂i ◦ Ti), Ii to denote I{x ∈ Ui} and Îi to denote Îθ ◦ d̂2i , then we have

|f(x)− f̂(x)| =

∣∣∣∣∣
N∑
i=1

fρi −
N∑
i=1

gi×̂Îi

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
i=1

fρi − giIi

∣∣∣∣∣+
∣∣∣∣∣

N∑
i=1

gi × Ii − gi×̂Îi

∣∣∣∣∣
=

∣∣∣∣∣ ∑
i:x∈Ui

fρi − (f̂i ◦ ϕi)×̂(ρ̂i ◦ Ti)

∣∣∣∣∣+
∣∣∣∣∣

N∑
i=1

gi × Ii − gi×̂Îi

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
i:x∈Ui

((f ◦ ϕ−1
i − f̂i) ◦ ϕi)ρi

∣∣∣∣∣+
∣∣∣∣∣ ∑
i:x∈Ui

(f̂i ◦ ϕi)× ρi − (f̂i ◦ ϕi)×̂(ρ̂i ◦ Ti)

∣∣∣∣∣
+

∣∣∣∣∣
N∑
i=1

gi × Ii − gi×̂Îi

∣∣∣∣∣ .
The second identical equation is due to supp(ρi) ⊂ Ui. Notice that

∑
i∈[N ] ρi = 1, then the first

term satisfies that∣∣∣∣∣ ∑
i:x∈Ui

((f ◦ ϕ−1
i − f̂i) ◦ ϕi)ρi

∣∣∣∣∣ ≤
( ∑

i:x∈Ui

ρi

)
max
i:x∈Ui

{|f ◦ ϕ−1
i − f̂i|} ≤ ϵ1.

By the approximation of ×̂, the second term satisfies that∣∣∣∣∣ ∑
i:x∈Ui

(f̂i ◦ ϕi)× ρi − (f̂i ◦ ϕi)×̂(ρ̂i ◦ Ti)

∣∣∣∣∣ ≲
∣∣∣∣∣ ∑
i:x∈Ui

(f̂i ◦ ϕi)× ((ρi ◦ T−1
i − ρ̂i) ◦ Ti)

∣∣∣∣∣ ≤ cfNϵ2.

where cf is the uniform upper bound the value of {f̂i}i∈[N ]. And the third term satisfies that∣∣∣∣∣
N∑
i=1

gi × Ii − gi×̂Îi

∣∣∣∣∣ ≲
∣∣∣∣∣

N∑
i=1

gi × (Ii − Îi)

∣∣∣∣∣ ≤
N∑
i=1

max
x∈U ′

i

|gi| ≲
N∑
i=1

max
x∈U ′

i

|fρi| = O(Nθ).

Finally, we choose ϵ1 = O(ϵ) and ϵ2 = θ = O(ϵ/N) to control the total error boounded by ϵ and
derive the upper bound for the size of network in Lemma E.1.

24



E.2 Proof of Theorem 5.8

Theorem E.4 (Restatement of Theorem 5.8). Let ϵ ∈ (0, 1) be a small constant. There exists a

sequence {Nk}k≥1 that satisfies Nk = Ω
(
(2ϵ
√
d/k)−

k
2

)
. and a universal constant C1 > 0 such

that the following holds: let M ⊂ [0, 1]d be a complete and compact k−dimensional Riemannian
manifold with non-negative Ricci curvature , then there exists two 2ϵ-separated sets A,B ⊂ M
under ℓ∞ norm, such that for any µ0−balanced distribution P on the supporting set S = A ∪ B
and robust radius c ∈ (0, 1), we have

inf {L∞,cϵ
P (f) : f ∈ FNk

} ≥ C1µ0.

Proof. Our proof relies on the following propositions.

Lemma E.5. (Niyogi et al., 2008, Proposition 6.3)

Let M be a sub-manifold of Rd with condition number 1/τ . Let p and q be two points in M such
that ‖x− y‖2 = r. Then for all r ≤ τ/2, the geodesic distance dM(p, q) is bounded by

dM(x, y) ≤ τ − τ
√

1− 2r/τ .

By Lemma E.5, we know that dM(x, y) ≤ τ − τ
√

1− 2r/τ ≤ 2r when r ≤ τ/2.

Lemma E.6. (Bishop, 1964, Bishop-Gromov Volume Comparison Theorem) Let M is a complete
Riemannian manifold with Ricci curvature Ric ≥ (k − 1)l, and p ∈ M is an arbitrary point. Then
the function

r 7→ vol (BM,r(p))

vol (Bl
r)

is a non-increasing function which tends to 1 as r goes to 0 , where BM,r(p) is the M’s geodesic
ball of radius r and center p, and Bl

r is a geodesic ball of radius r in the space form Mk
l . In

particular, vol (BM,r(p)) ≤ vol
(
Bl

r

)
.

By Lemma E.6 and the non-negativeness of M’s Ricci curvature, we know vol(BM,r(c)) ≤
vol(B0

r ) = rkVk, where Vk denotes the volume of the unit ball in Rk. Recall the relation between
the covering number NM(r) and the packing number PM(r) on the manifold M, then we have

PM(r) ≥ NM(2r) ≥ vol(M)

(2r)kVk
= Ω

(
vol(M)k

k
2

rk

)
.

By choosing r = 2ϵ
√
d, we know that there are at least Ω

(
(2ϵ
√
d/k)−k

)
points on M such that

the ℓ∞ distance between each pair points of these is more than 2ϵ, where we use Q to denote the set
of these selected points. The remain of proof is similar to the latter half of proof for Theorem D.1.

Let S = Q be the supporting set. Assume that for any partition A,B of S such that A∪B = S and
A ∩ B = ∅, there exists a classifier f ∈ FNk

that robustly classifies A and B with at least 1 − α
accuracy. Next, we estimate the lower and upper bounds for the cardinal number of the vector set

R := {(f(x))x∈Q|f ∈ FNk
}.

Let n denote |Q|, then we have

R = {(f(x1), f(x2), ...f(xn))|f ∈ FNk
},

where Q = {x1, x2, ..., xn}.

On one hand, we know that for any u ∈ {−1, 1}n, there exists a v ∈ R such that dH(u, v) ≤ αn,
where dH(·, ·) denotes the Hamming distance, then we have

|R| ≥ N ({−1, 1}n, dH , αn) ≥
2n∑αn

i=0

(
n
i

) .
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On the other hand, by applying Lemma A.4, we have

2n∑αn
i=1

(
n
i

) ≤ |R| ≤ ΠFNk
(n) ≤

l∑
j=0

(
n

j

)
.

where l is the VC-dimension of FNk
. In fact, we can derive l = Ω(n) when α is a small constant.

Assume that l < n− 1 , then we have
∑l

j=0

(
n
j

)
≤ (en/l)l and

∑αn
i=1

(
n
i

)
≤ (e/α)αn, so

2n

(e/α)
αn ≤ |R| ≤ (en/l)l.

We define a function h(x) as h(x) = (e/x)x, then we derive

2 ≤
( e
α

)α( e

l/n

)l/n

= h(α)h(l/n).

When α is sufficient small, l/n ≥ C(α) that is a constant only depending on α, which implies
l = Ω(n). Finally, by using Lemma A.3 and n = |Q| = Ω

(
(2ϵ
√
d/k)−k

)
, we know Nk =

Ω
(
(2ϵ
√
d/k)−

k
2

)
. Combined with the definition of balanced distribution, we conclude the proof

of Theorem E.4.
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