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ABSTRACT

Blind face restoration (BFR) is a fundamental and challenging problem in com-
puter vision. To faithfully restore high-quality (HQ) photos from poor-quality
ones, recent research endeavors predominantly rely on facial image priors from
the powerful pretrained text-to-image (T2I) diffusion models. However, such pri-
ors often lead to the incorrect generation of non-facial features and insufficient
facial details, thus rendering them less practical for real-world applications. In
this paper, we propose a novel framework, namely AuthFace that achieves highly
authentic face restoration results by exploring a face-oriented generative diffusion
prior. To learn such a prior, we first collect a dataset of 1.5K high-quality images,
with resolutions exceeding 8K, captured by professional photographers. Based
on the dataset, we then introduce a novel face-oriented restoration-tuning pipeline
that fine-tunes a pretrained T2I model. Identifying key criteria of quality-first and
photography-guided annotation, we involve the retouching and reviewing process
under the guidance of photographers for high-quality images that show rich facial
features. The photography-guided annotation system fully explores the potential
of these high-quality photographic images. In this way, the potent natural image
priors from pretrained T2I diffusion models can be subtly harnessed, specifically
enhancing their capability in facial detail restoration. Moreover, to minimize ar-
tifacts in critical facial areas, such as eyes and mouth, we propose a time-aware
latent facial feature loss to learn the authentic face restoration process. Extensive
experiments on the synthetic and real-world BFR datasets demonstrate the supe-
riority of our approach. Codes and datasets will be available upon acceptance.

1 INTRODUCTION

Face images captured in natural settings often exhibit various forms of degradation, including com-
pression, blur, and noise (Wang et al., 2021; 2023c). Capturing high-quality (HQ) face images is
crucial, as humans are highly sensitive to subtle facial details. Blind face restoration (BFR) aims
to reconstruct HQ images from degraded inputs and has rapidly progressed in recent years due
to significant research interest. However, BFR remains an ill-posed problem due to the unknown
degradation and the loss of valuable information resulting from these complex conditions (Zhou
et al., 2022).

Sufficient prior information is critical for HQ reconstruction. Researchers have used geometric and
reference priors from sources like (Bulat & Tzimiropoulos, 2018; Kim et al., 2019; Chen et al.,
2021; Shen et al., 2018; Yang et al., 2020; Yu et al., 2018; Hu et al., 2020; Zhu et al., 2022; Ren
et al., 2019; Dogan et al., 2019; Li et al., 2020a;b; 2018; Chen et al., 2018; Ma et al., 2020) to guide
face restoration. These priors, however, are limited by their sensitivity to degradation and inability
to capture fine facial details, and can even result in corrupted texture details due to incorrect prior
information (Lu et al., 2021). With advancements in generative models, such as StyleGAN (Karras
et al., 2020) and VQVAE (Razavi et al., 2019), recent works (Chen et al., 2021; Wang et al., 2021;
Chan et al., 2022; Xie et al., 2023; Wang et al., 2022a;b; Zhou et al., 2022; Tsai et al., 2023) have
leveraged pretrained networks to derive facial priors, achieving superior results compared to ear-
lier methods. Nonetheless, these approaches still face significant performance declines in handling
unseen cases. Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) have shown
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(b) Ours (c) SUPIR(a) Input

Figure 1: Compared with the results from a state-of-the-art (SOTA) method SUPIR (Yu et al., 2024)
using StableDiffusion-XL (SDXL) (Podell et al., 2023) as prior, our approach excels in capturing
and rendering intricate facial details. For instance, our result has a more distinct jawline (see blue
arrow) in the 2nd row, effectively distinguishing the jaw from the neck. Zoom in for more details.

promise as an alternative to generative adversarial networks (GANs) (Song et al., 2020) in image
generation. Some approaches (Yue & Loy, 2022; Wang et al., 2023c) use pretrained DDPMs to
diffuse and then denoise degraded inputs. However, their practical application is hindered by the
loss of original identity and detailed facial features (Miao et al., 2024), with pretrained DDPMs also
facing limitations in representational capacity.

The remarkable success of large-scale pretrained text-to-image (T2I) models (Rombach et al., 2022;
Saharia et al., 2022) has provided another promising prior. Many researchers explore the potential
of StableDiffusion (SD) models (Stability.ai, 2024) as the powerful prior in challenging low-level
vision tasks, including real-world image super-resolution (Wang et al., 2023b; Lin et al., 2024;
Wu et al., 2023a; Yu et al., 2024) and BFR (Chen et al., 2024; Gao et al., 2024). Since the face
details are often lost due to the degradation and down-sampling processes of VAE (Rombach et al.,
2022) in SD models, BFRffusion (Chen et al., 2024) and DiffMAC (Gao et al., 2024) rely on the
facial priors within SD models to recreate these details. However, being designed for general text-
to-image tasks, SD models often fail to retain essential facial details, like skin texture (see Fig. 2
(b)). Therefore, these methods typically produce overly smooth images in the T2I task. Moreover,
their extensive image priors can lead to the incorrect generation of non-facial features, resulting in
artifacts, especially for images with ambiguous degradation. These specific limitations – incorrect
generation of non-facial features and missing facial details (red box at 3rd row of Fig. 1)– severely
limit the practical deployment of these models in real-world applications.

To tackle these problems, we propose Authface, a novel BFR method with face-oriented generative
diffusion prior, designed to restore highly authentic face images. The highlight of our Authface
is that it brings a paradigm shift for BFR – with a two-stage training pipeline: 1) Face-oriented
Fine-tuning on Pretrained T2I Model, and 2) Highly Authentic Face Restoration. The underlying
premise for Stage I is that pretrained T2I models e.g., SD models, can serve as effective generative
diffusion priors for restoration tasks (Sec. 3.1). They can be customized for face-centric applications
via fine-tuning while retaining their generation capabilities.
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Semantic Tag:

• Person type: 
Close-up portrait

• Gender: Male
• Age: Young adult 
• Clothe: Black T-
shirt

• Background: Dark 
background

Photographic 
Tag:

• Expression: 
Serious expression

• Light:          
Bi-color lighting,      
Blue light,     
Red light, 
Shadowing on face, 
Mood lighting

• Photographic: 
Sharp focus, 
Photography, 
Frontal view,  
High resolution, 
Intense gaze

• Facial detail: 
Stubble,       
Skin texture

(a)

Text descriptions:

Asian Female, Floral Headpiece, Yellow 
Roses, Neutral Makeup, Black Hair, 
Black Top, Delicate Necklace, Close-Up, 
Serious Expression, Studio Lighting, 
High-Resolution Image, Gray Background, 
Fashionable, Natural Skin Tone, Focused 
Gaze, Fashion Photography, Minimalistic 
Style, Slight Shadow, Clean Composition, 
Sharp Focus, Color Contrast, Face Shot

Text descriptions:

Female, Portrait, Rainbow Makeup, 
Colorful Eyeshadow, High-Resolution, 
Studio Shot, Neutral Background, Front 
View, Young Adult, Creative Makeup, 
Vivid Colors, Natural Skin, Close-Up, 
Serious Expression, Beauty Shot, Makeup 
Artistry, Bare Shoulders, Artistic, 
Professional Lighting, Sharp Detail, 
Brown Hair, Pulled-Back Hairstyle 

SDXL
(b)

Ours

Figure 2: (a) A HQ face image with its paired tags generated through photography-guided image
annotation. Specifically, we provide an additional photographic tag (blue box) beyond the semantic
tags used in previous methods (gray box). (b) Qualitative comparison between StableDiffusion-XL
(SDXL) (Podell et al., 2023) and our fine-tuned model, which is exclusively trained on the collected
high-quality dataset, in the T2I task. Notably, SDXL tends to generate over-smooth skin even when
given prompts specifying sharp details and sharp focus. Zoom in for more details.

In analyzing key factors for fine-tuning pretrained T2I models to meet human preferences for au-
thentic facial images, we identify two key criteria as our face-oriented generative diffusion prior:
1) Quality-first image collection. Contrary to training T2I base models with large datasets like
LAION-5B (Schuhmann et al., 2022), the quality of the dataset, rather than its size, dictates the gen-
eration quality in the fine-tuning process. 2) Photography-guided image annotation. Fine-tuning
the pretrained T2I models for HQ facial tasks requires more than just basic annotations like human
accessories, especially for HQ face images with a pronounced stylistic orientation (see Fig. 2 (a)).
In line with our established criteria, we collect a curated dataset of 1.5K HQ face images – each
enriched with detailed photographic annotations – to fine-tune the pretrained T2I models for the first
stage. With the curated dataset, we are able to fine-tune the T2I models following their original op-
timization strategies, as illustrated in Fig. 3. With fine-tuning, the pretrained T2I model is required
with the detailed facial prior, which can be demonstrated with the T2I task as shown in Fig. 2 (b). To
achieve the goal of highly authentic face restoration in Stage II, we leverage the ControlNet (Zhang
et al., 2023) for training (Sec. 3.2). However, directly following the protocol of training ControlNet
with the MSE loss tends to contribute to the loss of key facial details, such as eyes and mouths.
To resolve this issue, we propose a time-aware latent facial feature loss to directly constrain the
regions where humans are sensitive in the latent space. Our extensive experiments demonstrate the
superior authentic detail generation performance on synthetic and real-world datasets.

In summary, our major contributions are three-fold: I) Novel Research Direction: Our work pio-
neers a new approach by enhancing the generative capabilities of pretrained T2I models for authentic
face restoration, moving beyond traditional model design. II) New Methodology: Our AuthFace,
a novel framework, enhances the detail handling of pretrained T2I models through a unique face-
oriented restoration tuning pipeline. Our method significantly sharpens fine facial details and in-
cludes a time-aware latent facial feature loss, which effectively reduces artifacts in critical areas
like the eyes and mouth. III) New High-quality Dataset: We have compiled a dataset of 1.5K
high-resolution images. We expect it can serve as a foundational and important resource to further
advance the field of high-fidelity authentic face restoration.

2 RELATED WORKS

Prior-based Blind Face Restoration Blind face restoration (BFR) employs a variety of priors,
classified into geometric, reference, and generative categories. Geometric priors, such as facial
landmarks (Bulat & Tzimiropoulos, 2018; Kim et al., 2019; Chen et al., 2018; Ma et al., 2020),
face parsing maps (Chen et al., 2021; Shen et al., 2018; Yang et al., 2020; Chen et al., 2018), facial
component heatmaps (Yu et al., 2018), and 3D face shapes (Hu et al., 2020; Zhu et al., 2022; Ren
et al., 2019), provide crucial structural information for restoring degraded faces. Reference-based
methods use images to deliver identity information, enhancing the fidelity of the restored faces (Do-
gan et al., 2019; Li et al., 2020a;b; 2018). Moreover, some researchers have implemented generative
facial priors, like StyleGAN (Karras et al., 2020), to refine facial details (Chen et al., 2021; Wang
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et al., 2021; Chan et al., 2022; Xie et al., 2023; Wang et al., 2022a). Another approach involves
using pretrained Vector-Quantize codebooks that contain detailed facial information (Wang et al.,
2022b; Zhou et al., 2022; Tsai et al., 2023). Given their remarkable performance in image gener-
ation, denoising diffusion probabilistic models (Ho et al., 2020) have become increasingly popular
in BFR. Notable examples, such as DifFace (Yue & Loy, 2022), DR2 (Wang et al., 2023c), and
PGDiff (Yang et al., 2024), utilize denoising U-Nets pretrained on HQ face datasets to achieve face
restoration at pixel level. Specifically, Zhao et al. (Zhao et al., 2023) attempts to improve the au-
thentic performance via feeding network with enhanced ground-truth images. Recently, large-scale
pretrained text-to-image models like StableDiffusion (SD)(Stability.ai, 2024) have been employed
to address the BFR problem. DiffBIR (Lin et al., 2024) leverages SD priors for real-world image
super-resolution and BFR by incorporating degraded input image information in the latent space.
Specifically targeting BFR, BFRfusion (Chen et al., 2024) extracts multi-scale facial features in the
latent space from low-quality face images. However, achieving authentic BFR with pretrained T2I
models in the latent space remains underexplored.

Fine-Tuning Fine-tuning is widely used to align pretrained large language models (LLMs) with
human preferences, improving their effectiveness (Betker et al., 2023). This technique, successful
in LLMs with small, HQ datasets (Touvron et al., 2023; Zhou et al., 2024), has been adapted to
text-to-image models to enhance text-image alignment (Dai et al., 2023; Li et al., 2024a;b). For
example, Emu (Dai et al., 2023) improves aesthetic alignment using fine-tuned HQ image-text pairs.
Playground v2.5 (Li et al., 2024a) enhances human features using a quality-controlled dataset, and
CosmicMan (Li et al., 2024b) generates superior human-centric content with large, refined datasets.
However, these methods often produce overly smooth images, which may not be ideal for BFR tasks
where authentic and realistic images are essential.

3 METHODOLOGY

The goal of our work is to achieve authentic face restoration by minimizing unrealistic outcomes
and enhancing the rendition of human-preferred features. It is structured into two distinct stages:
1) Face-oriented Tuning on Pre-trained T2I Model. We integrate supervised fine-tuning (Ouyang
et al., 2022) and quality-tuning (Dai et al., 2023) strategies to refine StableDiffusion-XL (SDXL),
enhancing it with detailed facial features as our face-oriented generative diffusion prior (Sec. 3.1);
2) Highly Authentic Face Restoration. Utilizing the face-oriented generative diffusion prior, we
implement ControlNet (Zhang et al., 2023) to direct the restoration process based on the quality
of input degradation (Sec.3.2). Moreover, we introduce a time-aware latent facial feature loss to
improve key facial features during restoration (Sec.3.2).

3.1 STAGE I: FACE-ORIENTED FINE-TUNING ON PRE-TRAINED T2I MODEL

The face-oriented tuning procedure for a pre-trained T2I model consists of two main parts: 1) a
quality-first dataset preparation process to obtain and filter HQ face images, and 2) photography-
guided data annotation to move beyond basic labels that only convey semantic information.

Quality-first Image Collection. Training T2I models typically requires large datasets. However,
akin to the significant performance improvements seen in large language models fine-tuned with just
1K HQ examples (Zhou et al., 2024), it has been demonstrated that enhancing the aesthetic quality
of generated results can be achieved with only a few thousand extremely HQ images (Dai et al.,
2023). This highlights that dataset quality is more important than size in the fine-tuning process.
Inspired by this, we apply the quality-first principle to prepare our fine-tuning dataset.

Collecting HQ real-world face images is challenging due to privacy and copyright concerns, and
existing datasets like FFHQ (Karras et al., 2019) suffer from issues such as JPEG degradation, blur,
and Gaussian noise (Zhao et al., 2023). To overcome these challenges, we source extremely HQ
face images from the professional photography website Unsplash (uns, 2023), which offers a license
supporting both commercial and non-commercial use. Although the collected images are captured
and post-processed by professional photographers, not all images prominently feature faces. To
address this, we implement a set of data filtering strategies to create an HQ, face-centric subset.
These strategies include face detection to remove images without faces or with small faces, and
image quality assessment to filter out images with excessive artifacts such as pepper noise. Also, we
use face landmark detection to locate eyes and mouth, enabling us to follow the alignment process
used in FFHQ (Karras et al., 2019; Kazemi & Sullivan, 2014), better suited for the BFR task.
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Recognizing the racial imbalance in our dataset (predominantly Caucasian and African descent), we
collaborate with professional photographers to build an HQ dataset featuring individuals of Asian
descent, using top-level studio settings. All facial images are manually filtered to ensure they present
clear skin texture and hair details, resulting in a fine-tuning dataset of 1,500 extremely HQ images.

VAE

Encoder

𝜀

Input Image

Semantic prompt:
Woman, Dark background, Black 
clothing, Blonde hair…

Photographic prompt:
Red eyeshadow, Pale skin, Gothic style, 
Artistic, Black petals, Bold lips, 
Elaborate headpiece, Striking eyes…

Noise 

scheduler

Noise  𝜖

Denoising 

UNet

Predicted 
Noise  𝜖𝜃

𝐿𝑛𝑜𝑖𝑠𝑒

CLIP

Encoder2

CLIP

Encoder1

Train Freeze

Figure 3: The framework of face-oriented tuning.

Photography-guided Image Annotation.
The quality of prompts is essential for
both training (Betker et al., 2023) and fine-
tuning (Li et al., 2024b) pretrained T2I mod-
els. For example, CosmicMan (Li et al.,
2024b) fine-tunes SDXL for human-centric
content generation by breaking human pars-
ing maps into several parts to provide de-
tailed annotations. However, for face-
oriented tuning tasks, densely annotated im-
ages are less effective. After cropping and
alignment, the semantic information in fa-
cial images is limited, often capturing only
overall human attributes. This differs sig-
nificantly from other tasks where densely
packed semantic information is prevalent.
For face-oriented tuning, capturing stylistic
information beyond basic semantics is cru-
cial. In portrait photography, this includes expressions, skin texture, makeup, and lighting, essential
for authentic face restoration.

Therefore, we apply photography-guided data annotation to generate prompts for our fine-tuning
dataset, especially given that our dataset consists of HQ portraits by professional photographers
with strong stylistic tendencies. We follow previous methods (Betker et al., 2023; Li et al., 2024b) to
realize automatic captioning tasks with Vision-Language Models (VLMs). Specifically, we leverage
the pretrained LLaVA-1.6 (Liu et al., 2024) as the automatic caption to generate a tag-style prompt
to avoid redundant prepositions and adverbs (Hertz et al., 2022). Fig. 2 (a) illustrates some examples
of photography-guided data annotation. Based on the dataset, we can fine-tune the pre-trained T2I
model, SDXL, as shown in Fig. 3. Different from the training of SDXL, we fix the resolution of
training images instead of multi-aspect training.

3.2 STAGE II: HIGHLY AUTHENTIC FACE RESTORATION

Fig. 4 illustrates the structure of stage II. Given the fine-tuned SDXL model as our face-oriented
generative diffusion prior, we need an adaptor that can control the fine-tuned SDXL to generate
high-quality facial images based on its degraded input. With the successful application of Control-
Net (Zhang et al., 2023) in real-world image super-resolution (Wu et al., 2023a; Yu et al., 2024), we
apply it as the controller for the BFR task.

The training of stage II is as follows. The latent representation of an HQ facial image is obtained
by the encoder of a pretrained VAE, denoted as z0. The diffusion process progressively introduces
noise to z0, resulting in a noisy latent zt, where t represents the randomly sampled diffusion step.
The restoration is conditioned on the additional input c, which is the degraded face image, guiding
the generation process. For each diffusion step t, the noisy latent zt is processed together with
the control condition c, and null prompts [””]. We train the ControlNet by minimizing the L2 loss
between the predicted noise ϵθ and the added noise ϵ (ϵ ∼ N (0, I)). The optimization objective is:

Lnoise = Ez0,t,c,ϵ∼N (0,I)

[
∥ϵ− ϵθ(zt, t, [””], c)∥22

]
. (1)

Specifically, we freeze the parameters of our fine-tuned SDXL model to preserve the enhanced facial
priors and its original natural image priors. We initialize ControlNet with the encoder from our fine-
tuned SDXL model while solely training ControlNet.

Time-aware Latent Facial Feature Loss. Reducing incorrect generation is crucial for authentic
face restoration, as humans are sensitive to key facial features like eyes and mouths. However, the
MSE loss (Eq. 1) used to train the ControlNet only provides a holistic constraint, where both the
background and face of the degraded image equally influence optimization. Thanks to the spatially
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Input image

Face Landmark

detection

GT

Noise 

scheduler

Noise  𝜖

VAE

Encoder

CLIP

Encoder1

CLIP

Encoder2

Prompt: 
[“”]

Predicted 
Noise  𝜖𝜃

Denoising 

UNet

GT

Predicted 

latent 𝑍0
𝑝𝑟𝑒𝑑

𝐿𝑛𝑜𝑖𝑠𝑒

𝑃𝑂𝑆𝑒𝑦𝑒𝑠

ControlNet

𝑃𝑂𝑆𝑚𝑜𝑢𝑡ℎ

𝐷𝑒𝑦𝑒𝑠 𝐷𝑚𝑜𝑢𝑡ℎ

Train Freeze

Fake Real Fake Real

Figure 4: An overview of Stage II. Denoising UNet, carried over from Stage I, maintains its facial
priors by freezing its parameters, while ControlNet acts as an adapter for handling degraded inputs.

invariant features of the conditioning embedding module in ControlNet, the latent space retains
spatial dimensions (Avrahami et al., 2023). This allows for pixel-level constraints in the latent
space.

To enhance key facial features, we propose a time-aware latent facial feature loss that provides
additional constraints on the eyes and mouth. Inspired by GFP-GAN (Wang et al., 2021), we train
separate facial feature discriminators to ensure these regions in the restored results match natural
distributions. Unlike GFP-GAN, our method incorporates the diffusion and denoising process of
DDPMs, considering time as a variable. Previous studies(Wang et al., 2023b; Avrahami et al.,
2023; Choi et al., 2022) show that during denoising, the generated results evolve from rough shapes
to high-resolution images. Therefore, using shared model weights for various time steps is not ideal.
Given the predicted noise ϵθ, sampled diffusion step t, and noisy latent zt, we can estimate the
predicted latent zpred

0 according to the closed form formulation in DDIM (Song et al., 2020) as:

z
pred
0 =

zt −
√

βprodt · ϵθ√
αprodt

, αprodt =

t∏
i=1

αi , βprodt =

t∏
i=1

βi (2)

where αi is the noise decay factor at each diffusion step and βi is the noise variance schedule. We
then locate these two regions with pertrained face landmark detection network (Zheng et al., 2021)
from the ground-truth (GT) image, and transform these pixel level’s location to the latent space ones
(POSeyes, POSmouth) by downsampling with a factor of eight. With the latent space position
of eyes and the mouth, we crop these regions from the predicted latent zpred

0 and the latent of HQ
image z0 respectively to obtain the facial feature patches, Peye = {peye, ppredeye } and Pmouth =

{pmouth, p
pred
mouth}. Inspired by the logit-normal sampling in StableDiffusion 3 (Esser et al., 2024)

and the finding in Fig. 5, our time-aware latent facial feature loss focus on the intermediate steps
when the major shape of eyes and mouth arise via assigning higher weight, as follow:

WeightP =
1

s
√
2π

1

t(1− t)
exp

(
− (logit(t)−m)2

2s2

)
, (3)

where logit(t) = log 1
t(1−t) , m and s are the location parameter and scale parameter, respectively.

The time-aware latent facial feature loss is defined as follows:

Lfacial =
∑

P∈Peye,Pmouth

WeightP
(
λdEppred

[
log(1− DP (p

pred))
]

+ λs
∣∣Gram(ψ(ppred))− Gram(ψ(p))

∣∣ ), (4)
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Timesteps999 799 599 399 199 070

t=61 t=51 t=41 t=31 t=21 t=11

Low-quality input

Figure 5: Visualization of the diffusion process at different steps. In the early steps (t = 999 - 599),
the main content of the images is predominantly noise, with key facial features obscured. In the later
steps (t = 61 - 0), the shapes of key facial features become fixed, with minimal changes.

where DP refers to the discriminators for different facial regions, specifically Deyes and Dmouth. ψ
represents multi-scale features of the regional facial feature discriminator. Gram() operation refers to
calculating the Gram matrix static (Gatys et al., 2016) λd and λs are the weights of the discriminative
loss and the style loss, respectively. The total loss function of AuthFace is defined as Ltotal =
Lnoise + Lfacial.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation Details: Our base model is initialized from StableDiffusion-XL (SDXL) (Podell
et al., 2023), and we fine-tune the entire U-Net from this base model. We employ
AdamW (Loshchilov & Hutter, 2017) optimizer with the learning rate of 5e − 7 during the fin-
tuing process, where the batch size and the training iteration are set to 96 and 50k, respectively.
We apply the same optimizer with the learning rate of 2e − 5 with the batch size 48 for training
ControlNet. All experiments are conducted on four NVIDIA L40s GPUs in the resolution of 1024
× 1024 for fintuning model and 512 × 512 for training ControlNet.

Training and Test Dataset: The training dataset for the fine-tuning process of our face-oriented
model comprises 1.5K high-quality face images, each enriched with detailed photographic annota-
tions. For training our AuthFace network, we resize the FFHQ dataset (Karras et al., 2019) from a
resolution of 1024×1024 to 512×512. To form training pairs, we follow the settings, including degra-
dation types and degrees, as outlined in previous methods (Wang et al., 2021; Chen et al., 2024).
Following (Zhou et al., 2022; Zhao et al., 2023; Yang et al., 2024), we evaluate our method on a
synthetic dataset, CelebA-Test (Liu et al., 2015), and three real-world datasets: LFW-Test (Wang
et al., 2021), WebPhoto-Test (Wang et al., 2021), and WIDER-Test (Zhou et al., 2022).

Metrics: To evaluate our method’s performance on the Celeb-A dataset with ground truth, we
use PSNR (Hore & Ziou, 2010), SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018). Be-
sides, we follow SUPIR (Yu et al., 2024) introducing non-reference image quality assessment met-
rics, MUSIQ (Ke et al., 2021), ManIQA (Yang et al., 2022) ,ClipIQA (Wang et al., 2023a), and
FID (Heusel et al., 2017).

4.2 COMPARISON AND EVALUATION

We compare our method with SOTA BFR methods in three different categories: (I) GAN-based
methods, including GFP-GAN (Wang et al., 2021) and PSFR-GAN (Chen et al., 2021); (II)
Codebook-based method, including CodeFormer (Zhou et al., 2022); (III) Diffusion-based meth-
ods, including DR2 (Wang et al., 2023c) and BFRffusion (Chen et al., 2023); Notably, we compare
our method with SOTA IR method, SUPIR (Yu et al., 2024), which is also based on SDXL (Podell
et al., 2023). All methods are tested with official codes.

Comparison on Synthetic Dataset: Quantitative results in Tab. 1 showcase our method’s superior
performance on the CelebA-Test dataset, outperforming baselines in all non-reference image quality
assessment metrics except FID. Notably, we achieve SOTA performance in terms of the LPIPS score.
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(a)input (b)GFP-GAN (c) CodeFormer (d) DR2

(d) BFRffusion (e) SUPIR (g) AuthFace(Ours) (f)GT

(a)input (b)GFP-GAN (c) CodeFormer (d) DR2

(d) BFRffusion (e) SUPIR (g) AuthFace(Ours) (f)GT

Figure 6: Qualitative results on CelebA-Test dataset. Red box areas in 1st row highlight the detailed
skin texture and eyebrows achieved by our method. Zoom in for details.

This marks a significant validation of our approach for the BFR task. Qualitatively, as depicted in
Fig. 6, our AuthFace achieves authentic face restoration. Specifically, all methods except ours fail
to recover the face paint in the first example, and our method results in the best hair detail. The
second example involves recovering the side face, which is one of the most challenging cases in
BFR (Zhou et al., 2022). GFP-GAN, CodeFormer, and BFRfusion fail to restore authentic mouth
details (yellow circle), while the results from GFP-GAN, CodeFormer, DR2, and SUPIR lose the
right eye (red box). Only our method produces realistic results in these key regions, with best details
in the eyebrow and skin texture.

Comparison on Real-world Dataset: The robustness of our method is demonstrated by its SOTA
performance in all metrics and real-world datasets, except for the FID score in the LFW-Test and
WebPhoto-Test datasets, as shown in Tab. 1. Notably, the MANIQA score in the LFW-Test dataset
exceeds the baselines by 0.09. In the LFW-Test dataset, GFP-GAN, CodeFormer, and DR2 fail to
reconstruct realistic results in the eye regions due to incorrect generation at the edges of glasses
(see the red box in the first row of Fig. 7). In the second row of Fig. 7, our method outperforms
others by accurately reconstructing both the upper and lower teeth without the artifacts around the
hands, highlighted in a yellow circle. In the WebPhoto-Test dataset, our approach not only precisely
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Input GFP-GAN CodeFormer DR2 BFRffusion SUPIR AuthFace(Ours)

Figure 7: Qualitative results on real-world datasets. Results in 1st row are from LFW-Test
dataset (Wang et al., 2021). Results in 2nd row come from WebPhoto-Test dataset (Wang et al.,
2021). Results in 3rd row are from WIDER-Test dataset (Zhou et al., 2022) including a zoomed-in
view of the skin highlighted in red box areas. Zoom in for details.

Table 1: Quantitative results for blind face restoration on both synthetic and real-world datasets. The
highest result is highlighted in red while the second highest result is highlighted in blue.

Datasets Metrics GFPGAN PSFRGAN CodeFormer DR2 BFRffusion SUPIR Ours

CelebA

PSNR↑ 24.65 24.68 25.15 21.43 26.19 25.00 25.57
SSIM↑ 0.6669 0.6322 0.6647 0.5943 0.6829 0.6487 0.6768
LPIPS↓ 0.2308 0.2943 0.2269 0.3443 0.2272 0.2716 0.2143

MANIQA↑ 0.5633 0.5103 0.5546 0.5397 0.5964 0.5233 0.6624
MUSIQ↑ 73.91 73.32 75.56 70.42 71.90 72.92 75.76

FID↓ 42.62 47.59 52.43 56.59 40.74 35.01 50.93
CLIPIQA↑ 0.6790 0.6310 0.6716 0.5770 0.6863 0.6103 0.7065

LFW

MANIQA↑ 0.5514 0.5176 0.5415 0.5326 0.5528 0.4768 0.6431
MUSIQ↑ 73.58 73.60 75.49 71.04 69.86 69.90 75.87

FID↓ 49.96 51.89 52.36 47.14 49.92 41.98 45.29
CLIPIQA↑ 0.6994 0.6471 0.6893 0.6069 0.6969 0.5931 0.7350

WebPhoto

MANIQA↑ 0.5351 0.4793 0.5241 0.4843 0.4721 0.4394 0.5860
MUSIQ↑ 72.13 71.67 74.01 67.19 61.78 65.67 74.11

FID↓ 87.35 88.45 83.19 107.86 84.29 73.44 90.04
CLIPIQA↑ 0.6888 0.6366 0.6922 0.5690 0.6308 0.5767 0.6964

WIDER

MANIQA↑ 0.5289 0.4925 0.5119 0.4989 0.4923 0.4522 0.5941
MUSIQ↑ 72.80 71.50 73.40 67.18 61.87 67.19 74.59

FID↓ 39.49 49.84 38.78 45.27 55.22 42.61 36.10
CLIPIQA↑ 0.7101 0.6482 0.6990 0.5943 0.6789 0.6093 0.7306

reconstructs details such as helmets and goatees but also delivers the best skin texture, as showcased
in the red box areas. More visualization results are in the appendix and the supplmat.

4.3 ABLATION STUDY

Effectiveness of Face-oriented Fine-Tuning: We conducted an ablation study to evaluate the effec-
tiveness of face-oriented tuning on CelebA-Test and WebPhoto-Test, as shown in Tab. 2 (a) and (b).
In experiment (a), the original SDXL is used as the base model, and ControlNet is initialized with it.
In experiment (b), the fine-tuned SDXL is used as the base model, and ControlNet is initialized with
this fine-tuned version. Except for the MANIQA score on the CelebA-Test dataset, experiment (b)
consistently outperforms experiment (a), highlighting the necessity of face-oriented tuning for the
generative diffusion prior. Notably, in the WebPhoto-Test dataset, experiment (b) excels across all
metrics, including CLIPIQA (0.6833 vs. 0.6276), MUSIQ (72.35 vs. 67.01), and MANIQA (0.5810
vs. 0.5252). Experiment (b) enhances facial details such as eyebrows and skin texture (red box, 1st

row in Fig. 8) and eyelashes (red box, 2nd row). Additionally, it reduces errors in key facial features,
resulting in clearer eyes (red box, 1st row) and better restoration of teeth (blue box, 2nd row).
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Table 2: Ablation studies of variant generative diffusion prior and time-aware latent facial feature
loss. The highest result is highlighted in red while the second highest result is highlighted in blue.

Dataset Exp. Diffusion Prior Lfacial Metrics
SDXL Ours Const. Time-aware PSNR↑ MANIQA↑ MUSIQ↑ CLIPIQA↑

CelebA

(a) ✓ 24.39 0.5781 69.25 0.6465
(b) ✓ 25.59 0.5057 74.42 0.7088
(c) ✓ ✓ 23.95 0.6449 73.66 0.6821
(d) ✓ ✓ 25.57 0.6624 75.76 0.7065

WebPhoto

(a) ✓ - 0.5252 67.01 0.6276
(b) ✓ - 0.5810 72.35 0.6833
(c) ✓ ✓ - 0.5767 68.52 0.6861
(d) ✓ ✓ - 0.5860 74.11 0.6964

Input Exp. a Exp. b Exp. c Exp. d

Input Exp. a Exp. b Exp. c Exp. d

Figure 8: Visualization of ablation results. 1st row and 2nd row are the examples from CelebA-Test
and WebPhoto-Test datasets, respectively. Please zoom in for more details.

Effectiveness of Time-aware Latent Facial Feature Loss: To evaluate the effectiveness of the
time-aware latent facial feature loss, we conducted experiments as shown in Tab. 2 (b), (c), and
(d). Using constant weights for various time steps (experiment (c)) negatively impacts optimization,
resulting in performance drops across most metrics, except for the MANIQA score on the CelebA-
Test dataset compared to experiment (b). By focusing on steps when the major shapes of eyes and
mouth emerge and assigning higher weights during these steps, our time-aware loss achieves the best
performance on both synthetic and real-world datasets, except for the PSNR and CLIPIQA scores
on the CelebA dataset. As shown in Fig. 8, using latent space facial feature loss in experiments (c)
and (d) improves the restoration of eyes and mouth (see the red box in the first row and the blue box
in the second row). Notably, the time-aware strategy in experiment (d) not only reduces artifacts (as
indicated by the blue and red arrows in Fig. 8) but also enhances details (e.g., the sharp edge of the
glasses in the first row and the delicate skin texture and eyebrows in the 2nd row).

5 CONCLUSION

This paper presented a new approach for achieving authentic face restoration by avoiding incor-
rect generations and enhancing facial details. Specifically, we proposed a face-oriented restoration-
tuning paradigm to fine-tune the pretrained T2I model with high-quality face images, enabling the
pretrained T2I model, SDXL, to develop a prior for facial details. Utilizing this face-oriented gener-
ative diffusion prior, we introduced AuthFace for the blind face restoration task, achieving authentic
face restoration. Additionally, we introduced the time-aware latent facial feature loss to further
improve the robustness of restoration in key facial features. Experimental results demonstrate the
superiority and effectiveness of our method.

Limitation and Future Work: The process of collecting high-quality images requires significant
human resources to filter out low-quality images. We plan to develop an aesthetic-oriented image
quality assessment network to reduce labor costs.
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A DETAILS OF FACE-ORIENTED TUNING DATASETS

Existing datasets like FFHQ (Karras et al., 2019) suffer from issues such as JPEG degradation, blur,
and Gaussian noise (Zhao et al., 2023). We have compiled a collection of 1,500 high-quality images,
exceeding resolutions of 8K, captured by professional photographers. These improvements address
the quality limitations of traditional datasets, with examples showcased in Fig. 9 and Fig. 10.

We detail our dataset collection and annotation process in Fig. 11, which depicts the entire pipeline,
including data collection, reviewing, and tagging. Apart from sourcing from Unsplash, we col-
laborate with professional photographers to collect studio-based images of Asian descent. These
professionals also retouch each image to enhance skin texture while removing blemishes. All im-
ages undergo manual screening to ensure they are neither over-smoothed nor contain pepper noise,
preserving detailed facial features.

Figure 9: Example of FFHQ datasets with noticeable blur and noise. Zoom in for more details.

B MORE ABLATION STUDIES

Effectiveness of Face-oriented Fine-Tuning: To demonstrate the effectiveness of face-oriented
fine-tuning, we conduct additional experiments on the task of text-to-image and provide more qual-
itative results on LFW-Test for the task of blind face restoration.

First, to underscore the value of our photography-guided annotation, we conducted ablation studies
under three settings: (a) using the pretrained SDXL; (b) fine-tuning the SDXL with only semantic
tags; and (c) fine-tuning with both semantic and our proposed photography-guided tags. We evalu-
ated authenticity with FID and Human Preference Score v2 (Hpsv2) (Wu et al., 2023b) and through
a user study with 20 participants who assessed images from 10 prompts. According to Tab. 3, setting
(c) not only scored the highest on FID and Hpsv2 but also received the best average ranking, indi-
cating that users consistently preferred images produced by models fine-tuned with both semantic
and our proposed photography-guided tags. Besides, Fig. 12 demonstrates that our face-oriented
fine-tuning successfully equips SDXL with dedicated facial details.
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Figure 10: Example of our HQ datasets with details of skin texture. Zoom in for more details.

Capture photos Retouch Review

Download from 

Internet
Database

AI Tag

Manual Check

Figure 11: Illustration of collecting high-quality datasets for face-oriented fine-tuning.

To further evaluate the effectiveness of face-oriented fine-tuning We provide more qualitative results
on LFW-Test as shown in Fig. 13. In experiment (a), the original SDXL is used as the base model,
and ControlNet is initialized with it. In experiment (b), the fine-tuned SDXL is used as the base
model, and ControlNet is initialized with this fine-tuned version. Notably, the results of Exp. b has
the best visual experience enjoying authentic facial details, such as the dedicated skin texture and
hair, which demonstrates the importance of face-oriented fine-tuning.
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Text prompt:

Text prompt:

Asian Female, Portrait, Beauty, 
Fashion, Medium Brown Hair, 
Lighting Above, Neutral
Background, Close-Up, Subtle 
Makeup, Choker Necklace, 
Serene Expression, High-
Resolution Photograph, Indoor 
Setting, Brand Apparel

Young Male, Half Face, Gazing, 
Red Lipstick, White Curtain,
Indoor, Natural Light, Portrait, 
Close-Up, Neutral Expression, 
Dark Hair, Subtle Makeup, 
High Resolution, Bokeh
Background, Warm Tones, Face 
Shot

Exp. (a) Exp. (b) Exp. (c)

Exp. (a) Exp. (b) Exp. (c)

Figure 12: More qualitative comparison of the text-to-image task between (a) using the pretrained
SDXL; (b) fine-tuning the SDXL with only semantic tags; and (c) fine-tuning with both semantic
and our proposed photography-guided tags.

Table 3: Ablation studies of variant tags used in fine-tuning. The highest result is highlighted in The
highest result is highlighted in red, while the second highest result is are blue for clarity.

Exp FID ↓ Hpsv2 (Wu et al., 2023b) ↑ User study rank ↓
(a) 95.13 0.2637 2.53
(b) 62.90 0.2712 2.17
(c) 51.09 0.2903 1.33

Different hyper meter of time-aware latent facial feature loss: Through our face detection ex-
periments, we identified that the timestep where the average confidence score reaches 0.5 is 0.32
(normalized) in the FFHQ dataset. We designated this timestep as the most critical, assigning it the
highest weight. Therefore, we set the m as -0.5 and s as 1.0, where Eq. 3 in the main paper peaks at
t=0.37. We conduct an ablation study on these hyperparameters m and s as detailed in Tab. 4 and we
also provide Fig. 14 showing the weight distributions of different hypermeter. This study confirms
that our chosen settings yield the best outcomes, thus validating the robustness of our experimental
approach.

Table 4: Ablation studies of variant generative diffusion prior and time-aware latent facial feature
loss. The highest result is highlighted in red while the second highest result is highlighted in blue.

Dataset Exp. Location
parameter m

Metrics
PSNR↑ MANIQA↑ MUSIQ↑ CLIPIQA↑

CelebA

(a) m = -0.5 25.57 0.6624 75.76 0.7065
(b) m = 0.0 25.40 0.6399 74.92 0.6786
(c) m = 0.5 25.37 0.6462 74.67 0.6882
(d) s = 0.5 25.42 0.6440 74.72 0.6794

WebPhoto
(a) m = -0.5 - 0.5860 74.11 0.6964
(b) m = 0.0 - 0.5760 73.51 0.6657
(c) m = 0.5 - 0.5829 73.40 0.6755
(d) s = 0.5 - 0.5756 73.06 0.6686
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Input Exp. a Exp. b

Figure 13: Visualization of ablation results on LFW-Test dataset. Zoom in for more details.

C USER STUDY

We implemented an AB-test with 20 participants using 20 facial images from our datasets to gauge
human perception of our method compared to six baselines. Participants were shown two images,
labeled A and B, and asked to choose from three responses: ”A is better,” ”B is better,” or ”Both are
equally good,” with image positions randomized. As detailed in Tab. 5, our method was preferred,
indicating it produces results that are both more authentic and visually appealing.

Table 5: Results of user study. ”Ours” is the percentage that our result is preferred, ”Others” is the
percentage that some other method is preferred, ”Same” is the percentage that the users have no
preference.

Methods Others Same Ours
GFPGAN 26.75% 2.5% 70.75%

PSFRGAN 7.5% 0.75% 91.75%
CodeFormer 23.5% 1.25% 75.25%

DR2 10.5% 0.5% 89%
BFRffusion 25.25% 2% 72.75%

SUPIR 22.5% 1% 76.5%
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Figure 14: The weight distributions of different hyper meters of time-aware latent facial feature loss.

D RUNNING TIME

We evaluated our method’s runtime on a single NVIDIA L40s GPU, as detailed in Tab. 6. Notably,
although both our method and SUPIR utilize SDXL, SUPIR demands significantly more time due
to its initial enhancement phase and the use of LLaVA for text prompts. This supports our decision
to omit details prompts in stage 2.

Table 6: Running time of different networks. Please note that all methods are evaluated in 512×
512 input images, while DR2 reconstructs high-quality face images at 256× 256 and upscale to
512×512 with an enchantment module according to its official setting.

Method PSFRGAN GFP-GAN CodeFormer DR2 BFRffusion SUPIR Ours
Time (s) 0.06 0.17 0.01 0.49 2.89 10.36 5.25

E MORE VISUALIZATION RESULTS

In this section, we provide more visual comparisons with state-of-the-art methods in CelebA-Test,
LFT-Test, WebPhoto-Test, and WIDER-Test datasets as shown in Fig. 15 and Fig. 16.

F ADDITIONAL RESULTS OF OTHER RESTORATION METHODS

In this section, we provide more visual comparisons with DiffBIR (Lin et al., 2023) and Sta-
bleSR (Wang et al., 2024) in CelebA-Test, LFT-Test, WebPhoto-Test, and WIDER-Test datasets
as shown in Fig. 17 and Fig. 18. Our method surpasses DiffBIR and StableSR in visual quality
by providing more detailed skin textures and reducing incorrect generation in key facial features.
For example, the red-boxed areas in Fig. 17 and 18 showcase that DiffBIR tends to generate overly
smooth skin textures. While StableSR performs better in facial detail than DiffBIR, it suffers from
incorrect generation due to limitations of CodeFormer.

G UNIVERSAL EXPERIMENT

In this section, we conduct a comprehensive experiment to evaluate the effectiveness of our face-
oriented fine-tuning by applying our face-oriented generative diffusion prior to existing methods.
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(a)GFP-GAN (b)PSFR-GAN (c)CodeFormer

(d)BFRffusion (e)SUPIR (f)AuthFace(Ours)

(a)GFP-GAN (b)PSFR-GAN (c)CodeFormer

(d)BFRffusion (e)SUPIR (f)AuthFace(Ours)

Figure 15: Visualization results in CelebA-Test and LFW-Test dataset including a zoomed-in view
of the skin highlighted in red box areas. Zoom in for more details.

Since SUPIR—the only SDXL-based method—provides only its testing code and datasets, we re-
place the pretrained SDXL model in SUPIR with our face-oriented generative diffusion prior while
keeping all other parameters from SUPIR’s original model. We provide visual comparisons between
the original version of SUPIR (SUPIR-original) and the version using our prior (SUPIR-auth), as
shown in Fig. 19.

With our face-oriented diffusion prior, SUPIR(auth) demonstrates noticeable visual improvements
over SUPIR(original) in terms of facial details, especially the skin texture, as shown in the first and
third rows of Fig. 19. Furthermore, SUPIR(auth) significantly improves the restoration of key facial
features, such as the eyes and mouth, thanks to the enhanced facial prior, as illustrated in the second
row of Fig. 19. These findings align with our motivation of achieving authentic face restoration by
providing a face-oriented prior to improve facial details and avoid incorrect generations.

However, since we only provide our fine-tuned models and all other parameters are inherited from
SUPIR’s original model, SUPIR’s wrinkle bias still exists. Consequently, SUPIR(auth) amplifies
these wrinkles to some degree, as shown in the third row of Fig. 19.
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(a)GFP-GAN (b)PSFR-GAN (c)CodeFormer

(d)BFRffusion (e)SUPIR (f)AuthFace(Ours)

(a)GFP-GAN (b)PSFR-GAN (c)CodeFormer

(d)BFRffusion (e)SUPIR (f)AuthFace(Ours)

Figure 16: Visualization results in WebPhoto-Test and WIDER-Test dataset. Results in WIDER-
Test dataset (2nd case) include a zoomed-in view of the skin highlighted in red box areas. Zoom in
for more details.
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(a) DiffBIR (b) StableSR (c) AuthFace(Ours)

(a) DiffBIR (b) StableSR (c) AuthFace(Ours)

(a) DiffBIR (b) StableSR (c) AuthFace(Ours)
Figure 17: Visualization results in CelebA-Test and LFW-Test dataset including a zoomed-in view
of the skin highlighted in red box areas. Zoom in for more details. Yellow circles in the middle row
indicate artifacts that appear around the corners of the eyes and nostrils.
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(a) DiffBIR (b) StableSR (c) AuthFace(Ours)

(a) DiffBIR (b) StableSR (c) AuthFace(Ours)

(a) DiffBIR (b) StableSR (c) AuthFace(Ours)

Figure 18: Visualization results in WebPhoto-Test and WIDER-Test dataset including a zoomed-in
view of the skin highlighted in red box areas. Zoom in for more details. Yellow circles in the last
row highlight artifacts resulting from the prior’s lack of facial detail representation.
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(a) SUPIR(original) (b) SUPIR(auth)

(a) SUPIR(original) (b) SUPIR(auth)

(a) SUPIR(original) (b) SUPIR(auth)

Figure 19: Visualization results of the universal experiment in real-world datasets. Zoom in for
more details. With our face-oriented diffusion prior, SUPIR(auth) improves facial details and avoids
incorrect generations.
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Text prompt:

Text prompt:

portrait,
close-up,
female,
Asian ethnicity,
turtleneck,
earrings,
dark background,
warm lighting,
staring at camera, 
contemplative expression,
high image grain, 
film photography,
yellow color cast, 
shallow depth of field,

young man,
Asian ethnicity,
short black hair,
looking away, 
neutral expression,
blue shirt,
collar,
studio lighting,
plain background,
high-resolution image,
portrait photography,
natural skin tones,
frontal view,
clear complexion,

(a)SDXL (b)Ours

Figure 20: Qualitative comparison between SDXL and our fine-tuned model for the T2I task: SDXL
often generates overly smooth skin, whereas our model preserves authentic skin texture. Please
zoom in for finer details.
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