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ABSTRACT

Temporal point processes (TPP) are a natural tool for modeling event-based data.
Among all TPP models, Hawkes processes have proven to be the most widely
used, mainly due to their adequate modeling for various applications, in par-
ticular when considering exponential or non-parametric kernels. Although non-
parametric kernels are an option, such models require large datasets. While expo-
nential kernels are more data efficient and relevant for certain applications where
events immediately trigger more events, they are ill-suited for applications where
latencies need to be estimated, such as in neuroscience. This work aims to offer
an efficient solution to TPP inference using general parametric kernels with finite
support. The developed solution consists of a fast L2 gradient-based solver lever-
aging a discretized version of the events. After supporting the use of discretization
theoretically, the statistical and computational efficiency of the novel approach is
demonstrated through various numerical experiments. Finally, the effectiveness of
the method is evaluated by modeling the occurrence of stimuli-induced patterns
from brain signals recorded with magnetoencephalography (MEG). Given the use
of general parametric kernels, results show that the proposed approach leads to a
more plausible estimation of pattern latency compared to the state-of-the-art.

1 INTRODUCTION

The statistical framework of Temporal Point Processes (TPPs; see e.g., Daley & Vere-Jones 2003) is
well adapted for modeling event-based data. It offers a principled way to predict the rate of events as
a function of time and the previous events’ history. TPPs are historically used to model intervals be-
tween events, such as in renewal theory, which studies the sequence of intervals between successive
replacements of a component susceptible to failure. TPPs find many applications in neuroscience,
in particular, to model single-cell recordings and neural spike trains (Truccolo et al., 2005; Okatan
et al., 2005; Kim et al., 2011; Rad & Paninski, 2011), occasionally associated with spatial statis-
tics (Pillow et al., 2008) or network models (Galves & Löcherbach, 2015). In the machine learning
community, there is a growing interest in these statistical tools (Bompaire, 2019; Shchur et al., 2020;
Mei et al., 2020). Multivariate Hawkes processes (MHP; Hawkes 1971) are likely the most popular,
as they can model interactions between each univariate process. They also have the peculiarity that
a process can be self-exciting, meaning that a past event will increase the probability of having an-
other event in the future on the same process. The conditional intensity function is the key quantity
for TPPs. With MHP, it is composed of a baseline parameter and kernels. It describes the probability
of occurrence of an event depending on time. The kernel function represents how processes influ-
ence each other or themselves. The most commonly used inference method to obtain the baseline
and the kernel parameters of MHP is the maximum likelihood (MLE; see e.g., Daley & Vere-Jones,
2007 or Lewis & Mohler, 2011). One alternative and often overlooked estimation criterion is the
least squares ℓ2 error, inspired by the theory of empirical risk minimization (Reynaud-Bouret &
Rivoirard, 2010; Hansen et al., 2015; Bacry et al., 2020).

A key feature of MHP modeling is the choice of kernels. Non-parametric and parametric kernels are
the two possibilities. In the non-parametric setting, kernel functions are approximated by histograms
(Lewis & Mohler, 2011; Lemonnier & Vayatis, 2014), by a linear combination of pre-defined func-
tions (Zhou et al., 2013a; Xu et al., 2016), by functions lying in a RKHS (Yang et al., 2017) or, alter-
natively, by neural networks (Mei & Eisner, 2017; Shchur et al., 2019; Pan et al., 2021). In addition
to the frequentist approach, many Bayesian approaches, such as Gibbs sampling (Ishwaran & James,
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2001) or (stochastic) variational inference (Hoffman et al., 2013), have been adapted to MHP in par-
ticular to fit non-parametric kernels. Bayesian methods also rely on the modelling of the kernel by
histograms (e.g., Donnet et al., 2020) or by a linear combination of pre-defined functions (e.g., Lin-
derman & Adams, 2015). These approaches are designed whether in continuous-time (Rasmussen,
2013; Zhang et al., 2018; Donnet et al., 2020; Sulem et al., 2021) or in discrete-time (Mohler et al.,
2013; Linderman & Adams, 2015; Zhang et al., 2018; Browning et al., 2022). These functions allow
great flexibility for the shape of the kernel, yet this comes at the risk of poor estimation of it when
only a small amount of data is available (Xu et al., 2017). Another approach to estimate the intensity
function is to consider kernels parametrized by η. Although it can introduce a potential bias by as-
suming a particular shape for kernels, this approach has several benefits. First, it reduces inference
difficulties , as η is typically lower dimensional compared to non-parametric kernels. Moreover,
for kernels satisfying the Markov property (Bacry et al., 2015), computing the conditional intensity
function is linear in the total number of timestamps/events. The most popular kernel belonging to
this family is the exponential kernel (Ogata, 1981). It is defined by η = (α, γ) 7→ αγ exp(−γt),
where α and γ are the scaling and the decay parameters, respectively (Veen & Schoenberg, 2008;
Zhou et al., 2013b). However, as pointed out by Lemonnier & Vayatis (2014), the maximum likeli-
hood estimator for MHP with exponential kernels is efficient only if the decay γ is fixed. Thus, only
the scaling parameter is usually inferred. This implies that the hyperparameter γ must be chosen in
advance, usually by using a grid search, a random search, or Bayesian optimization. This leads to a
computational burden when the dimension of the MHP is high. The second option is to define a γ de-
cay parameter common to all kernels, which results in a loss of expressiveness of the model. In both
cases, the relevance of the exponential kernel relies on the choice of the decay parameter, which may
not be adapted to the data (Hall & Willett, 2016). For more general parametric kernels which do not
verify the Markov property, the inference procedure with both MLE or ℓ2 loss scales poorly as they
have quadratic computational scaling with the number of events, making their use limited in practice
(see e.g., Bompaire, 2019, Chapter 1). These limitations for parametric and non-parametric kernels
prevent their usage in some applications, as pointed out by Carreira (2021) in finance or Allain et al.
(2021) in neuroscience. A strong motivation for this work is also neuroscience applications.

The quantitative analysis of electrophysiological signals such as electroencephalography (EEG)
or magnetoencephalography (MEG) is a challenging modern neuroscience research topic (Cohen,
2014). By giving a non-invasive way to record human neural activity with a high temporal res-
olution, EEG and MEG offer a unique opportunity to study cognitive processes as triggered by
controlled stimulation (Baillet, 2017). Convolutional dictionary learning (CDL) is an unsupervised
algorithm that has recently been proposed to study M/EEG signals (Jas et al., 2017; Dupré la Tour
et al., 2018). It consists in extracting patterns of interest in M/EEG signals. It learns a combination
of time-invariant patterns – called atoms – and their activation function to reconstruct the signal
sparsely. However, while CDL recovers the local structure of signals, it does not provide any global
information, such as interactions between patterns or how their activations are affected by stimuli.
Atoms typically correspond to transient bursts of neural activity (Sherman et al., 2016) or artifacts
such as eye blinks or heartbeats. By offering an event-based perspective on non-invasive electro-
magnetic brain signals, CDL makes Hawkes processes amenable to M/EEG-based studies. Given
the estimated events, one important goal is then to uncover potential temporal dependencies between
external stimuli presented to the subject and the appearance of the atoms in the data. More precisely,
one is interested in statistically quantifying such dependencies, e.g., by estimating the mean and
variance of the neural response latency following a stimulus. In Allain et al. (2021), the authors ad-
dress this precise problem. Their approach is based on an EM algorithm and a Truncated Gaussian
kernel, which can cope with only a few brain data, as opposed to non-parametric kernels, which
are more data hungry. Beyond neuroscience, Carreira (2021) use a likelihood-based approach using
exponential kernels to model order book events. Their approach use high-frequency trading data,
taking account of latency at hand in the proposed loss.

This paper proposes a new inference method – named FaDIn – to estimate any parametric kernels
for Hawkes processes. Our approach is based on two key features. First, we use finite-support
kernels and a discretization applied to the ERM-inspired least-squares loss. Second, we propose
to employ some precomputations that significantly reduce the computational cost. We then show
that the implicit bias induced by the discretization procedure is negligible compared to the statistical
error. Further, we highlight the efficiency of FaDIn in computation and statistical estimation over the
non-parametric approach. Finally, we demonstrate the benefit of using a general kernel with MEG
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data. The flexibility of FaDIn allows us to model neural response to external stimuli with a much
better-adapted kernel than the existing method derived in Allain et al. (2021).

2 FAST DISCRETIZED INFERENCE FOR HAWKES PROCESSES (FADIN)

2.1 HAWKES PROCESSES

Given a stopping time T ∈ R+ and an observation period [0, T ], a temporal point process (TPP) is a
stochastic process whose realization consists of a set of distinct timestamps FT = {tn, tn ∈ [0, T ]}
occurring in continuous time. The behavior of a TPP is fully characterized by its intensity function
that corresponds to the expected infinitesimal rate at which events are occurring at time t ∈ [0, T ].
The values of this function may depend on time (e.g., inhomogeneous Poisson processes) or rely on
past events such as self-exciting processes (see Daley & Vere-Jones 2003 for an excellent account of
TPP). For the latter, the occurrence of one event will modify the probability of having a new event
in the near future. The conditional intensity function λ : [0, T ] → R+ have the following form:

λ (t|Ft) := lim
dt→0

P (Nt+dt −Nt = 1|Ft)

dt
,

where Nt :=
∑

n≥1 1tn≤t is the counting process associated to the PP. Among this family, Mul-
tivariate Hawkes processes (MHP; Hawkes, 1971) model the interactions of p ∈ N∗ self-exciting
TPPs. Given p sets of timestamps F i

T = {tin, tin ∈ [0, T ]}N
i
T

n=1, i = 1, . . . , p , each process is
described by the following intensity function:

λi(t) = µi +

p∑
j=1

∫ t

0

ϕij(t− s) dN j
s , (1)

where µi is the baseline parameter, Nt = [N1
t , . . . , N

p
t ] the associated multivariate counting process

and ϕij : [0, T ] → R+ the excitation function – called kernel – representing the influence of j-th
process’ past events onto i-th process’ future events. From an inference perspective, the goal is to
estimate the baseline and kernels associated with the MHP from the data. In this paper, we focus on
the ERM-inspired least squares loss. Assuming a class of parametric kernel parametrized by η, the
objective is to find parameters that minimize (see e.g., Eq. (I.2) in Bompaire, 2019, Chapter 1):

L (θ,FT ) =
1

NT

p∑
i=1

∫ T

0

λi(s)
2 ds− 2

∑
tin∈F i

T

λi

(
tin
) , (2)

where NT =
∑p

i=1 N
i
T is the total number of timestamps, and where we denote by θ = (µ, η).

Interestingly, when used with an exponential kernel, this loss benefits from some precomputations
of complexity O(NT ), making the subsequent iterative optimization procedure independent of NT .
This computational ease is the main advantage of the loss L over the log-likelihood function. How-
ever, when using a general parametric kernel, these precomputations require O((NT )

2) operations
killing the computational benefit of the ℓ2 loss L over the log-likelihood. It is worth noting that this
loss differs from the quadratic error minimized between the counting processes and the integral of
the intensity function, as used in Wang et al. (2016); Eichler et al. (2017) and Xu et al. (2018).

2.2 FADIN

The approach we propose in this paper fills the need for general parametric kernels in many appli-
cations. We provide a computationally and statistically efficient solver – coined FaDIn – that works
with many parametric kernels using gradient-based algorithms. Precisely, it relies on the three key
ideas: (i) the use of parametric finite-support kernels, (ii) a discretization of the time interval [0, T ],
and (iii) precomputations allowing an efficient optimization procedure detailed below.

Finite support kernels A core bottleneck for MLE or ℓ2 estimation of parametric kernels is the
need to compute the intensity function for all events. For general kernels, the intensity function
usually requires O((NT )

2) operations, which makes it intractable for long-time length processes.
To make this computation more efficient, we consider finite support kernels. Using a finite support
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kernel amounts to setting a limit in time for the influence of a past event on the intensity, i.e., ∀t /∈
[0 ,W ] , ϕij(t) = 0, where W denotes the length of the kernel’s support. This assumption matches
applications where an event cannot have influence far in the future, such as in neuroscience (Krumin
et al., 2010; Eichler et al., 2017; Allain et al., 2021) or high-frequency trading (Bacry et al., 2015;
Carreira, 2021). The intensity function (3) can then be reformulated as a convolution between the
kernel ϕij and the sum of Dirac functions zi :=

∑
tin∈F i

T
δtin located at the event occurrences tin:

λi(t) = µi +

p∑
j=1

ϕij ∗ zj(t), t ∈ [0 , T ] .

As ϕij has a finite support, the intensity can be computed efficiently with this formula. Indeed, only
events in the interval [t−W , t] need to be considered. This usually amounts to a fraction of the
events of the full process.

Discretization To make these computations even more efficient, we propose to rely on discretized
processes. Most Hawkes processes estimation procedures involve a continuous paradigm to min-
imize (2) or its log-likelihood counterpart. Discretization has been investigated so far for non-
parametric kernels (Kirchner, 2016; Kirchner & Bercher, 2018; Kurisu, 2018). The discretization
of a TPP consists in projecting each event tin on a regular grid G = {0,∆, 2∆, . . . , G∆}, where
G =

⌊
T
∆

⌋
. We refer to ∆ as the stepsize of the discretization. Here ⌊·⌋ denotes the floor function.

Let F̃ i
T be the set of projected timestamps of F i

T on the grid G. The intensity function of the i-th
process of our discretized MHP is defined as:

λ̃i[s] = µi +

p∑
j=1

∑
t̃jm∈F̃j

s∆

ϕij(s∆− t̃jm) = µi +

p∑
j=1

L∑
τ=1

ϕ∆
ij [τ ]zj [s− τ ]︸ ︷︷ ︸
(ϕ∆

ij∗zj)[s]

, s ∈ J0 , GK , (3)

where L =
⌊
W
∆

⌋
denotes the number of points on the discretized support, ϕ∆

ij [s] = ϕij(s∆) is the
kernel value on the grid and zi[s] = #

{
|tin − s∆| ≤ ∆

2

}
denotes the number of events projected on

the grid timestamp s. From now and throughout the rest of the paper, we denote ϕij(·) : R+ → R+

as a function while ϕ∆
ij [·] represents the discrete vector ϕ∆

ij ∈ RL
+. Compared to the continuous

formulation, the intensity function can be computed more efficiently as one can rely on discrete
convolutions, whose worst case complexity scales as O(NTL). It can also be further accelerated
using Fast Fourier Transform when NT is large. Another benefit of the discretization is that for
kernel whose values are costly to compute, at most L values need to be computed. This can have a
strong computational impact when NT ≫ L as all values can be precomputed and stored.

While discretization improves the computational efficiency, it also introduces a bias in the computa-
tion of the intensity function and, thus potentially, in estimating the kernel parameters. The impact of
the discretization on the estimation is considered in Section 2.3 and Section 3.1. Note that this bias
is similar to the one incurred by quantizing the kernel as histograms for non-parametric estimators.

Loss and precomputations FaDIn aims at minimizing the discretized ℓ2 loss, which approximates
the integral on the left part of (2) by a sum on the grid G after projecting timestamps of FT on it. It
boils down to optimizing the following loss:

LG
(
θ, F̃T

)
=

1

NT

p∑
i=1

∆
∑

s∈J0 ,GK

(
λ̃i[s]

)2
− 2

∑
t̃in∈F̃ i

T

λ̃i

[
t̃in
∆

] . (4)

To find the parameters of the intensity function θ, FaDIn minimizes LG using a first-order gradient-
based algorithm. The computational bottleneck of the proposed algorithm is thus the computation of
the gradient ∇LG regarding parameters θ. Using the discretized finite-support kernel, this gradient
can be computed using convolution, giving the same computational complexity as the computation
of the intensity function O(NTL).

However, gradient computation can still be too expensive for long processes with many events to get
reasonable inference times. Using the least squares error of the process (4), one can further reduce
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the complexity of computing the gradient by precomputing some constants Φj(τ ;G), Ψj,k(τ, τ
′;G)

and Φj(τ ; F̃ i
T ) that do not depend on the parameter θ. Indeed, by developing and rearranging the

terms in (4), one obtains:

NT LG
(
θ, F̃T

)
= T ||µ||22 + 2∆

p∑
i=1

µi

p∑
j=1

L∑
τ=1

ϕ∆
ij [τ ]

(
G∑

s=1

zj [s− τ ]

)
︸ ︷︷ ︸

Φj(τ ;G)

+∆

p∑
i=1

p∑
k=1

p∑
j=1

L∑
τ=1

L∑
τ ′=1

ϕ∆
ij [τ ]ϕ

∆
ik[τ

′]

(
G∑

s=1

zj [s− τ ] zk[s− τ ′]

)
︸ ︷︷ ︸

Ψj,k(τ,τ ′;G)

− 2

(
p∑

i=1

N i
Tµi +

p∑
i=1

p∑
j=1

L∑
τ=1

ϕ∆
ij [τ ]

( ∑
t̃in∈F̃ i

T

zj

[
t̃in
∆

− τ

])
︸ ︷︷ ︸

Φj(τ ;F̃ i
T )

)
.

The term Ψj,k(τ, τ
′;G) dominates the computational cost of our precomputations. It requires O(G)

operations for each tuples (τ, τ ′) and (j, k). Thus, it has a total complexity of O(p2L2G) and is the
bottleneck of the precomputation phase. For any m ∈ {1, . . . , p}, the gradient of the loss w.r.t. the
baseline parameter is given by:

NT
∂LG

∂µm
= 2Tµm − 2Nm

T + 2∆

p∑
j=1

L∑
τ=1

ϕ∆
mj [τ ]Φj(τ ;G) .

For any tuple (m, l) ∈ {1, . . . , p}2, the gradient of ηml is:

NT
∂LG

∂ηml
= 2∆µm

L∑
τ=1

∂ϕ∆
m,l[τ ]

∂ηm,l
Φl(τ ;G) + 2∆

p∑
k=1

L∑
τ=1

L∑
τ ′=1

ϕ∆
mk[τ

′]
∂ϕ∆

m,l[τ ]

∂ηm,l
Ψl,k(τ, τ

′;G)

− 2

L∑
τ=1

∂ϕ∆
m,l[τ ]

∂ηm,l
Φl(τ ; F̃

m
T ) .

Gradients of kernel parameters dominate the computational cost of gradients. The complexity is of
O(pL2) for each kernel parameter, leading to a total complexity of O(p3L2) and is independent of
the number of events NT . Thus, a trade-off can be made between the precision of the method and
its computational efficiency when varying the size of the kernel’s support or the discretization.

Optimization The inference is then conducted using gradient descent for the ℓ2 loss LG . FaDIn
thus allows for very general parametric kernels, as exact gradients for each parameter involved in
the kernels can be derived efficiently as long as the kernel is differentiable and has a finite support.
Gradient-based optimization algorithms can therefor be used without limitation, in contrast with the
EM algorithm which requires close form solution to zero the gradient, which is difficult for many
kernels. An important remark is that the problem is generally non-convex and may converge to a
local minimum.

2.3 IMPACT OF THE DISCRETIZATION

While discretization allows for efficient computations, it also introduces a perturbation in the loss
value. In this section, we quantify the impact of this perturbation on the parameter estimation when
∆ goes to 0. Through this section, consider we observe a process FT whose intensity function is
given by the parametric form λ(·; θ∗). Note that if the process FT ’s intensity is not in the parametric
family λ(·; θ), θ∗ is defined as the best approximation of its intensity function in the ℓ2 sense. The
goal of the inference process is thus to recover the parameters θ∗.

When working with the discrete process F̃T , the events tin of the original process are replaced with
a projection on a grid t̃in = tin+δin. Here, δin is uniformly distributed on [−∆/2,∆/2]. We consider
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the discrete FaDIn estimator θ̂∆ defined as θ̂∆ = argmin θLG(θ). We can upper-bound the error

incurred by θ̂∆ by the decomposition:∥∥∥θ̂∆ − θ∗
∥∥∥
2
≤
∥∥∥θ̂c − θ∗

∥∥∥
2︸ ︷︷ ︸

(∗)

+
∥∥∥θ̂∆ − θ̂c

∥∥∥
2︸ ︷︷ ︸

(∗∗)

, (5)

where θ̂c = argminθ L (θ) is the reference estimator for θ∗ based on the standard ℓ2 estimator for
continuous point processes. This decomposition involves the statistical error (∗) and the bias error
(∗∗) induced by the discretization. The statistical term measures how far the parameters obtained by
minimizing the ℓ2 continuous loss having access to a finite amount of data are from the true ones. In
contrast, the term (∗∗) represents the discretization bias induced by minimizing the discrete loss (4)
instead of the continuous one (2). In the following proposition, we focus on the discretization error
(∗∗) which is related to the computational trade-off offered by our method and not on the statistical
error of the continuous ℓ2 estimator (∗∗). Our work showcases that this disregarded estimator can
be efficiently computed, and we hope it will promote research to describe its asymptotic behavior.
We now study the perturbation of the loss due to the discretization.

Proposition 1. Let FT and F̃T be respectively a MHP process and its discretized version on a grid
G with stepsize ∆. Assume that the intensity function of FT possesses continuously differentiable
finite support kernels on [0,W ]. Thus, assuming ∆ < mintin,t

j
m∈FT

|tin − tjm|, for any i ∈ J1 , pK, it
holds:

λ̃i[s] = λi(s∆)−
p∑

j=1

∑
tjm∈Fj

s∆

δjm
∂ϕij

∂t
(s∆− tjm; θ) +O(∆2) ,

LG(θ) = L(θ) + ∆.h(θ) +
2

NT

p∑
i=1

∑
tin∈F i

T

p∑
j=1

∑
tjm∈Fj

s∆

(δjm − δin)
∂ϕij

∂t
(tin − tjm; θ) +O(∆2) .

The technical proof is deferred to Section B.1 in the Appendix. The first result is a direct appli-
cation of the Taylor expansion of the intensity for the kernels. For the loss, the first perturbation
term ∆.h(θ) comes from approximating the integral with a finite Euler sum (Tasaki, 2009) while
the second one derives from the perturbation of the intensity. This proposition shows that as the
discretization step ∆ goes to 0, the perturbed intensity and ℓ2 loss are good estimates of their con-
tinuous counterpart. We now quantify the discretization error (∗∗) as ∆ goes to 0.

Proposition 2. We consider the same assumption as in Proposition 1. Then, if the estimators θ̂c =

argminθ L(θ) and θ̂∆ = argminθ LG(θ) are uniquely defined, θ̂∆ converges to θ̂c as ∆ → 0.
Moreover, if L is C2 and its hessian ∇2L(θ̂c) is positive definite with ε > 0 its smallest eigenvalue,
then ∥θ̂∆ − θ̂c∥2 ≤ ∆

ε g(θ̂∆) , with g(θ̂∆) = O(1).

This proposition shows that asymptotically on ∆, the estimator θ̂∆ is equivalent to θ̂c. It also shows
that the discrete estimator converges to the continuous one at the same speed as ∆ decreases. This
is confirmed experimentally by results shown in Figure A.7 in the Appendix. Thus, one would need
to select ∆ so that the discretization error is small compared to the statistical one.

3 NUMERICAL EXPERIMENTS

We present various synthetic data experiments to support the advantages of the proposed approach.
To begin, we investigate the bias induced by the discretization in Section 3.1. Afterwards, the sta-
tistical and computational efficiency of FaDIn is highlighted through a benchmark with popular
non-parametric approaches Section 3.2. Due to the space limitation, sensitivity analysis regard-
ing the parameter W and additional non-parametric comparisons are provided in Section A.1 and
Section A.2, respectively.

3.1 CONSISTENCY OF DISCRETIZATION

In order to study the estimation bias due to discretization, we run two experiments and report the
results in Figure 1 (details and further experiments are presented in Section A.3 and Section A.4
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in the Appendix). The general paradigm is a one-dimensional TPP with intensity parametrized as
in (1) with a Truncated Gaussian kernel of mean m ∈ R and standard deviation σ > 0, with fixed
support [0 ,W ] ⊂ R+, W > 0. It corresponds to ϕ(·) = ακ(·), α ≥ 0 with

κ(·) := κ (·;m,σ,W ) =
1

σ

f
( ·−m

σ

)
F
(
W−m

σ

)
− F

(−m
σ

)10≤·≤W ,

where f (resp. F ) is the probability density function (resp. cumulative distribution function) of the
standard normal distribution. Hence, the parameters to estimate are µ and η = (α,m, σ).

In both experiments, for multiple process length T , the discrete estimates are computed for vary-
ing grid stepsize ∆, from 10−1 to 10−3. The parameter W is set to 1. The ℓ2 norm of the dif-
ference between estimates and the true parameter values –the ones used for data simulation– is
computed and reported. We first computed the parameter estimates with our FaDIn method for
T ∈ {103, 105, 104, 106}, for 100 simulations each time. Second, since we wish to separate dis-
cretization bias from statistical bias, we compute the estimates with an EM algorithm, both con-
tinuously and discretely, and that for 50 random data simulations. For the latter, the process is not
self-excited, but rather driven by an exogenous homogeneous Poisson Process (Allain et al., 2021).

One can observe that the ℓ2 errors between discrete estimates and true parameters tend towards
zero as T increases. For T fixed, one can see plateaus starting for stepsize values that are not
particularly small, indicating that the discretization bias is limited. The second experiment with
the EM algorithm shows that when the plateau mentioned above is reached, it corresponds to some
statistical error. In other words, even for a reasonably coarse stepsize, the bias induced by the
discretization is slight compared to the statistical error.

Figure 1: Median and interquartile error bar of the ℓ2 norm between true parameters and parameter
estimates computed with FaDIn (left) and with EM algorithm (right), continuously and discretely,
w.r.t. the stepsize of the grid ∆.

3.2 STATISTICAL AND COMPUTATIONAL EFFICIENCY OF FADIN

We compare FaDIn with non-parametric methods by assessing approaches’ statistical and compu-
tational efficiency. To learn the non-parametric kernel, we select various existing methods. The
first benchmarked method uses histogram kernels and relies on the EM algorithm, provided in Zhou
et al. (2013a) and implemented in the tick library (Bacry et al., 2017). The kernel is set with one
basis function. The three other approaches involve a linear combination of pre-defined raised cosine
functions as non-parametric kernels. The inference is made either by stochastic gradient descent
algorithm (Non-param SGD; Linderman & Adams, 2014) or by Bayesian approaches such as Gibbs
sampling (Gibbs) or Variational Inference (VB) from Linderman & Adams (2015). These algo-
rithms are implemented in the pyhawkes library. In the following experiments, we set the number
of basis to five for each method. More precisely, we simulate a two-dimensional Hawkes process
(repeated ten times) using the tick library with baseline µ = [0.1, 0.2] and Raised Cosine kernels:

ϕi,j(·) = αi,j

[
1 + cos

( · − ui,j

σi,j
π − π

)]
I {· ∈ [ui,j ; ui,j + 2σi,j ]} , (i, j) ∈ {1, 2}2

with parameters α =

[
1.5 0.1
0.1 1.5

]
, u =

[
0.1 0.3
0.3 0.3

]
and σ =

[
0.3 0.25
0.3 0.3

]
. Further, we infer

the intensity function of these underlying Hawkes processes using FaDIn and the four previously
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mentioned methods setting ∆ = 0.01 for all these discrete approaches. This experiment is repeated
for varying values of T ∈ {103, 104, 105}. The averaged (over the ten runs) normalized ℓ1 error
on the intensity (evaluated on the same discrete grid), as well as the associated computation time,
are reported in Figure 2. From a statistical perspective, we can observe the advantages of FaDIn
inference for varying T over the benchmarked methods. It is worth noting that this result is expected
by a parametric approach when the used kernel belongs to the same family as the one with which
events have been simulated. From a computational perspective, FaDIn is very efficient compared
to benchmarked approaches. Indeed, it scales very well with an increasing time T and then with a
growing number of events. In contrast, other methods depend on the number of events and scale
linearly with the time T . For completeness, different kernel shapes are provided in Section A.2.1.

FaDIn Non-param EM Non-param SGD Gibbs VBFaDIn Non-param EM Non-param SGD Gibbs VB
Estimation error Computation time

103 104 105

T

10−1

100

||λ̂
−
λ
∗ ||

1
/
G

103 104 105

T
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102

103

T
im

e
(s

.)

Figure 2: Comparison of the statistical and computational efficiency of FaDIn with four bench-
marked methods. The averaged (over ten runs) statistical error on the intensity function (left) and
the computational time (right) are computed regarding the time T (and thus the number of events).

4 APPLICATION TO MEG DATA

Electrophysiology signals recorded with M/EEG contain recurring prototypical waveforms that
can be related to human behavior (Shin et al., 2017). Convolutional Dictionary Learning (CDL;
Jas et al. 2017) is an unsupervised method to efficiently extract such patterns and study them in a
quantitative way. With CDL, multivariate neural signals are represented by a set of spatio-temporal
patterns, called atoms, with their respective onsets, called activations. Here, we make use of the
alphacsc software for CDL with rank-1 constraint (Dupré la Tour et al., 2018), as it includes
physical priors for the patterns to recover, namely that the spatial propagation of the signal from the
brain to sensors is linear and instantaneous. The schema in Figure A.14 in the Appendix presents
how CDL applies to MEG recordings.

Experiments on magnetoencephalography (MEG) data were run on two datasets from the MNE
Python package (Gramfort et al., 2013; 2014): the sample dataset and the somatosensory (somato)
dataset1. These datasets were selected as they elicit two distinct types of event-related neural ac-
tivations: evoked responses which are time-locked to the onsets of the stimulation, and induced
responses which exhibit larger random jitters. The sample dataset contains M/EEG recordings of
a human subject presented with audio and visual stimuli. This experiment presents checkerboard
patterns to the subject in the left and right visual field, interspersed with tones to the left or right
ear. The experiment lasts about 4.6min, and approximately 70 stimuli per type are presented to the
subject. For the somato dataset, a human subject is scanned with MEG during 15min, while 111
stimulations of his left median nerve were made.

For both datasets, raw data are first preprocessed as done by Allain et al. (2021), and CDL is then
applied: 40 atoms of duration 1 s each are extracted on the sample dataset, and 20 atoms of duration
0.53 s for the somato dataset. Finally, each dataset is represented by two sets of Temporal Point
Processes: a set of stochastic ones representing atoms’ activations, and a set of deterministic ones
coding for external stimuli events. The main goal of applying the TPP framework to such data

1Both available at https://mne.tools/stable/overview/datasets_index.html
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Figure 3: Spatial and temporal patterns of 4 atoms from sample dataset, and their respective esti-
mated intensity functions following a stimulus (cue at time = 0 s), for auditory and visual stimuli
with non-parametric kernel (NP) and two kernel parametrizations: Truncated Gaussian (TG) and
Raised Cosine (RC).

is to characterize directly when and how each stimulus is responsible for the occurrence of neural
responses, especially by estimating the distribution of latencies. We are interested in the paradigm of
Driven Point Process (DriPP; Allain et al. 2021) and for every extracted atom, its intensity function
related to the corresponding stimuli is estimated using a non-parametric kernel (NP) and two kernel
parametrizations: Truncated Gaussian (TG) and Raised Cosine (RC). Results on the sample (resp.
somato) dataset are presented in Figure 3 (resp. Figure A.15 in the Appendix), where only the kernel
related to each type of stimulus is plotted, for the sake of clarity. See Appendix A.5 for more details.

Results show that all three kernels agree on a peak latency around 90ms for the auditory condition
and 190ms for the visual condition. Due to the limited number of events, one can observe that the
non-parametric kernel estimated is less smooth, with spurious peaks later in the interval. Overall,
these results on real MEG data demonstrate that our approach with a RC kernel parametrization is
able to recover correct latency estimates even with the discretization of stepsize 0.02. Furthermore,
the usage of RC allows us to have sharper peaks in the intensity compared to TG, enforcing the link
between the external stimulus and the atom’s activation. This difference mainly comes from the fact
that RC does not need to have its support pre-determined. This advantage is even more pronounced
in the case of induced responses, such as in the somato dataset (see Figure A.15), where the range
of possible latency values is more difficult to determine beforehand.

5 DISCUSSION

This work proposed an efficient approach, FaDIn, to infer general parametric kernels for Multivari-
ate Hawkes processes. Our method makes the use of parametric kernels computationally tractable,
beyond exponential kernels. The development of FaDIn is based on the three key features: (i) finite-
support kernels, (ii) timeline discretization and (iii) precomputations reducing the computational
cost of the gradients. These allow for a computationally efficient gradient-based approach, improv-
ing state-of-the-art methods while providing flexible use of kernels well-fitted to the considered
applications. Moreover, this work shows that the bias induced by the discretization is negligible,
both theoretically and numerically. By allowing the use of a general parametric kernel in Hawkes
processes, this contribution opens new possibilities for many applications. This is the case with
M/EEG data, where estimating information about the rate and latency of occurrences of brain signal
patterns is at the core of neuroscience questions. Therefore, FaDIn makes it possible to use a Raised
Cosine kernel, allowing for efficient retrieval of these parameters.
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A ADDITIONAL EXPERIMENTS

This section presents additional experimental results supporting the claims of the paper. A sensitivity
analysis of the kernel length W is provided in Section A.1. Additional comparisons with popular
non-parametric approaches are presented in Section A.2. The consistency of the discretization is
supported in Section A.3 and Section A.4. Finally, we explain the methodology we employed on
real MEG data and provide complementary results in Section A.5.

A.1 KERNEL LENGTH ON FADIN ESTIMATES

To study the estimation bias induced by the finite support kernels, we conduct an experiment using
FaDIn with an (Truncated) exponential kernel. The general framework is a one-dimensional TPP
with intensity parametrized as in (1) with a Truncated Exponential kernel having a decay parameter
γ, with fixed support [0 ,W ] ⊂ R+, W > 0. It corresponds to ϕ(·) = ακ(·), α ≥ 0 with

κ(·) := κ (·; γ, a, b) = h (·)
H (b)−H (a)

1a≤·≤b ,

where here h (resp. H) is the probability density function of parameter γ (resp. cumulative distribu-
tion function) of the exponential distribution. Therefore, when W → ∞, this Truncated Exponential
kernel converges to the standard exponential kernel, i.e. t 7→ αγ exp(−γt). The parameters to es-
timate are µ and η = (α, γ). The experiment is conducted as follows. We simulate events (10
repetitions) from a Hawkes process with baseline µ = 1.1 and a standard Exponential kernel (non-
truncated) with α = 0.8, γ = 0.5 for varying T ∈ {103, 104, 105, 106} using the tick Python
library. FaDIn is then computed on each of these sets of events using a Truncated Exponential kernel
of length W ∈ [1, 100] and a stepsize ∆ = 0.01. The averaged (over ten runs) and the 25%-75% sta-
tistical ℓ2-error of parameters (left) and computational time (right) are displayed w.r.t. the stepsize
of the grid ∆ in Figure A.1. On one hand, one can observe that the ℓ2-error converges to a plateau
once W > 10, i.e. the bias induced by the finite support length is reduced. On the other hand, the
computational time increase when W increases. Interestingly, for each T , the computational time is
close when W is high enough (close to 100). Indeed, optimizing the loss becomes the bottleneck of
FaDIn since the grid size (G = TL+ 1) only intervenes in the precomputation part.

T

103 104 105 106

100 101 102

W

10 2

10 1

100

2 e
rro

r

100 101 102

W

101

102

103

Ti
m

e 
(s

.)

Figure A.1: Comparison of the influence of the kernel support size W on the parameter estimation
of FaDIn for a Truncated Exponential kernel. The averaged (over 10 runs) statistical ℓ2-error (left)
and computational time (right) are displayed w.r.t. the stepsize of the grid ∆.

A.2 STATISTICAL AND COMPUTATIONAL EFFICIENCY OF FADIN

This part presents additional experiments results related to Section 3.2 and additional non-parametric
comparisons.
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Figure A.2: Comparison of the statistical accuracy of FaDIn with four benchmarked methods. The
averaged (over ten runs) statistical error on the intensity function is computed regarding the time
T (and thus the number of events) for the Truncated Gaussian (left) and the Truncated Exponential
(right).

A.2.1 ADDITIONAL KERNEL SHAPES

We provide additional benchmarks for the Truncated Gaussian and Truncated Exponential kernels.
The statistical accuracy for these two kernels are displayed in in Figure A.2. Same conclusions than
in Section 3.2 hold. As the computational time is not dependent of the used kernels, we refer to
Figure 2 (right) for the associated computation time.

A.2.2 QUALITATIVE COMPARISON WITH A NON-PARAMETRIC APPROACH

We compare FaDIn with the use of a non-parametric kernel by assessing the statistical and compu-
tational efficiency of both approaches. To learn the non-parametric kernel, we select the EM algo-
rithm, provided in Zhou et al. (2013a) and implemented in the tick library (Bacry et al., 2017).
The kernel is set with one basis function. In addition, we display the running time when computing
gradients using PyTorch and automatic differentiation applied to the LG discretized loss (4).

The experiment is conducted as follows. We fix p = 1 for simplicity, set µ = 1.1 and choose a
Raised Cosine kernel defined by:

ϕ(·) = α

[
1 + cos

( · − u

σ
π − π

)]
I {· ∈ [u; u+ 2σ]} ,

setting parameters α = 0.8, u = 0.2 and σ = 0.3. We simulate events in a continuous time using
the tick library (Bacry et al., 2017). FaDIn and the non-parametric kernel are optimized over 800
iterations (with an early stopping for the EM algorithm). The RMSprop algorithm is used in FaDIn.
The discretization size of the non-parametric kernel is settled as in FaDIn. This experiment is done
varying T ∈ {103, 105, 106}.

On one hand, in a relatively small data regime where T = 1000, we evaluate the statistical accuracy
of the estimated kernel of both methods with the discretization parameter ∆ = 0.01. As we can
see in Figure A.3 (top, left), the non-parametric approach fails to recover the structure of the kernel.
The non-parametric approach results in noisy estimates of the kernel, with probability mass where
the kernel is zero. In contrast, FaDIn can recover the kernel parameters used to simulate data even
with a small number of events. On the other hand, we evaluate the computational times varying the
discretization steps in a large data regime where T = 105 and T = 106 with the same simulation
parameters. Figure A.3 (bottom) reports the average computational times (over 10 runs). Although
both approaches can recover the kernel under which we simulate data (see Figure A.3 (top, right)),
FaDIn is a great deal more computationally efficient than the non-parametric and the automatic
differentiation implementations, improving the computational speed by ≈ 100 when ∆ ∈ [0.1, 0.01]
and by ≈ 10 when ∆ ≈ 0.001. It is worth noting that the L2-Autodiff explodes in memory when
∆ > 0.01. Additional shape of kernels are displayed in Figure A.4 for the Truncated Gaussian and
in Figure A.5 for the Truncated Exponential kernels.
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Figure A.3: Comparison between our approach FaDIn and non-parametric approach. Estimated
kernels with ∆ = 0.01 in a relatively small data setting with T = 103 (top, left), in a large data
setting with T = 106 (top, right), and computation time in large data setting with T ∈ {105, 106}
(bottom). In contrast to non-parametric kernels, FaDIn estimates well the true kernel in a small
regime while it is computationally faster than non-parametric kernels in a large regime.
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Figure A.4: Comparison between our approach FaDIn and non-parametric approach for a Truncated
Gaussian kernel. Estimated kernels with ∆ = 0.01 and T ∈ {103, 104, 105, 106}. The true kernel,
FaDIn and the non-parametric approach are depicted in black, orange and blue, respectively.

A.3 DISCRETIZATION ON EM ESTIMATES (DRIPP)

Figure A.6 displays the results depicted in Figure 1 but from a different perspective.
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Figure A.5: Comparison between our approach FaDIn and non-parametric approach for a Truncated
Exponential kernel. Estimated kernels with ∆ = 0.01 and T ∈ {103, 104, 105, 106}. The true
kernel, FaDIn and the non-parametric approach are depicted in black, orange and blue, respectively.
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Figure A.6: Median and interquartile error bar of the ℓ2 norm between true parameters and parameter
estimates computed with FaDIn and with EM algorithm, continuously and discretely, w.r.t. the
stepsize of the grid ∆.

Figure A.7 displays the convergence of the estimator θ̂∆ towards θ̂c as ∆ goes to 0 in the same
experimental setup as the right part of Figure 1.

Figure A.8 presents the detailed results, i.e., parameter-wise, of the experiment shown in Figure 1
(right). In this experiment, we are interested in the context of Driven PP (Allain et al., 2021) with
an exogenous homogeneous PP. The simulation parameter of the latter is set to 0.5, meaning that on
average, 1 event occurs every 2 seconds on the driver.

Figure A.9 presents the results of the same experiment with Poisson parameter set to 0.1 which
represents roughly five times less events.

17



Under review as a conference paper at ICLR 2023

10−410−310−210−1

∆

10−5

10−4

10−3

10−2

10−1

` 2
er

ro
r

T

103 104

Figure A.7: Median and interquartile error bar of the ℓ2 norm between the parameters estimated
computed with EM algorithm, continuously and discretely, w.r.t. the stepsize ∆. This figure con-
firms the results from Proposition 1; that is, that the convergence of θ̂∆ towards θ̂c is linear with
respect to ∆.
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Figure A.8: Median and interquartile error bar of the ℓ2 norm between true parameters and parameter
estimates computed with EM algorithm, continuously and discretely, w.r.t. the stepsize ∆.
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Figure A.9: Median and interquartile error bar of the ℓ2 norm between true parameters and parameter
estimates computed with EM algorithm, continuously and discretely, w.r.t. the stepsize ∆.
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A.4 DISCRETIZATION EFFECT ON FADIN ESTIMATES

This section presents additional results related to the Section 3.1. We reproduce the experiments of
this section with FaDIn and two other kernels: Raised Cosine and Truncated Exponential.

The Raised Cosine kernel is defined by:

ϕ(·) = α

[
1 + cos

( · − u

σ
π − π

)]
I {· ∈ [u; u+ 2σ]} .

The parameters to estimate are µ, α, u and σ. The Truncated Exponential kernel of decay parameter
γ ∈ R+, with fixed support [a , b] ⊂ R+, b > a is defined as ϕ(·) = ακ(·), α ≥ 0 with

κ(·) := κ (·; γ, a, b) = h (·)
H (b)−H (a)

1a≤·≤b ,

where here h (resp. H) is the probability density function of parameter γ (resp. cumulative distri-
bution function) of the exponential distribution. The parameters to estimate are µ, α and γ.

Estimation results (median and 20-80% quantiles) are displayed in Figure A.10 and confirm the
conclusion presented in Section 3.1 about the consistency of the discretization for FaDIn. In addi-
tion, we display the quadratic error for each parameter separately in Figure A.11 for the Truncated
Gaussian Kernel, in Figure A.12 for the Raised Cosine kernel and in Figure A.13 for the Truncated
Exponential kernel.
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Figure A.10: Comparison of the influence of the discretization on the parameter estimation of FaDIn
for a Raised Cosine kernel (left) and an Exponential kernel (right) w.r.t. the stepsize of the grid ∆.
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Figure A.11: Error on parameters for the Truncated Gaussian kernel as a function of T and ∆.
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Figure A.12: Error on parameters for the Raised Cosine kernel as a function of T and ∆.
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Figure A.13: Error on parameters for the Truncated Exponential kernel as a function of T and ∆.
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A.5 OTHER EXPERIMENTS ON REAL DATA

Background on CDL The objective of CDL is to decompose a signal as the convolution between
a translationally invariant pattern called atom and its sparse activation vector (Grosse et al., 2007).
To do this, we minimize the following objective function:

min
Dk,zn

k

N∑
n=1

1

2

∥∥∥∥∥Xn −
K∑

k=1

znk ∗Dk

∥∥∥∥∥
2

F

+ λ

K∑
k=1

∥znk ∥1 , s.t. ∥Dk∥2F ≤ 1 and znk ≥ 0

where {Xn}Nn=1 ⊂ RP×T is the observed signals, {Dk}Kk=1 ⊂ RP×L is the dictionaries of atoms,
{znk }

K
k=1 ⊂ RT̃ the sparse activations associated with Xn, T̃ = T − L + 1, and λ > 0 the

regularization parameter. Here ∥ ∥F stands for the Frobenius norm.

In the application to M/EEG signals, we add a rank-1 constraint on the dictionary to account for
the physics of the signals (Dupré la Tour et al., 2018): Dk = ukvk

⊤ ∈ RP×L, where uk ∈ RP is
the pattern over the channels (sensors) and vk ∈ RL the pattern over time. The new minimization
problem is as follows:

min
uk,vk,zn

k

N∑
n=1

1

2

∥∥∥∥∥Xn −
K∑

k=1

znk ∗
(
ukv

⊤
k

)∥∥∥∥∥
2

F

+ λ

K∑
k=1

∥znk ∥1 , s.t. ∥uk∥22 ≤ 1, ∥vk∥22 ≤ 1 and znk ≥ 0

The optimization is done by block coordinate descent, alternating the optimization over atoms and
activations. Figure A.14 presents in a schematic way the functioning of CDL on MEG data.

Figure A.14: Schematic operation of the CDL on MEG signals. Raw MEG signals alongside times-
tamps of external stimuli of type visual and auditory (left). CDL output composed of a set of spatio-
temporal atoms alongside their respective onsets (right). One may claim to associate each atom to a
physical phenomenom, i.e., heartbeat or eye blink artifact, auditory or visual neural response.

Extra informations about used datasets Table A.1 presents the main information related to real
MEG datasets that we used, both available with the MNE Python package (Gramfort et al., 2013;
2014). Regarding the sample dataset, as mentioned before, four external stimuli are presented to the
subject during the MEG recording session: auditory left and right and visual left and right. Each type
of stimulus leads to a so-called ”deterministic” point process, where each event denotes the exact
time the stimulus was presented to the subject. Once the CDL was applied, and 40 atoms of duration
1 s were extracted from the signal, a quick visual inspection of the atoms revealed that, among
atoms that could be linked to audio-visual stimuli, there were mostly bimodal atoms. Thus, this
observation led us to consider both auditory (resp. visual) stimuli as one, and the two corresponding
point processes were merged. For the somatosensory dataset, as previously mentioned, 20 atoms of
duration 0.53 seconds are extracted from the MEG signal corresponding to 15 minutes of recording
during which the single subject has received 111 stimulations of his left median nerve at the hand
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Dataset # Atoms Duration of
Atoms (s.)

# Atom’s
events # Drivers # Driver’s

events
Sequence
length (min.)

sample 40 1 ≈ 401.025 4 ≈ 72.25 4.6
somatosensory 20 0.53 10408 1 111 15

Table A.1: Statistics of each datasets. ≈ N denotes that N is the average number.

level. For both datasets, intensities functions for the EM with a Truncated Gaussian kernel were
obtained similarly as Allain et al. 2021, always between one atom’s point process and the considered
stimuli’s ones. For the intensities with a Raised Cosine kernel, however, they were obtained using
the method presented in this paper, with a grid discretization ∆ equal to data re-sampling rate of 150
Hz (i.e., ∆ = 1/150). Indeed, setting a ∆ smaller than the discretization imposed by the data would
not lead to better estimation. Finally, the intensities estimated with the non-parametric (NP) method
were obtained using Tick Python package (Bacry et al., 2017), with the same grid discretization
parameters to have accurate comparisons.

Experiment on somatosensory dataset Figure A.15 presents results on three atoms estimated
from the somato dataset. All three atoms elicit classical induced responses and have waveforms with
a prototypical µ-shape (sharp trough) (Hari, 2006). Remark that in the somato paradigm, the subject
receives only one type of external stimulus. Similarly, as in Figure 3, for each atom, the intensity
related to the stimulus is learned with a non-parametric kernel (NP) and two kernel parametrizations:
Truncated Gaussian (TG) and Raised Cosine (RC). The non-parametric kernel cannot characterize
the link between stimulus and neural response.
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Figure A.15: Spatial and temporal patterns of three µ-wave atoms from somato dataset, and their
respective estimated intensity functions following a stimulus (cue at time = 0 s), for somatosensory
stimuli with non-parametric kernel (NP) and two parametrized kernels: Truncated Gaussian (TG)
and Raised Cosine (RC).
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B TECHNICAL DETAILS

This part presents proofs of the theoretical results proposed in the core paper.

B.1 PROOF FOR SECTION 2.3

Proposition 1. Let FT and F̃T be respectively a MHP process and its discretized version on a grid
G with stepsize ∆. Assume that the intensity function of FT possesses continuously differentiable
finite support kernels on [0,W ]. Thus, assuming ∆ < mintin,t

j
m∈FT

|tin − tjm|, for any i ∈ J1 , pK, it
holds:

λ̃i[s] = λi(s∆)−
p∑

j=1

∑
tjm∈Fj

s∆

δjm
∂ϕij

∂t
(s∆− tjm; θ) +O(∆2) ,

LG(θ) = L(θ) + ∆.h(θ) +
2

NT

p∑
i=1

∑
tin∈F i

T

p∑
j=1

∑
tjm∈Fj

s∆

(δjm − δin)
∂ϕij

∂t
(tin − tjm; θ) +O(∆2) .

Proof. Recall that by definition:

λi(s∆) = µi +

p∑
j=1

∑
tjm∈Fj

s∆

ϕij(s∆− tjm) ,

λ̃i[s] = µi +

p∑
j=1

∑
t̃jm∈F̃j

s∆

ϕij(s∆− t̃jm)

= µi +

p∑
j=1

∑
tjm∈Fj

s∆

ϕij(s∆− tjm − δjm) , (6)

where (6) is a consequence of hypothesis ∆ < mintin,t
j
m∈FT

|tin − tjm| which ensures that no event

collapses on the same bin of the grid and that F̃ j
s∆ = F j

s∆. Note that this hypothesis also implies
that the intensity function is smooth for all points on the grid G. Applying the first-order Taylor
expansion to the kernels ϕij in s∆− tjm and bounding the perturbation δin by ∆ yields the first result
of the proposition.

For the perturbation of the loss LG , we have:

LG
(
θ, F̃T

)
=

1

NT

p∑
i=1

∆
∑

s∈J0 ,GK

(
λ̃i[s]

)2
− 2

∑
t̃in∈F̃ i

T

λ̃i

[
t̃in
∆

]
= L(θ) + 1

NT

p∑
i=1

(
∆

G∑
s=0

λ̃i[s]
2 −

∫ T

0

λi(t)
2dt︸ ︷︷ ︸

(∗)

−2
∑

tin∈F i
T

λ̃i

[
t̃in
∆

]
− λi

(
tin
)

︸ ︷︷ ︸
(∗∗)

)
.

The first term (∗) is the error of a Riemann approximation of the integral. Theorem 1.2 in Tasaki
(2009) shows that asymptotically with ∆ → 0,

∆

G∑
s=0

λ̃i[s]
2 −

∫ T

0

λi(t)
2dt = ∆.hi(θ) +O(∆2) , (7)

where hi(θ) =
1
2

( ∫ T

0
|λi(t; θ)

∂λi

∂t (t; θ)|1/2dt
)2

and we denote h(θ) = 1
NT

∑p
i=1 hi(θ).

For the second term (∗∗), we re-use the expression from (6) but use a Taylor expansion in tin − tjm.
The perturbation becomes δjm − δin,∑

tin∈F i
T

λ̃i

[
t̃in
∆

]
− λi

(
tin
)
=

∑
tin∈F i

T

(δin − δjm)
∂ϕij

∂t
(tin − tjm; θ) +O(∆2) . (8)
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Summing (7) and (8) concludes the proof.

Proposition 2. We consider the same assumption as in Proposition 1. Then, if the estimators θ̂c =

argminθ L(θ) and θ̂∆ = argminθ LG(θ) are uniquely defined, θ̂∆ converges to θ̂c as ∆ → 0.
Moreover, if L is C2 and its hessian ∇2L(θ̂c) is positive definite with ε > 0 its smallest eigenvalue,
then ∥θ̂∆ − θ̂c∥2 ≤ ∆

ε g(θ̂∆) , with g(θ̂∆) = O(1).

Proof. We consider the two estimators θ̂∆ = argmin θLG(θ) and θ̂c = argmin θL(θ). With the

loss approximation from Proposition 1, we have a pointwise convergence of LG(θ) towards L(θ) for
all θ ∈ Θ as ∆ goes to 0. By continuity of LG , we have that the limit of θ̂∆ when ∆ goes to 0 exists
and is equal to θ̂c. This proves that the discretized estimator converges to the continuous one as ∆
decreases.

We now characterize its asymptotic speed of convergence. The KKT conditions impose that:

∇LG(θ̂∆) = 0 and ∇L(θ̂c) = 0 . (9)

Using the approximation from Proposition 1, one gets in the limit of small ∆:

∇LG(θ̂∆) = ∇L(θ̂∆) + ∆.
∂h

∂θ
(θ̂∆) +O(∆2)

+
2

NT

p∑
i=1

∑
tin∈F̃ i

T

p∑
j=1

∑
tjm∈F̃j

s∆

(δjm − δin)
∂2ϕij

∂t∂θ
(tin − tjm; θ̂∆) .

Combining this with (9), we get:

∇L(θ̂∆) = −∆.
∂h

∂θ
(θ̂∆) +

2

NT

p∑
i=1

∑
tin∈F̃ i

T

p∑
j=1

∑
tjm∈F̃j

s∆

(δin − δjm)
∂2ϕij

∂t∂θ
(tin − tjm; θ̂∆) +O(∆2) ,

and

∥∇L(θ̂∆)−∇L(θ̂c)∥2

=
∣∣∣∣∣∣−∆.

∂h

∂θ
(θ) +

2

NT

p∑
i,j=1

∑
tin∈F̃ i

s∆

∑
tjm∈F̃j

s∆

(δin − δjm)
∂2ϕij

∂t∂θ
(tin − tjm; θ̂∆)

∣∣∣∣∣∣
2
+O(∆2)

≤ ∆
∣∣∣∣∣∣∂h
∂θ

(θ̂∆) +
2

NT

p∑
i,j=1

∑
tin∈F̃ i

s∆

∑
tjm∈F̃j

s∆

∂2ϕij

∂t∂θ
(tin − tjm; θ̂∆)

∣∣∣∣∣∣
2
+O(∆2)

≤ ∆.g(θ̂∆) ,

where g(θ) is equal to ∥∂h
∂θ (θ̂∆) +

2
NT

∑p
i,j=1

∑
tin∈F̃ i

s∆

∑
tjm∈F̃j

s∆

∂2ϕij

∂t∂θ (t
i
n − tjm; θ̂∆)∥2 +O(∆).

This function is a O(1). Using the hypothesis that the hessian ∇2L(θ̂c) exists and is positive definite
with smallest eigenvalue ε, we have:

ε∥θ̂∆ − θ̂c∥22 ≤ ∥∇L(θ̂∆)−∇L(θ̂c)∥22
i.e., ∥θ̂∆ − θ̂c∥22 ≤ ∆

ε
g(θ̂∆)
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