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Abstract
Multi-modal learning leverages data from diverse perceptual media
to obtain enriched representations, thereby empowering machine
learning models to complete more complex tasks. However, re-
cent research results indicate that multi-modal learning still suffers
from “modality imbalance”: Certain modalities’ contributions are
suppressed by dominant ones, consequently constraining the overall
performance enhancement of multimodal learning. To tackle this
issue, current approaches attempt to mitigate modality competi-
tion in various ways, but their effectiveness is still limited. To this
end, we propose an Euler Representation Learning-basedModality
Rebalance (ERL-MR) strategy, which reshapes the underlying com-
petitive relationships between modalities into mutually reinforcing
win-win situations while maintaining stable feature optimization
directions. Specifically, ERL-MR employs Euler’s formula to map
original features to complex space, constructing cooperatively en-
hanced non-redundant features for each modality, which helps
reverse the situation of modality competition. Moreover, to coun-
teract the performance degradation resulting from optimization
drift among modalities, we propose a Multi-Modal Constrained
(MMC) loss based on cosine similarity of complex feature phase
and cross-entropy loss of individual modalities, guiding the opti-
mization direction of the fusion network. Extensive experiments
conducted on four multi-modal multimedia datasets and two task-
specific multi-modal multimedia datasets demonstrate the superior-
ity of our ERL-MR strategy over state-of-the-art baselines, achieving
modality rebalancing and further performance improvements.

CCS Concepts
• Computing methodologies→ Artificial intelligence.
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1 Introduction
The advent of the multi-modal learning paradigm [35, 43, 50] repre-
sents a pivotal advancement in artificial intelligence (AI) technology,
elevating AI models to a new level of capability [7, 39, 58]. This
paradigm empowers AI models with rich perceptual abilities, en-
abling them to undertake increasingly complex multimedia tasks,
including sentiment analysis [14, 79], audio-visual speech recog-
nition [32, 78], and visual question answering [29], among others.
Specifically, multi-modal learning endeavors to mine and analyze
data from multiple sensory media, harnessing insights from diverse
sources. This approach is widely recognized for its potential to
enhance AI model performance in comparison to training with
uni-modal data.

However, recent research results [9, 16, 40, 60, 63, 68, 78] have
revealed a counterintuitive fact: the learning processes within each
modality of multi-modal learning exhibit a dynamic competition
rather than the anticipated mutual benefit. As an illustration, Huang
et al. in [16] devised a theoretical analytical framework to sub-
stantiate the aforementioned claims, subsequently yielding the-
oretical insights. Their research underscores that in some cases,
the optimal uni-modal network outperforms the multi-modal net-
work trained jointly, a finding which challenges conventional wis-
dom [35, 43, 50]. In this context, researchers attribute this phe-
nomenon to the “modality imbalance” issues [9, 40, 68], wherein
a dominant modality restricts the comprehensive exploitation of
the multiple modalities at play. This, in turn, undermines the fun-
damental objective of enhancing model performance through the
fusion of information from diverse modalities.

To further explain the reasons behind the above phenomena, a se-
ries of empirical and theoretical methods [9, 15, 16, 24, 40, 62, 63, 68]
have been proposed to analyze the learning process of multi-modal
learning. Some of them try to explain it from the perspective of
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joint training, that is, they believe that different modalities will com-
pete with each other during the process of joint training the fusion
network via gradient descent [15, 16]. More specifically, the com-
petitive behavior materializes as the dominant modality converges
rapidly with a substantial gradient amplitude, effectively impeding
the convergence and optimization of the weaker modality [1, 10].
Another predominant perspective underscores the challenge posed
by the heterogeneity of multi-modal data, specifically concerning
the acquisition of knowledge related to multi-modal correlations
and complementarities [9, 40, 63]. These modal correlations and
complementarities are manifested through feature representations.
However, heterogeneous feature representations can disrupt in-
termodal learning and result in incongruent learning efficiencies
across different modalities.

In light of the aforementioned insights, researchers are dedicated
to the development of multi-modal learning strategies aimed at ad-
dressing the challenge of “modality imbalance.” To tackle the issue,
prior works employ gradient-based methods, including gradient
angle constraints [68], on-the-fly gradient modulation [40], and gra-
dient balance constraints [63]. While these approaches effectively
regulate the learning rates of various modalities through gradient
adjustments and constraints, they may still fall short in preventing
the dominant modality from interfering with the gradient update
direction of the weaker modality [9, 15, 16]. This limitation poses
a challenge in enhancing the performance of the slow-learning
modality. Another set of methods concentrates on formulating
efficient feature utilization techniques designed to mitigate the
negative effects of heterogeneous multi-modal data on learning
speed [3, 9, 22, 30, 38, 68, 70]. The key idea of their approach re-
volves around energizing the slower learning modality through
facilitating more robust feature utilization, while concurrently mit-
igating the influence of the dominant modality by slowing down
itself during the early stages of training. Clearly, the solely focus-
ing on enhancing feature utilization and learning efficiency of the
weaker modality may not yield benefits for the fusion network, as
they impede the learning process of the dominant modality.
Current Dilemma. The prevailing dilemma manifests itself as a
delicate trade-off. When attempts are made to mitigate modality
imbalance by restraining the optimization of dominant modalities,
the result can be a decline in the performance of these strong
modalities, consequently exerting a negative impact on the overall
performance of the fusionmodel [9, 16]. On the other hand, if efforts
are oriented toward stimulating slower-learningmodalities to foster
modality balance, it might entail a deceleration in the optimization
pace of the dominant modalities, consequently diminishing the
advantages they bring to the fusion network [15]. Hence, the key
challenge lies in finding a solution to break through this dilemma and
devise a way that can simultaneously tackle both issues effectively.
Our Contributions. To address the aforementioned challenges, we
explore a new path, one that eschews the traditional strategies of ei-
ther suppressing dominant modalities or invigorating weaker ones
to achieve modality balance and boost fusion network performance.
Specifically, we propose an Euler Representation Learning-based
Modality Rebalance (ERL-MR) strategy. In this strategy, our insight
centers on the concept that the Euler vector space transformation of
modal features can aptly capture the interplay between modalities,
effectively reshaping their relationship from competition to mutual

reinforcement. Furthermore, our observations indicate that impos-
ing constraints on the feature phases between different modalities
and optimizing the cross-entropy loss for each modality proves
advantageous in enhancing both modality-specific performance
and the overall performance of fusion network. Therefore, we have
made the following designs:
(D1.) – Euler Transformation Design. In this design, ERL-MR
endeavors to transform the vector feature representations of diverse
modalities into a complex vector space using Euler’s formula, with
the primary objective of enhancing modal features. Subsequently,
we harness the geometric attributes of the Euler transformation to
effectively reconfigure the relationship between modalities, transi-
tioning it from competition to mutual reinforcement. The reason
behind this approach is that within the complex space, our design
has the capacity to model the relationships of phase and modu-
lus associated with different modalities, thereby facilitating the
integration of feature interactions among the modalities.
(D2.) – Constrained Loss Design. In this design, ERL-MR aims to
take into account the performance of each modality and the fusion
model. To achieve this, we propose a joint loss, the multi-modal
constrained loss function, including two critical components: the
cosine similarity constraint, aligning optimization directions be-
tween modalities, and the cross-entropy loss constraint, indicating
the correct optimization direction for each modality. In particular,
in the cosine similarity constraint, we constrain the cosine value of
the phase of the complex features between each modality, which is
equivalent to performing a geometric transformation on complex
features.

The main contributions are summarized below:
• We propose an effective modality rebalance strategy, i.e., ERL-
MR, against modal imbalance in multi-modal learning. This
strategy is model-agnostic and can naturally be integrated
into the framework of multi-modal learning.

• We leverage insights from multi-modal imbalance analysis
to propose two simple yet effective designs: Euler transfor-
mation and multi-modal loss. Additionally, we provide a
complexity analysis of the overall strategy.

• We conduct extensive case studies on six real-world multi-
modal datasets, demonstrating that our strategy significantly
outperforms existing state-of-the-art methods.

2 Related Work
2.1 Multi-modal Learning
Multi-modal learning aims to extract complementary or indepen-
dent knowledge from various modalities, enabling the represen-
tation of multi-modal data [2, 28, 71]. This endeavor empowers
AI models with the capability to comprehend and process diverse
modal information [65]. Within this domain, a valuable research
direction is how to efficiently extract and fuse meaningful repre-
sentations [25, 31, 72]. For example, researchers leverage graph
representations of multi-modal multimedia data to employ knowl-
edge graph embedding techniques [6, 54, 61], facilitating the ac-
complishment of diverse complex tasks, e.g., biological knowledge
graph completion [66, 67], knowledge graph reasoning [75], and
graph recommendation systems [42, 76, 77]. Furthermore, multi-
modal learning technique can serve as a foundational building block
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within a model to harness the potential of multi-modal informa-
tion, leading to enhanced model performance in specific domains,
e.g., traffic trajectory prediction [47, 48, 69], disease diagnosis [4],
action recognition [5, 11, 33], audio-visual speech recognition[32],
and visual question answering [29]. In recent times, multi-modal
techniques have gained significant prominence within the domain
of large language models (LLM), resulting in the development of
multi-modal LLMs tailored for specific applications. Notable exam-
ples include the HuaTuo medical large model [56], Llama 2 [53],
GPT-4 vision model [36, 46], and others, each designed for specific
fields. However, as mentioned above, how to harness the power of
each modality data in multi-modal learning is still an open question.

2.2 Imbalanced Multi-modal Learning
Existing Rebalance Approaches and Their Limitations.One of
the straightforward reasons hindering the realization of the full po-
tential of each modality data is the issue of modality imbalance [5].
To address the problem of modality imbalance, researchers have de-
vised a variety of techniques that can be categorized into two main
groups: gradient-based methods [40, 60, 63, 68] and feature-based
methods [3, 9, 38, 78]. For gradient-based methods, their insight
is to suppress the convergence speed of the dominant modality
through gradient modulation or constraints to achieve modality
balance. Nevertheless, these methods may entail a reduction in the
dominant mode’s contribution to the fusion network, which is not
conducive to enhancing the overall performance of the fusion net-
work [9]. On the other hand, feature-based methods, as employed
in prior research, concentrate on extracting the features of weaker
modes to expedite their convergence for achieving modal balance.
However, such methods do not change the nature of competition
between modalities and cannot significantly improve the overall
performance of the fusion network [16]. Hence, existing methods
tend to address only a limited aspect of the problem, as they do not
alter the fundamental competitive relationship between modalities,
which prevents them from mutually benefiting each other.

2.3 Euler Representation Learning
Euler representation learning is a machine learning technique de-
signed to develop feature representation methods capable of di-
rectly processing geometric data, such as 3D shapes and graph-
ics [27, 34, 57, 59, 64, 74]. Researchers have delved into approaches
involving Euler feature representations to capture the inherent
geometric characteristics of the data, enabling neural networks
(e.g., graph neural networks (GNN) [8, 13, 23]) to effectively handle
geometry-related tasks. For example, Jiang et al. in [18] applied
Euler features to characterize the geometric correlations among
users on the Taobao platform. They harnessed the potent learning
capabilities of GNN to craft a recommendation system capable of
accommodating millions of users. Hence, Euler representation is
frequently employed in the realm of representation learning and
the learning of geometric topological structures, primarily due to
its advantageous properties for feature enhancement and geometric
feature transformation [3, 17, 26, 38, 49]. To this end, we aim toward
balanced multi-modal learning by leveraging the special power of
Euler feature representation in this regard.

3 Preliminaries
3.1 Modality Imbalance
Consider amulti-modal datasetD, which includes𝑀 distinct modal-
ities, labeled as𝑚0,𝑚1, . . . ,𝑚𝑀−1. In the Multi-modal learning, en-
coders𝜓𝑚1 (𝜔𝑚0 , ·),𝜓𝑚1 (𝜔𝑚1 , ·), . . . ,𝜓𝑚1 (𝜔𝑚𝑀−1 , ·) to extract fea-
tures from modality𝑚0,𝑚1, . . . ,𝑚𝑀−1, respectively, where 𝜔 is the
parameters of the encoder. Let 𝑓 represent the fusion model that
has been trained on the dataset D. In this context, the performance
of the multi-modal fusion model and each modality can be denoted
as 𝑓 (D) and 𝑓 (𝑚0), 𝑓 (𝑚1), . . . , 𝑓 (𝑚𝑀−1), respectively. When the
performance of a specific modality significantly exceeds that of
other modalities, this situation is termed modality imbalance, with
the particular modality𝑚𝑖 (𝑖 ∈ {1, 2, · · · , 𝑀 − 1}) identified as the
dominant modality. For each modality𝑚𝑖 , during each iteration 𝑡 ,
if𝑚𝑖 is the dominant modality, the performance measure 𝑓 (𝑚𝑖 )
will converge more rapidly compared to the other modalities. In
addition, we have provided theoretical proof for the definition of
Modality Imbalance [9]. The complete proof can be found in the
full version.

3.2 Euler’s Formula
We briefly introduce the formal expression of Euler’s formula and
its application in complex vector spaces [52]. Euler’s formula is a
foundational mathematical equation in complex analysis, establish-
ing a fundamental connection between trigonometric functions and
the complex exponential function. Specifically, for any real number
𝑥 , Euler’s formula states:

𝑒𝑖𝑥 = cos𝑥 + 𝑖 sin𝑥, (1)

where 𝑒 is the base of the natural logarithm and 𝑖 is the imaginary
unit. Eq. (1) can also be formulated as:

𝝀𝑒𝑖𝜽 = 𝝀 cos𝜽︸  ︷︷  ︸
𝑟𝑒𝑎𝑙

+𝑖 ( 𝝀 sin𝜽︸ ︷︷ ︸
imaginary

), (2)

where 𝝀𝑒𝑖𝜽 and 𝝀 cos𝜽 + 𝑖 (𝝀 sin𝜽 ) represent the complex vector
in polar and rectangular forms, respectively. Here, 𝝀 and 𝜽 are the
modulus and phase of the complex vector. For a complex vector
𝒓 + 𝑖𝒑, we define the real part as 𝒓 = 𝝀 cos𝜽 and the imaginary
part as 𝒑 = 𝝀 sin𝜽 . The modulus 𝝀 and phase 𝜽 can be expressed
as follows:

𝝀 =

√︃
𝒓2 + 𝒑2, 𝜽 = atan2(𝒑, 𝒓) (3)

where atan2(·, ·) denotes the 2-argument arctangent function. The
application of Euler’s formula enables the conversion of complex
vectors from the rectangular form to the polar form, facilitating the
encoding of features in the polar space.

4 Methodology
In contrast to prior efforts that sought to address this problem
by constraining the optimization speed of dominant modalities or
hastening the training of weaker modalities, our objective is to delve
into the intricate relationships between different modality features
with the aim of establishing a state of mutual reinforcement. To
this end, we design two components in the ERL-MR strategy: Euler
Feature Transformation andMulti-modal Constrained Loss.
The overview of the proposed strategy is shown in Fig. 1.
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Figure 1: Overview of ERL-MR strategy, where EFT and FC denote the Euler feature transformation and the fully connected
layer, respectively.
4.1 Feature Mapping via Euler Feature

Transformation
Complex Space Mapping. Our key insight revolves around the
likelihood that the phenomenon of modality imbalance may be at-
tributed to the heterogeneity within the feature spaces of different
modalities. In this context, the first problem we face is how to map
the heterogeneous feature space to a homogeneous feature space to
alleviate the imbalance phenomenon. Inspired by Euler’s formula
(i.e., Eq. (2)), we aim to use it to implement feature mapping. Specifi-
cally, we map the feature embedding vectors produced by the modal
encoder𝜓 from real vector space to complex vector space via Euler’s
formula. Consider a feature embedding 𝒆 𝑗 = 𝜓

𝑚𝑖

𝑗
(𝜔𝑚𝑖 , 𝑥

𝑚𝑖

𝑖
)𝑁
𝑗=1 pro-

duced by the encoder of modality 𝑚𝑖 . Following Eq. (2), we can
map 𝜓𝑚𝑖

𝑗
(𝜔𝑚𝑖 , 𝑥

𝑚𝑖

𝑖
) into the complex vector space, representing

it with two real vectors 𝒓 and 𝒑 to denote the real and imaginary
parts of the complex vector, respectively. Thus, we have:

�̃� 𝑗 = 𝒓 𝑗 + 𝑖𝒑 𝑗 , �̃� 𝑗 = 𝝍 𝑗
𝑚𝑖 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 ), (4)

where �̃� 𝑗 is a feature embedding in the complex vector space. To
transform feature embeddings into complex vectors, the funda-
mental concept is to regard them as phases and integrate learnable
parameters 𝜇 𝑗 as moduli (i.e., 𝜇 𝑗 → 𝝀, 𝒆 𝑗 → 𝜽 ), following Euler’s
formula as presented in Eq. (2):

𝜓 𝑗
𝑚𝑖 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 ) = 𝜇

𝑚𝑖

𝑗
cos

(
𝜓 𝑗

𝑚𝑖 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 )
)

︸                            ︷︷                            ︸
𝑟𝑒𝑎𝑙

+ 𝑖 𝜇𝑚𝑖

𝑗
sin

(
𝜓 𝑗

𝑚𝑖 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 )
)

︸                            ︷︷                            ︸
𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦

.
(5)

For simplicity, we let:

𝜓
𝑚𝑖
𝒓 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 ) ≜ {𝜇𝑚𝑖

𝑗
cos

(
𝜓𝑚𝑖 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 )

)
}𝑁𝑗=1

𝜓
𝑚𝑖
𝒑 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 ) ≜ {𝜇𝑚𝑖

𝑗
sin

(
𝜓𝑚𝑖 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 )

)
}𝑁𝑗=1,

(6)

where 𝑁 is the number of features. Thus, in order to simplify the
expression, we can rewrite Eq. (5) as follows:

𝜓 𝑗
𝑚𝑖 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 ) = 𝜓

𝑚𝑖
𝒓 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 ) + 𝑖𝜓𝑚𝑖

𝒑 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 ). (7)

Insight 1. In multi-modal feature representation learning, Euler’s
formula maps features to the complex vector space, preserving and

sharing valuable information among different modalities. Moreover,
the sine and cosine operations inherent in Euler’s formula con-
tribute to alleviating feature differences between different modali-
ties by employing polar coordinate transformation. Therefore, our
method aims at enhancing feature presentation and minimizing
feature presentation disparities, effectively transforming the com-
petitive relationship between modalities into a cooperative one.
Feature Compression. Although complex space mappings of-
fer feature-enhanced representations, their integration into the
model architecture introduces challenges, notably increased com-
putational costs. This aspect poses difficulties in the practical de-
ployment of this strategy. To address this issue, we design a com-
pression operation that uses a simple linear layer to compress the
features obtained by the complex space mapping operation. Its
formal definition is as follows:

�̂�𝑚𝑖
𝒓 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 ) =𝑊

𝑚𝑖
𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔 ·

[
𝝍𝑚𝑖
𝒓 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 )

]
+ 𝑏𝑚𝑖

𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔 ,

�̂�𝑚𝑖
𝒑 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 ) =𝑊

𝑚𝑖
𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔 ·

[
𝝍𝑚𝑖
𝒑 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 )

]
+ 𝑏𝑚𝑖

𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔 ,

(8)

where �̂�𝑚𝑖
𝒓 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 ) and �̂�𝑚𝑖

𝒑 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 ) respectively represent
the real part feature and imaginary part feature obtained after

the compression operation,𝑊𝑚𝑖
𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔 ∈ R

𝑁×
(
𝑑
𝝍
𝑚𝑖
𝒓 (𝜔𝑚𝑖 ,𝑥𝑚𝑖 )

)
and

𝑏
𝑚𝑖
𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔 ∈ R

𝑑
𝝍
𝑚𝑖
𝒓 (𝜔𝑚𝑖 ,𝑥𝑚𝑖 ) represent the parameters of the linear

layer. After compressing the real and imaginary features, we apply a
nonlinear activation function, i.e., ReLU, to generate the compressed
feature representations via Eq. (9).

𝜓𝑛𝑒𝑤
𝑚𝑖

𝒓
(𝜔𝑚𝑖 , 𝑥𝑚𝑖 ) = ReLU

(
𝜓
𝑚𝑖
𝒓 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 )

)
,

𝜓𝑛𝑒𝑤
𝑚𝑖

𝒑
(𝜔𝑚𝑖 , 𝑥𝑚𝑖 ) = ReLU

(
𝜓
𝑚𝑖
𝒑 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 )

)
.

(9)

Subsequently, we execute a concatenation operation using Eq. (10)
to merge the real and imaginary features into new features for
model training.

𝜓
𝑚𝑖

New (𝜔𝑚𝑖 , 𝑥𝑚𝑖 ) =𝜓𝑛𝑒𝑤𝑚𝑖

𝒓
(𝜔𝑚𝑖 , 𝑥𝑚𝑖 )⊕

𝜓𝑛𝑒𝑤
𝑚𝑖

𝒑
(𝜔𝑚𝑖 , 𝑥𝑚𝑖 ), (10)
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Table 1: Summary of the six multi-modal datasets.

Dataset Modality Information # Classes Object Domain # Samples Size (MB)

USC Accelerometer, Gyroscope 12 People Activity Detection 38312 38.5
AVE Audio, Visual 28 Multiple Scenes Vision 8228 8601.6

MHAD Accelerometer, Skeleton 11 People Activity Detection 3956 187
CGM Colored image, Gray image 10 Digital Vision 160000 1293.8
FLASH GPS, LiDar, Camera 64 Traffic Scenes Autopilot 32923 5232.64
ADM Audio, Radar, Depth image 11 People Medical 22452 30208

where ⊕ represents the concatenation operation, and
𝝍𝑚𝑖

𝑵𝒆𝒘 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 ) is the enhanced feature obtained by con-
catenating the real part feature and the imaginary part feature. It
should be noted that the dimensions of 𝝍𝑚𝑖

𝑵𝒆𝒘 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 ) remain
the same as the original features 𝝍𝑚𝑖 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 ) to maintain the
model structure and reduce computational costs.

4.2 Modal Rebalance via Multi-modal
Constrained Loss

By incorporating complex space feature mapping and enhance-
ment, it refined feature representation facilitating collaborative
training for each modality and establishing a mutually beneficial
relationship. This cooperative approach mitigates the impact of
modal imbalance to some extent. However, we continue to face
the challenge of optimization direction drift, posing an obstacle to
further enhancing the model’s performance.

To tackle the aforementioned challenge, we propose theMulti-
modal Constrained Loss (MMCLoss) to aid in adjusting the
training direction of each modality. To implement this loss, we
initially integrate the concept of phase, leveraging the distinctive
attributes of the complex space. Based on Eq. (3) and Eq. (8), the
phase 𝝋𝑚𝑖 of modality𝑚𝑖 is redefined as:

𝝋𝑚𝑖 = atan2(�̂�𝑚𝑖
𝒑 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 ), �̂�𝑚𝑖

𝒓 (𝜔𝑚𝑖 , 𝑥𝑚𝑖 )). (11)

Insight 2. Utilizing polar coordinate space allows for a deeper
understanding of complex feature information and a clearer per-
ception of feature vector directions compared to rectangular space.
Here, we elaborate on how phase information can guide model op-
timization directions. Initially, we calculate the phase 𝝋𝑚𝑖 of each
modality𝑚𝑖 using Eq. (11), which encapsulates the feature phase
information of modality𝑚𝑖 . Moreover, as illustrated in Eq. (3), the
eigenphase represents the direction indicated by the eigenvector in
polar space. In the multi-modal training, we observe that the phase
and optimization direction of each modality undergoes constant
changes with increasing training epochs. Based on this observation,
we contend that modal phase information can be leveraged to dy-
namically adjust the direction of different modality optimizations.

Building on the prior discussion, in multi-modal learning, the
dynamic phases act as indicators of the model’s adaptive adjust-
ments and optimization trajectory. To mitigate the performance
degradation caused by drift in modal optimization directions, our
objective is to align the optimization directions of each modality
as closely as possible during training. To realize this objective, we
introduce cosine similarity as a mechanism to constrain the feature
phases:

L𝑚𝑖

Cosine-similarity = 1 − 𝝋𝑚𝑖 · 𝝋𝑚𝑖+1

∥𝝋𝑚𝑖 ∥∥𝝋𝑚𝑖+1∥
, (12)

where we use 𝝋𝑚𝑖 and 𝝋𝑚𝑖+1 to represent the phase of the two
modalities for calculating L𝑚𝑖

Cosine-similarity. Through Eq. (12), we

keep the optimization directions of modality 𝑚𝑖 and mode 𝑚𝑖+1
gradually closer during the training process of multi-modal learning.
However, how to ensure the correctness of the constrained opti-
mization direction and maintain the performance of each modality
is another serious challenge.

To this end, we propose a simple and efficient method in MM-
CLosss. Specifically, we cleverly use cross-entropy loss to calculate
the loss of logits of each modality:

L𝑚𝑖

𝐶𝐸
= − 1

𝑁

𝑁∑︁
𝑖=1

log
𝑒
𝑓 (𝑥𝑖𝑚𝑖 )𝑦𝑖∑𝐶

𝑘=1 𝑒
𝑓 (𝑥𝑖𝑚𝑖 )𝑘

, (13)

where L𝑚𝑖

𝐶𝐸
represents the cross-entropy loss of modality 𝑚𝑖 .

Through Eq. (12) (13), we form the MMCLoss as follows:

LMMC =

𝑀−1∑︁
𝑚𝑖=0

L𝑚𝑖

Cosine −𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
+

𝑀∑︁
𝑚𝑖=0

L𝑚𝑖

𝐶𝐸

=

𝑀−1∑︁
𝑚𝑖=0

(1 − 𝝋𝑚𝑖 · 𝝋𝑚𝑖+1

∥𝝋𝑚𝑖 ∥∥𝝋𝑚𝑖+1∥
)

− 1
𝑁

𝑀∑︁
𝑚𝑖=0

𝑁∑︁
𝑖=1

log
𝑒
𝑓 (𝑥𝑖𝑚𝑖 )𝑦𝑖∑𝐶

𝑘=1 𝑒
𝑓 (𝑥𝑖𝑚𝑖 )𝑘

.

(14)

Discussion. The MMCLoss includes two components: cosine sim-
ilarity and cross-entropy. It is crucial to note that the cosine sim-
ilarity part of MMCLoss differs from previous approaches [9, 68]
that concentrated on constraining the angle of the gradient. In our
design, we leverage the complex phase to constrain the optimiza-
tion direction between different modalities. Additionally, MMCLoss
incorporates the cross-entropy loss of each modality, ensuring that
the training process of different modalities consistently follows
the correct path, thereby fostering cooperation between modalities
while avoiding biased optimization directions. In this manner, MM-
CLoss facilitates the fusion model in achieving higher performance
levels and maintaining modality balance from two perspectives.

Furthermore, we offer additional elucidation from the standpoint
of visualization and complex triangle inequality theory in the full
version to support the conclusion that the ERL-MR strategy en-
hances correlation and complementarity among diverse modality
data, effectively governing the optimization speed and direction of
the model.

4.3 Complexity Analysis
We present a time complexity analysis of the proposed ERL-MR
strategy. Furthermore, the complete algorithm for the ERL-MR
strategy is shown in Algorithm 1 in the full version. For simplicity,
we assume that a convolutional neural network is applied in the
feature extraction process. In addition to the computation com-
plexity of both convolution operation per sample and the gradient
update, the complexity for Euler feature transformation and feature
compression can be calculated as 𝑂 (1) +𝑂 (2𝜁 2) where 𝜁 is the
dimensionality of𝜓𝑚𝑖

𝒓 (𝜔𝑚𝑖 , 𝑥𝑚𝑚𝑖 ). For MMCLoss, the complexity
of this operation is𝑂 (𝑀) +𝑂 (𝑀 ·𝑁 ·𝐶) due to the LCosine-similarity
and L𝐶𝐸 involved. Therefore, the introduced additional complexity
for the proposed ERL-MR strategy is 𝑂 (2𝜁 2 +𝑀 +𝑀 · 𝑁 ·𝐶).
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5 Evaluation
5.1 Experimental Settings
To evaluate the performance of our ERL-MR strategy, we conduct ex-
tensive experiments on six benchmarking datasets. All experiments
are developed using Python 3.9 and PyTorch 1.12 and evaluated on
a server with an NVIDIA A100 GPU.
Datasets. We validated the ERL-MR strategy from multiple task
perspectives using six multi-modal multimedia datasets in the ex-
periment, including USC Dataset [73], AVE Dataset [51], MHAD
Dataset, Colored-gray MNIST Dataset (CGM) [21], FLASH Dataset
[45] and Alzheimer’s Disease Monitoring (ADM) Dataset [37]. Table
1 summarizes the attribute information of the various multi-modal
benchmark datasets in the experiment, and the complete informa-
tion is provided in the full version.
Models. For the ADM dataset, we utilize the TDNN architecture
[55] to extract audio features, while CNN layers are employed for
extracting radar and depth image features. For USC, MHAD, and
Flash datasets, we utilize a 2D-CNNmodel for the GPS data, whereas
a 3D-CNN architecture is used to handle the skeleton, Lidar, and
image data. For the AVE dataset, we adopt ResNet18 [12] as the
encoder backbone and map the input data into a 512-dimensional
vector. In terms of the audio modality, the data is converted into a
spectrogram of size 257×1004. For the visual modality, we randomly
select 4 frames from the video clips to construct the training dataset.
For the CGM dataset, we design a model with 4 convolutional layers
and 1 average pooling layer as the encoder.
Hyperparameters. For the ADM dataset, the learning rate is 1e-3,
and the batch size is 64. Regarding the USC dataset, the learning
rate is 1e-6, and the batch size is 16. For the USC, MHAD, and Flash
datasets, the learning rate is 1e-3, and the batch sizes are 16, 16, and
96, respectively. For the AVE dataset and the CGM dataset, we set
the learning rates to 1e-4 and 1e-3 respectively and the batch size
is set to 64. In this experiment, we employ the SGD optimizer [44]
with a momentum of 0.9 and a weight decay of 1e-4.
Baselines. To verify the proposed ERL-MR strategy, We adopt the
following state-of-the-art "modality imbalance" solutions as the
baselines: PMR [9], MMCosine [68], OGM-GE [40] and Gradient-
Blending [60]. The complete baselines information is provided in
the full version. To ensure fairness, we make efforts to reproduce all
baseline methods and utilize the same network structure, number
of training epochs, and SGD optimizer in all tasks.

5.2 Numerical Results
In this section, We have provided relevant experimental results
on multiple research questions (RQ1-RQ6) related to the ERL-MR
strategy on six multimodal datasets.
Overall Performance of ERL-MR with Different Conven-
tional Fusion Methods (RQ1). We first apply the ERL-MR to
several conventional fusion methods, including Concatenation,
Summation, FiLM [41], and Gated [20], and subsequently evaluate
their performance on multiple datasets, as presented in Table 2. The
table also includes the performance results of each uni-modality.
The results reveal significant variability in the performance of each
uni-modal model across different datasets, indicating a common
phenomenon of performance imbalance in multi-modal learning.

Table 2: Performance Accuracy results on AVE, USC , MHAD
and CGM datasets with various fusion methods. † indicates
the ERL-MR strategy is applied. The best results are under-
lined (also applicable throughout the text).

Dataset AVE USC MHAD CGM

Fusion Acc (%)

Uni-Modal 1 38.1 56.0 84.9 99.3
Uni-Modal 2 11.9 46.0 58.8 60.4

Concatenation 42.0 61.0 94.6 58.4
Summation 40.0 62.6 94.9 59.1

Film 45.5 63.6 95.2 60.0
Gated 39.3 62.3 94.1 59.8

Concatenation† 51.0 67.0 95.4 97.1
Summation† 50.0 65.4 95.1 97.4

Film† 49.3 67.1 95.8 92.6
Gated† 52.7 66.1 96.0 76.4

It is noteworthy that in certain cases, the performance of the uni-
modal models outperformed that of the multi-modal models em-
ploying the standard fusion methods. This finding, exemplified
by Sec. 3.1, clearly illustrates the inhibitory relationship among
modalities. Furthermore, based on experimental results, we find
that the performance impact of dataset size on the ERL-MR strategy
is obvious. The smaller datasets inherently possess limited feature
information, resulting in relatively minor small performance en-
hancements. Conversely, the larger datasets exhibit a more sub-
stantial improvement effect. For example, ERL-MR strategy has
yielded remarkable results in the CGM dataset. The multi-modal
model leveraging this strategy surpasses the performance of the
top-performing uni-modal model and overcomes the suppressive
effect between modalities. In general, the application of our ERL-
MR strategy leads to significant improvements on four datasets in
comparison to each fusion method.
Performance Comparison with State-of-the-art Baselines
(RQ2). We conduct a comparative analysis of our ERL-MR strat-
egy against four state-of-the-art imbalanced modality modulation
schemes: Gradient-Blending, OGM-GE, MMCosine, and PMR. For
a comprehensive and fair comparison, in this experiment, we also
test the performance of baselines using different fusion methods. As
shown in Table 3, the experimental results show that the baseline
methods outperform conventional fusion methods, yet they are still
significantly surpassed by our proposed ERL-MR strategy. Themain
factor contributing to this improvement is the design of our Euler
Transformation, which enhances the representation capabilities of
various modalities, enabling them to reinforce mutually. When com-
bined with the MMCloss, the ERL-MR strategy achieves even more
substantial performance gains, benefiting from as the effective con-
straints ensure the accurate model optimization. Furthermore, it is
worth mentioning that Gradient-Blending necessitates the training
of an additional uni-modal classifier and thus involves additional
computations to validate the results. OGM-GE can only be directly
applied in the form of concatenation and is not applicable to not in
FiLM, thereby necessitating periodic modulation during the train-
ing process. PMR requires additional calculations for the prototype,
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Table 3: Accuracy performance (%) comparison results between ERL-MR and four state-of-the-art baseline fusion methods on
AVE, USC, MHAD, and CGM datasets.

Method G-Blend OGM-GE MMCosine PMR Ours

Dataset Modality Concat Sum Film Gated Concat Sum Film Gated Concat Sum Film Gated Concat Sum Film Gated Concat Sum Film Gated

Accelerometer 60.7 59.5 62.7 58.6 39.9 39.4 56.6 47.6 42.3 39.0 56.2 37.3 39.1 39.7 45.4 49.1 64.6 64.0 62.6 64.7

Gyroscope 58.5 57.3 60.6 59.3 46.6 45.4 50.7 49.7 36.6 34.9 46.4 37.7 38.6 37.3 33.9 39.8 61.4 62.4 62.4 64.1USC

Fusion 61.7 60.1 64.1 61.6 59.7 61.6 63.4 61.1 62.7 63.0 61.4 62.7 55.1 61.0 57.4 63.7 67.0 65.4 67.1 66.1

Audio 35.3 35.6 31.8 35.1 36.3 35.6 34.2 32.3 43.5 43.8 35.8 42.7 35.1 40.3 38.6 35.8 44.0 40.3 37.5 39.6

Visual 24.1 27.6 24.4 25.1 12.2 13.2 12.1 11.8 16.2 20.9 10.2 10.4 16.7 17.4 16.9 16.4 35.1 30.6 25.1 32.1AVE

Fusion 45.0 49.8 38.3 44.5 41.3 44.5 42.0 35.8 42.3 48.8 39.1 46.3 42.0 43.3 40.5 40.5 51.0 50.0 49.3 52.7

Accelerometer 81.3 82.7 91.8 82.2 45.1 54.3 85.5 81.7 65.7 67.6 90.7 61.7 54.3 39.4 46.5 24.1 82.6 81.5 93.2 79.4

Skeleton 91.8 92.2 91.8 92.3 92.2 89.3 58.6 93.0 91.1 92.3 77.3 91.7 54.0 51.2 57.5 65.8 93.2 94.8 94.5 94.8MHAD

Fusion 92.8 93.1 91.9 92.8 94.8 94.8 93.0 94.4 93.5 94.2 93.8 95.0 94.8 95.2 91.9 94.8 95.4 95.1 95.8 96.0

Colored image 99.1 99.2 99.1 99.3 21.3 19.6 22.0 11.3 98.7 98.8 99.2 99.1 91.8 92.1 91.7 92.2 99.4 99.5 99.5 99.5

Gray image 63.0 63.6 63.2 63.6 57.1 59.2 10.4 66.8 23.0 20.6 14.0 14.0 65.8 62.8 61.2 63.1 62.8 65.0 69.1 68.7CGM

Fusion 92.8 94.1 74.3 76.1 69.1 64.1 66.7 66.7 68.5 65.9 81.2 81.2 77.2 78.5 76.3 68.7 97.1 87.4 92.6 76.4
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Figure 2: Performance curves of modality balance on AVE, MHAD, and Flash datasets. Note the summation fusion method used
in the AVE and Flash datasets, while FiLM is used in MHAD. † indicates ERL-MR strategy is applied.
resulting in significant computational overhead. In contrast, our
method merely requires the implementation of a straightforward
Euler component and is independent of both the fusion method and
the network structure. This enables our approach to be applicable to
a wider range of scenarios.
Modality Imbalance Mitigation Performance Demonstration
(RQ3). In this experiment, we demonstrate the improvements in
modality balance performance achieved by the ERL-MR strategy.
The experimental results are depcited in Fig. 2. Specifically, Fig. 2a
demonstrates the performance discrepancy between the visual and
audio modalities in the AVE dataset. Without the applying ERL-MR
strategy, the visual modality exhibited lower performance, while
the audio modality demonstrated higher performance. With the
applying ERL-MR strategy, however, we observed a continuous
improvement in the performance of the visual modality during
training, eventually reaching a performance level similar to that of
the audio modality. In addition, we can find that the performance
of the audio modality is further improved with the help of ERL-MR.
Both modalities outperform the results obtained without ERL-MR,
demonstrating a relatively balanced performance. This indicates
that ERL-MR alleviates the modality imbalance and achieves the
better uni-modal performance in this case. Likewise, the similar re-
sults are also observed on the MHAD dataset, providing additional

support for our assertion, as illustrated in Fig. 2b. To explore the
performance of ERL-MR in more than two modalities application
scenarios, we conducted experiments on the Flash dataset. The
results are shown in Fig. 2c. Upon applying ERL-MR, the perfor-
mance enhancements across all modalities, albeit to a lesser extent
in the GPS modality. We attribute this observation to two factors.
First, the tasks involving more modalities (more than 2) tend to be
more complex, resulting in leading to the increased task complexity
and inter-modality connections. Second, GPS data often exhibits
high randomness, making the information obtained less effective
during training. Nonetheless, the results in Fig. 2c demonstrate
the effectiveness of our ERL-MR strategy in balancing uni-modal
performance, even in complex tasks involving multiple modalities.
Performance under Diverse Real-world Tasks (RQ4).
Autonomous Driving. In this experiment, we conduct experiments
on the Flash dataset and present the experimental results in Fig. 3a.
The results reveal a significant modality imbalance issue among
the three modalities of the Flash dataset when ERL-MR strategy
is not applied. In this scenario, the GPS and lidar modalities are
underutilized, and the image modality dominates. In this context,
the implementation of ERL-MR strategy not only enhances the
performance of the fusion network but also leads to better per-
formance of the lidar modality. Additionally, due to the inherent
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Figure 3: Experimental results are obtained by the concate-
nation and summation fusion methods on Flash and AD
datasets.
Table 4: Performance on USC and AVE with the intermediate
fusion methods (MMTM and CentralNet).

Method MMTM MMTM† CentralNet CentralNet†

Dataset Acc (%)
USC 63.6 67.6 59.4 61.6
AVE 41.8 48.3 48.8 49.0

uncertainties in GPS modality data, traditional methods struggle to
capture correlations between GPS modality and other modalities.
In this work, ERL-MR strategy significantly enhances the perfor-
mance of the GPS modality, aligning with its goal of promoting
mutually beneficial cooperation rather than competition among
different modalities. Highlighting the effectiveness of the ERL-MR
strategy in the autonomous driving domain.
Alzheimer’s Disease Monitoring. In this experiment, we conduct
the ERL-MR strategy on ADM dataset. The experimental results
are shown in Fig. 3b. We can find that the application of ERL-MR
strategy shows the improvement in the accuracy of monitoring
Alzheimer’s disease. The training process reveals the dominance
of the depth image modality, primarily owing to its direct respon-
siveness to patient behavior. In this context, the ERL-MR strategy
significantly improves the performance of audio and radar modali-
ties. Through the collaborative optimization of all three modalities,
we achieve more accurate monitoring of Alzheimer’s disease. This
observation highlights the effectiveness of the ERL-MR strategy
and its great potential in the healthcare domain.
Impact of Different Fusion Stages on Performance (RQ5).
In the aforementioned previous experiments, we explore four fu-
sion methods, where the fusion stage is positioned after either the
encoder or the classifier. To further investigate the versatility of
our ERL-MR strategy, we introduce incorporate two intermediate
fusion methods, i.e., MMTM [19] and CentralNet [54], testing on
AVE and USC datasets. We analyze the performance of scenarios
with ERL-MR and that of scenarios without ERL-MR. In the AVE
dataset, we employ ResNet18 as the backbone and apply MMTM
in the final three residual blocks. To simplify the experiment, we
only use one frame per video. Due to the lightweight nature of the
USC dataset, we only employ MMTM in the last layer of encoders.
For CentralNet, we use it in each layer of encoders. The results in
Table 4 demonstrate that our ERL-MR strategy achieves significant
performance improvements when it is combined with intermediate
fusion methods, that is, the fusion occurs at the encoder processing
stage. The finding suggests that our proposed ERL-MR strategy is

Table 5: Ablation experiments with multiple fusion methods
conducted on the USC dataset. ✓ denotes the application of
the method or constraint, while ✗ indicates its absence.

Dataset USC

Fusion E C1 C2 E C1 C2 E C1 C2 E C1 C2 E C1 C2 E C1 C2
✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓

Concat 61.0 63.4 63.7 64.8 61.4 67.0
Sum 62.6 65.3 64.0 64.3 61.9 65.4
FiLM 63.6 65.9 65.3 64.7 63.6 66.1
Gated 62.3 63.9 64.6 63.4 62.4 67.1

adaptable to various fusion stages, demonstrating good scalability
and stability in diverse scenarios.
Impact of Euler Transformation and MMCLoss on Perfor-
mance (RQ6). In the proposed ERL-MR strategy, the fundamental
components are Euler transformation and MMCLoss. Therefore, we
further analyze the impact of the two components on the overall
performance of the fusion network. The accuracy results (%) are
shown in Table 5, where E represents the Euler feature transfor-
mation method, C1 and C2 denote the cosine similarity constraint
and cross-entropy constraint in MMCLoss, respectively. It is im-
portant to note that C1 and E are tightly coupled in our strategy,
thus the separate performance experiments using only C1 were
not conducted. The experimental results demonstrate that, except
when only C2 is applied, using each component individually or in
combination results in performance improvements compared to the
baseline method. This indicates an essential relationship between
improving model performance and the inclusion of component E.
Additionally, combining component E with either C1 or C2 re-
sults in limited improvement compared to applying component E
alone. However, when all three components are simultaneously
applied, the performance is further improved, providing additional
evidence of the effectiveness of each component in the ERL-MR
strategy. Specifically, component E provides fine-grained enhance-
ment features for each modality, while C1 and C2 guide the overall
optimization direction by constraining these enhancement features.
This strategy addresses the issue of modality imbalance and bolsters
the performance of multi-modal models.

6 Conclusion
In this work, we introduced the ERL-MR strategy as a novel ap-
proach to mitigate modality imbalance in multi-modal learning.
This strategy effectively transforms the competitive dynamics be-
tween modalities, ensuring a stable feature optimization direction
and promoting a mutually reinforcing collaboration among modali-
ties. Importantly, this strategy is versatile, accommodating various
multi-modal learning tasks with diverse data modalities and net-
work architectures. Through comprehensive analysis and experi-
mental validation across different datasets, encompassing various
modalities, network structures, and application scenarios, the pro-
posed strategy has consistently demonstrated its efficacy. ERL-MR
emerges as a robust solution to address the challenges posed by
modality imbalance in multi-modal learning, leading to significant
improvements in model performance. These findings highlight the
promising potential of the ERL-MR strategy for advancing robust
multi-modal learning in real-world application scenarios.
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