Supplementary Materials: ERL-MR

A Appendix for Modality Imbalance

THEOREM A.1. For each modality m;, during each iteration t, if
m; is the dominant modality, the performance measure f(m;) will
converge more rapidly compared to the other modalities.

Proor. To facilitate our analysis, we begin by considering a
multi-modal dataset 9 comprising two distinct modalities, de-
noted as mo and mj. Thus, D can be represented as D =
{(x;no,x;nl, yi)}ﬁl, where N is the number of samples and y =
{1,2,...,C} (C is the number of classes). Thus, we also have
f:x — vy, Le, the goal of f is to predict y from x.

Considering the general process of multimodal learning, we use
encoders 1% (™, -) and /! (@™, -) to extract features from modal-
ity my and modality mj, respectively, where ©™0 and ™! are the
parameters of the encoder. After feature extraction, we need to
perform a fusion operation on the extracted features. For simplicity,
we use the vanilla fusion method, concatenation, to perform the fu-
sion operation, which is widely used in multi-modal learning [2, 9].
Thus, the formal expression of the concatenation fusion operation
is as follows:

Fa) =W [P0(@™, %)y (@™, x™)] + 0, 1)

where W € RE¥(@0%dy1) s the weight matrix, b € R denotes the

parameters of the last linear classifier, and f(x;) is the logits output
of the fusion model f. To facilitate the individual observation of the
optimization process for each modality, the weight matrix W can be
expressed as the combination of two distinct blocks: [W™e, W],
Eq. (1) can be rewritten as follows:

FGxi) = WMy (™, x™) + W™ -yl (0™, %) + b, (2)

Subsequently, we define the loss function for the optimization pro-
cess of each modality. Without any loss of generality, we illustrate
this using the cross-entropy loss as an example, which is formally
defined as follows:

f(xz)yl
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Generally, the stochastic gradient descent (SGD) algorithm is used
to iteratively optimize Eq. (3). Then W™e (W'1) and the parameters
encoder /% (0™, -) (! (w™,-)) are updated in the ¢ + 1 training
round as follows:
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where 7 is the learning rate and t denotes the current training
round. Inspired by previous work [2-4, 9] and combined with Egs.

(3)-(4), we derive the following lessons: (L1) There is almost no

correlation between the optimization of W and /°(w, -) across dif-

ferent modalities; (L2) The term g fl(:?) related to the training loss

can generalize the optimization correlation of W and ¢/°(w, -) be-
tween different modalities. The reason is that the encoder of each
modality is optimized independently but the term 3 fL( S needs to

be optimized for all modalities. To do this, we need to observe the

gradient aa in;E) for true label y; and analyze it in conjunction with

Eq. (2):
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where WMo . ™0 = WMo . 0 (™Mo, x;""). Furthermore, to quanti-
tatively evaluate the performance of each modality and the fusion

model with respect to the training loss term, we provide the output
logits for the ground truth label y as follows:

s¥ = softmax(W™ - ° + b/2)y

s' = softmax(W™ -y +b/2), (7

s/ = softmax(W™ - Yorwm™ .yl b)y.
Discussion. (1) First, we discuss how each modality contributes
to the % via W - . Referring to Eq. (6), it becomes evident

that when a specific modality demonstrates superior performance,
it will exert a predominant influence on the optimization of the

training loss term - fL( - via W - /. Consequently, in such a sce-
nario, the modality with lower performance experiences a slower
optimization pace due to its limited contribution to the training
loss term, ultimately impeding the progress of the fusion model. It
is worth noting that the above findings are consistent with the con-
clusions of previous work [2-4, 9]. (2) Second, we offer an insight
that even if attempts are made to restrain dominant modalities to
achieve modality balance, enhancing the overall performance of
the fusion network proves to be a huge challenge. As indicated by
Eq. (7), we understand that the performance of s/ is contingent
on the combined performance of both modalities, rather than any
single one in isolation. O

B Appendix for Methodology

B.1 Explanations for ERL-MR

In order to verify the effectiveness of the proposed ERL-MR strategy
in alleviating the modality imbalance phenomenon, we need to
answer the following two questions:

e Q1: How does ERL-MR strategy improve the correlation and
complementarity between different modality data?

e Q2: How does ERL-MR strategy efficiently constrain the
optimization speed and direction of different modality data?
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Figure 1: The feature representation maps of Modality 1 and Modality 2 obtained from the USC dataset at the 60th epoch.

indicates the ERL-MR strategy is applied.
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Figure 2: The visual understanding of the multi-modal inter-
actions in ERL-MR.
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Figure 3: (a) Visualization of loss landscape when applying
ERL-MR strategy. (b) Visualization of the loss landscape when
the ERL-MR strategy is not applied.

Visualized Intuitive Explanation of Euler Feature Transfor-
mation. To address Q1, we introduce an Euler feature transfor-
mation design that effectively enhances the correlation and com-
plementarity between different modalities. As illustrated in Fig. 1,
Euler feature transformation not only substantially improves the
feature correlation between different modalities but also reduces
the redundancy of feature information. Specifically, we observe that
the feature heatmaps of the two modalities generated by the ERL-
MR strategy (i.e., left of Fig. 1) are not only similar but also exhibit
highly sparse. In contrast, the feature heatmaps of the two modal-
ities that do not utilize our strategy (i.e., right of Fig. 1) are quite
different and possess highly redundant features. Next, we illustrate
that Euler feature transformation can also enhance the complemen-
tarity between modality data. Let z; = A;e/9" represent a complex
feature vector from one modality, and z; = Aze/ 62 represent a
complex feature vector from another modality. According to the

triangle inequality for complex numbers, i.e., |z1 + z2| < |z1] + |22/,
we have:

|A1e/% + Azl | < |A1e7% | + |Aze®|

®)
= |A1] +|Az].

The above inequality demonstrates that the modulus of the com-

bined complex representation |z; + zz| is limited by the sum of the
modulus amplitudes of the individual modalities (|A1| + |Az[). This
inequality indicates that if A; and A are significantly different, the
combined modulus magnitude can not be larger than the sum of
the individual modulus. Therefore, it shows that complex represen-
tation maintains the modulus complementarity across modalities.
In addition, Fig. 2 also shows the geometric interpretation of the
complementarity between modalities enhanced by Euler feature
transformation.
Visualized Explanation of Multi-modal Constrained Loss. To
address Q2, we visualize the loss landscape of MMCLoss and con-
ventional lossin Fig. 3a, revealing that the convergence of MMCLoss
is characterized by smooth and stable trajectories. In contrast, the
convergence of the conventional loss not only exhibits significant
jitter but also results in larger loss values, as shown in Fig. 3b. It im-
plies that MMCLoss effectively constrains the gradient optimization
direction between different modalities, leading to stable and smooth
convergence. This success is attributed to MMCLoss’s ability to
constrain the phases of the complex features.

B.2 ERL-MR Algorithm

Here, we briefly present the specific process of the ERL-MR strategy
in Algorithm 1. At each epoch, a multi-modal training batch B;
is fed into the model as the input, and the features are extracted
simultaneously for each modality m; (Line 5). Lines 7-8 and Line 10
summarize the designed Euler feature transformation and feature
compression, respectively. Line 11 illustrates the phase extraction
of the complex features. Line 12 indicates the calculation of the
cross-entropy loss at each training batch. Lines 14-16 outline the
process of MMCloss, while Line 17 details the model parameter
update.

C Appendix for Evaluation

C.1 Dataset Information

USC Dataset [14]. The dataset comprises data collected from 14
users using 3-axis accelerometers and 3-axis gyroscopes. Two types
of sensors have the same sampling rate of 100 Hz. In each 2-second
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Algorithm 1: ERL-MR Algorithm

N
Input: The dataset D = {(x.mo,xm, XML yi)} ,

1 1 1

the initialized encoder parameters for each mé)dlality
o wl,..., oM™ and the number of epoch E;
Result: Opitimal model parameters of each modality
&% 0!, ... oMY
while training do
fort=1,2,...,Edo
Feeding-forward each mini-batch data 8; € D to the
model;
for each modality m; in parallel do
Generate the embedding feature via the encoder

lpmi (wmi’ xml);
// —Complex Space Mapping—-//;
Obtain the real part feature 177 (™, x™);
Obtain the imaginary part feature

U o™, xm;
// —Feature Compression—-//;
Obtain yyi (™, x™) via Eq. (8)-(10);
Calculate the phase ¢™: via Eq. (11);
Calculate the Lg]l:" via Eq. (13);
end
Calculate the Zﬁ\"/lz_:}) 'Egloisine—similarity
// —MMCLoss—~//;
Calculate the Lyvic via Eq. (14);
Update the model based on Lyvic by using SGD;

via Eq. (12);

end
end

time window, a 600-dimensional vector is generated as each modal-
ity data. These vectors capture the data from the accelerometers
and gyroscopes, providing a comprehensive representation of the
respective modalities.

AVE Dataset [11]. The dataset is a specialized audio-visual video
dataset for audiovisual event localization. It contains a total of 4,143
10-second videos collected from the YouTube website. The dataset
covers a diverse set of 28 event classes and provides both auditory
and visual trajectories, accompanied by secondary annotations. To
support training and evaluation, the dataset is used in the experi-
ment according to the predefined training and validation splits as
defined in reference [11].

MHAD Dataset [7]. The dataset consists of data related to 11
different human behaviors, collected from a total of 12 subjects.
Each frame of multi-modal data in the dataset includes two types of
information: 3D accelerometer data and 35 X 3 dimensional skeletal
points. In order to extract data samples, a sliding time window of 2
seconds is utilized for each subject. With this setup, approximately
330 samples are generated for each subject in the dataset.

Colored-gray MNIST Dataset (CGM) [5]. The dataset also known
as CG-MNIST, is a synthetic dataset derived from the MNIST [6]
dataset. CGM comprises pairs of images, where each pair consists
of a gray-scale image and a monochrome image. The training set
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of CGM contains 60, 000 instances, where the monochrome images
exhibit a strong color correlation with their respective numerical la-
bels. Additionally, the testing set of CGM contains 10, 000 instances
with the weakened color correlation between the monochrome
images and their labels compared to the training set.

FLASH Dataset [10]. The dataset consists of data collected by
autonomous vehicles using GPS, lidar, and cameras. The data col-
lection occurs at a frequency of 10 Hz. Each sample in the dataset
includes a 64-dimensional RF ground truth and synchronized multi-
modal sensor data. The dimensions of the sensor data are as follows:
[1,2] for GPS, [20, 20, 20] for lidar, and [3, 360, 640] for images. Its
task is to select high-band sectors for mmWave beamforming in
mobile V2X communication scenarios.

Alzheimer’s Disease Monitoring (ADM) Dataset [8]. The dataset
focuses on detecting Alzheimer’s disease by analyzing 11 behav-
ioral biomarkers in natural home environments. These biomarkers
include activities such as cleaning living areas, taking medications,
using mobile phones, writing, sitting, standing, getting in and out
of chairs/beds, walking, sleeping, eating, and drinking. The three
modal data of depth images, radar, and audio are obtained by sam-
pling from the depth camera, mmWave radar, and microphone at
sampling rates of 15 Hz, 20 Hz, 44 Hz, and 100 Hz, respectively.

CREMA-D Dataset [1]. The dataset comprises both facial and
vocal emotional expressions, forming an audio-visual collection de-
signed for emotion recognition research. It encompasses 7442 clips,
representing emotional states categorized into six groups: happy,
sad, anger, fear, disgust, and neutral. These clips are randomly split
into 6698 samples for training and 744 samples for testing.

C.2 Baselines Information

PMR [2]. The PMR utilized prototypes to assess modality perfor-
mance by measuring the sample distance between them. This en-
ables continuous monitoring of modality imbalance during the
training process. The introduced PCE loss improves prototype clus-
tering, facilitates faster learning, reduces the dominance of uni-
modality, alleviates the issue of modality imbalance, and solely
relying on modality representation.

MMCosine [13]. The Multi-modal Cosine Loss (MMCosine) miti-
gates the norm dominance by trained uni-modal encoders through
the modality-specific Ly normalization on features and weights. It
regulates the angle relationship between weights and features using
cosine similarity, which alleviates alleviating optimization imbal-
ance and facilitates facilitating multi-modal fine-grained learning.

OGM-GE [9]. The On-the-fly Gradient Modulation (OGM) strat-
egy dynamically monitors the varying contributions of different
modalities to the learning target during the training process. It
adjusts the gradient accordingly to allocate more efforts to under-
optimized modalities. Additionally, OGM introduces dynamically
changing Gaussian noise to achieve Generalization Enhancement
(GE), leading to significant performance improvements in under-
optimized uni-modal representations.

Gradient-Blending [12]. The Gradient Blending (G-Blend) method
minimizes the overfitting generalization ratio (OGR) by blending
multiple supervision signals. To address the varied rates of overfit-
ting and generalization across modalities, G-Blend employs joint
training instead of a single optimization strategy. By calculating an
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Table 1: Comparison of time overhead per epoch (seconds).

Method ‘ Dataset

| USC MHAD CGMNIST AVE
None 2.2 33 244 112.2
G-Blend 2.5 3.8 24.5 112.9
OGM-GE | 6.1 7.5 29.9 149.9
MMCosine | 25 3.9 24.6 113.9
PMR 9.7 17.2 159.6 188.4
Ours 25 34 24.7 113.5

Table 2: Accuracy (%) comparison on ADM and Flash.

Method | ADM | Flash

‘ Concat Sum FiLM Gated ‘ Concat Sum FiLM Gated
G-Blend 38.2 35.5 36.3 36.3 57.4 56.5 57.2 56.9
OGM-GE 375 35.2 349 34.2 56.9 57.2 57.4 57.3
MMCosine 35.1 35.9 34.5 35.4 57.2 56.9 57.1 57.3
PMR 37.2 34.6 35.0 35.1 57.3 56.7 56.5 57.4
Ours 41.3 38.5 39.2 38.7 58.7 58.3 57.6 57.9

Table 3: Accuracy (%) comparison on CREAM-D.

Method | CREMA-D

| Concat Sum Film Gated
G-Blend 58.2 57.8 59.9 57.1
OGM-GE 58.9 58.4 60.9 60.0
MMCosine 57.4 58.8 59.1 61.3
PMR 58.4 57.3 61.2 59.3
Ours 69.0 66.8 67.2 66.3

optimal blend among modalities, G-Blend effectively mitigates over-
fitting issues that arise from increased network capacity, resulting
in improved performance.

C.3 Supplementary Experiments

In this part, we have conducted supplementary experiments to fur-
ther validate the effectiveness of ERL-MR. These include compara-
tive experiments on time overhead (Table 1), detailed comparative
experiments on ADM and Flash datasets (Table 2), comparative
experiments on the additional dataset CREAM-D (Table 3), and
performance curves of modality balance on the ADM dataset (Fig.
4). The results indicate that ERL-MR exhibited better performance
in both time overhead and performance comparison experiments.
Furthermore, Fig. 4 illustrated the mitigating effect of ERL-MR on
modality imbalance within the ADM dataset.
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