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Abstract—Teleoperation in robotic systems encompasses three
primary modes of control: full teleoperation, shared control,
and autonomous operation. Full teleoperation allows human
operators to have complete control over the robot, enabling
real-time manipulation and decision making. Shared control,
a hybrid approach, integrates elements of both teleoperation
and autonomous control, permitting human intervention in
specific scenarios while maintaining a degree of autonomous
functionality. Autonomous operation relies entirely on the robot’s
decision-making algorithms to perform tasks without human
input. Although shared control has proven effective in static
environments, recent studies indicate that its benefits diminish
in dynamic settings due to the increased cognitive load on the
human operator and the frequent need to switch between modes.
The advent of multimodal large language models (LLMs) such
as GPT-4 and Gemini has significantly advanced visual scene
understanding and language-based reasoning. These capabilities
can enhance shared control systems by allowing operators to
act as global planners and provide natural language commands,
reducing the need for constant switching. This paper proposes a
novel approach that combines language-driven machine learning
models with shared control frameworks to improve human-robot
interaction in both static and dynamic environments. We develop
a language-model-guided shared control mechanism and evalu-
ate its performance across various settings. Results from both
qualitative feedback and quantitative metrics demonstrate that
our LLM-based shared controller successfully reduces operator
cognitive burden while improving overall task performance.

Index Terms—shared control, LLM, teleoperation, user per-
ception

I. INTRODUCTION

Teleoperation in robotic systems involves three main modes
of control: full teleoperation, shared control, and autonomous
operation [1]. Full teleoperation grants the human operator
complete control over the robot, providing real-time manip-
ulation and decision-making capabilities. Shared control, a
hybrid approach, combines elements of both teleoperation and
autonomous control, allowing human intervention in specific
scenarios while the robot maintains a degree of autonomous
functionality [2]–[9]. Autonomous operation, on the other
hand, relies entirely on the robot’s decision-making algorithms
to navigate and perform tasks without human input.

Shared control has been shown to be effective in static
environments [10], where the stability and predictability of
the environment allow efficient human-robot collaboration.
However, a recent study indicates that the benefits of shared
control diminish in dynamic environments, where obstacles
and environmental conditions may change unpredictably [11].
This study did not find a clear preference for a mode of control
in such settings, suggesting that the increased cognitive load
and the frequent need to switch between autonomous and
teleoperated modes may reduce the overall effectiveness of
shared control in dynamic scenarios.

Shared control in robotic systems uses human guidance for
complex maneuvering scenarios, positioning humans as global
planners. However, in dynamic environments where obstacles
can appear unexpectedly, this approach can increase cognitive
load and frustration for the human operator compared to
direct teleoperation. Human operators, hereafter referred to as
controllers, might find it easier to handle constant stimuli in a
dynamic setting with a fully teleoperated robot, rather than
frequently switching between autonomous and teleoperated
modes.

The advent of multimodal large language models (LLMs)
such as GPT-4 [12] and Gemini [13] has significantly advanced
visual scene understanding and language-based reasoning.
These capabilities can be harnessed to improve shared control
systems by allowing operators to provide natural language
commands, which could reduce the need for constant switch-
ing. Acting as substitutes for traditional shared controllers,
multimodal LLMs can interpret and execute natural language
instructions in real time. This approach not only mitigates the
cognitive load on the human operator, but also enhances the
overall efficiency and safety of robotic operations in dynamic
environments.

In this paper, we evaluate the above proposed approach
to combine language-driven machine learning models with
shared control frameworks, towards improving human-robot
interaction in both static and dynamic settings. To this extent,
we present a shared control mechanism guided by the language
model and assess its performance in different environments.



Our study aims to demonstrate the effectiveness of this model
in alleviating operator stress and to examine qualitative differ-
ences in task execution between static and dynamic settings.

II. RELATED WORK

A. Shared Control Mechanism in Teleoperation

In robotic telepresence, a user remotely operates a robot
situated in a different environment. The most common setup
in research involves a mobile robot equipped with a cam-
era, screen, and control system [14]. Shared control, widely
utilized in various robotic applications [15]–[18], involves
collaboration between a human and a robot to achieve specific
goals. It incorporates techniques such as policy mixing, intent
prediction, and dynamic adaptation of autonomy levels to
improve robot-user collaboration [19]. This approach blends
manual and autonomous modes, utilizing safeguards such as
collision detection and context-aware arbitration to improve
navigation performance and reduce operator workload [20],
[21]. Additionally, shared control methods combine obstacle
handling, akin to safeguard approaches, with autonomous
planning to minimize the need for active user intervention [22].
While studies have validated the efficacy of shared control in
teleoperation for static virtual reality environments, its perfor-
mance in dynamic scenarios remains underexplored, requiring
further investigation [23]. In this context, we present a shared
control mechanism guided by a language model, designed to
alleviate operator stress and enhance task execution. Our study
evaluates its effectiveness and explores qualitative differences
in performance across static and dynamic environments.

B. LLMs for Robotics

Large language models (LLMs) have emerged as powerful
tools in natural language processing, demonstrating remark-
able capabilities in few-shot and zero-shot learning, com-
monsense reasoning, and multistep computations [24]–[29].
These strengths have inspired recent efforts to integrate LLMs
into robotics, unlocking novel applications and improving task
execution. LLMs have been leveraged for various robotic
applications, such as using pretrained skills for context-aware
actions [30], enabling long-horizon reasoning for sequential
tasks [31], applying semantic translation for actionable plans
[32], and incorporating error feedback to enhance executability
[33]. Further advancements include language-based navigation
without fine-tuning [34], few-shot prompting for solving plan-
ning problems using pretrained large language models [35],
integrating commonsense knowledge for 3D scene understand-
ing [36], generating robot policy code from natural language
commands [37], and language-conditioned meta-learning for
adaptive tool manipulation [38] and leveraging multi-modal
instructions for robotic manipulation through Python-based
perception, planning, and action loops [39], and integrating
vision-language models into end-to-end robotic control for
improved generalization and emergent semantic reasoning
[40]. While these studies highlight the use of LLMs to improve
the intelligence of robotic systems, our approach extends this

by showcasing how LLMs can facilitate shared control in
dynamic environments.

C. Foundation Models in Robotics

Foundation models have increasingly been explored for
robotic applications, leveraging their advanced capabilities in
reasoning, planning, and multi-modal integration to enable
more intelligent and adaptable robotic systems. Recent ap-
proaches include manipulator trajectory synthesis using affor-
dance reasoning [39] and mapping multi-modal instructions
into sequential actions for robotic manipulation tasks, as
demonstrated in Instruct2Act [41]. Notable progress has been
achieved with frameworks like VIMA-BENCH, where a multi-
modal prompt-based learning model set a new state-of-the-art
[42]. For more complex tasks, Jin et al. proposed a closed-
loop multi-modal planning model, improving success rates
in multi-step reasoning for robotic manipulation [43]. Myers
et al. enhanced policy learning by integrating language with
image-based goal representations, enabling efficient alignment
of instructions with visual objectives [44]. Similarly, Driess
et al. introduced PaLM-E, a multi-modal language model
that integrates sensor data and text for grounded reasoning,
excelling in tasks like robotic manipulation, visual question
answering, and captioning [45]. Other innovations include re-
purposing code-writing LLMs to autonomously generate robot
policy code for reactive and waypoint-based policies [46],
and leveraging the semantic knowledge of language models
through guided decoding strategies to solve complex, long-
horizon embodiment tasks by aligning language and grounded
models [47]. These developments collectively highlight the
transformative role of foundation models in enhancing the
intelligence of robotic systems, advancing shared control,
planning, and task execution in different environments.

III. HYPOTHESES

The integration of advanced language models into shared
control frameworks represents a significant advancement in
enhancing human-robot interaction. These systems facilitate
seamless communication between operators and robots while
offering the potential to reduce cognitive strain in complex
environments. To evaluate shared control systems, it is es-
sential to consider both user preferences and perceptions of
workload, as these factors play a crucial role in determining
their adoption and effectiveness. By analyzing user satisfaction
and task performance across different control paradigms, we
can identify methods that achieve an optimal balance between
human input and autonomous functionality.

H1: Participants prefer the LLM-Based Shared Control
(LSC) over Regular-Based Shared Control (RSC), as indicated
by their responses to direct preference questions.

H2: The perceived workload is lower under LSC compared
to RSC. This is assessed by directly asking participants
which condition they found easier and using the NASA-TLX
questionnaire after each condition.



Fig. 1. The paradigm of our proposed framework begins with the user providing task instructions, which are processed by a large language model (LLM).
The LLM interprets the command and converts it into a structured sequence of discrete actions. These actions are further refined through the use of visual
foundation models, which analyze the environment by recognizing object semantics. Leveraging this environmental understanding, the framework generates a
set of feasible actions tailored to the task. These actions are then transmitted to Unity, where pixel-to-location mapping enables the robot to execute the task.

IV. FRAMEWORK

The hypotheses were tested in a Unity-based simulated envi-
ronment. The telepresence robot, equipped with a mobile base,
used ROS and the Nav2 [48] framework for autonomous nav-
igation, integrated with controllers and guided by LLM-based
instructions, building on the setup from [11]. This research
enhances the framework by incorporating advanced language
models into shared control systems, aiming to improve human-
robot interaction and task efficiency. The enhanced framework
is systematically designed, with each component detailed in
the following sections.

Overview of the System - Consider a scenario where a user
issues a complex command:

“To make hot coffee, get the cup from the hall, head
to the kitchen, where the stove is, and carry the
coffee to the bedroom.”

Translating such a command into robot actions involves three
key components:

1. Natural Language Understanding: Parsing and interpret-
ing the intent of the user. 2.Action Sequence Generation: Con-
verting the interpreted command into a structured sequence of
discrete actions. 3.Robot execution: Performing the generated
action sequence in the physical environment [41], [49].

A. Unified Architecture for Natural Language to Robot Action

We now outline our pipeline that transforms high-level
language commands into executable tasks within a simulated
environment. The pipeline integrates four major components,
as shown in Fig1.

• Large Language Model (LLM): Translates natural lan-
guage into an ordered list of actions.

• Segment Anything Model (SAM) [50]: Segments ob-
jects in the robot’s panoramic camera view.

• CLIP [51]: Associates these segmented objects with
meaningful labels.

• pixel2loc: Maps 2D pixel coordinates to 3D positions
in the Unity environment.

We use the Gemini1 LLM model [13] to parse natural
language instructions. In order to align the LLM response
with our objective, we also add a few in-context examples.
Following is an outline of the examples we used for our
prompts:

Input: ‘Pick up the book from the desk and place it
on the shelf.’
Output: [[start, book], [book,
shelf], [shelf, goal]]

Input: ‘Water the plant in the living room, then
return the watering can to the kitchen.’
Output: [[start, plant], [plant,
goal]]

Given these examples, the model can then process new com-
mands:

Input: ‘To make hot coffee, get the cup from the
hall, head to the kitchen, where the stove is, and
carry the coffee to the bedroom.’
Output: [[start, cup], [cup,
stove], [stove, goal]]

Actions generated by the LLM reference specific objects
or locations. To identify these objects in the virtual camera

1Experiments were conducted using Google’s Gemini 1.5 Flash model
accessed through the Google Cloud AI Platform.



feed, the Segment Anything Model (SAM) extracts precise
segmentation masks for each object. Subsequently, CLIP [51]
links the segmented regions to labels provided by the LLM,
ensuring accurate object identification and reducing ambiguity
in cluttered or dynamic environments.

Finally, the pixel2loc function employs depth infor-
mation to convert the 2D pixel coordinates of segmented
objects into 3D locations within the Unity environment. By
aligning the segmented image data with real-world (simulated)
geometry, the robot can navigate and interact with the correctly
identified objects.

Analytically, our LLM-based navigation framework is de-
fined as follows: The robot starts at an initial position S and
captures an image I ∈ RH×W×3 where H is the height and W
is the width (640×480), along with a depth map D ∈ RH×W .

A natural language command H is provided by a human,
describing the global navigation task.

The global plan described in H is decomposed using a Large
Language Model (LLM) into a sequence of keypoints:

P = {[S,K1], [K1,K2], . . . , [Kn, G]}, K = {K1,K2, . . . ,Kn}

where G is the goal.
The input image I is segmented into k constituent objects

O = {O1, O2, . . . , Ok} using the Segment Anything Model
(SAM). Each object Oi is represented as:

Oi = Region(I,Ri), Ri ⊆ [1, H]× [1,W ]

where Ri is the pixel region corresponding to the ith object.
Each object Oi and keypoint Kj are encoded using CLIP

to obtain feature vectors:

f(Oi) = CLIPimage(Oi), f(Kj) = CLIPtext(Kj)

The most similar object for a given keypoint Kj is identified
using cosine similarity:

i∗ = argmax
i

cos
(
f(Oi), f(Kj)

)
The centroid pixel position of the matched object Oi∗ in the
image I is:

ci∗ = Centroid(Ri∗) = (xi∗ , yi∗)

Using the depth map D, the centroid pixel position is
reprojected to 3D coordinates:

Ci∗ = pixel2loc(ci∗ , D) = (Xi∗ , Yi∗ , Zi∗)

This process is applied for all keypoints Kj ∈ K, resulting
in a sequence of 3D coordinates:

P3D = {[S,CK1
], [CK1

, CK2
], . . . , [CKn

, G]}

The robot navigates sequentially through these 3D key-
points, executing the planned trajectory. Thus, by combining
language understanding (LLM), visual segmentation (SAM),
semantic labeling (CLIP), and 3D mapping (pixel2loc),
this architecture seamlessly translates human instructions into
robotic actions. The system is robust to variations in household

Algorithm 1 Pixel to World Location (Pixel2Loc)
Require:

1: Camera Intrinsics K ∈ R3×3

2: Camera-to-World Transformation TWC ∈ SE(3)
3: Pixel Coordinates u = [u, v]⊤

4: Depth at Pixel d = D[v, u]
Ensure:

5: 3D World Coordinates pW ∈ R3

6: function PIXEL2LOC(K,TWC ,u, d)
7: (1) Form homogeneous pixel coordinates:
8: ũ← [u, v, 1]⊤

9: (2) Back-project to camera coordinates:
10: pC ← dK−1ũ
11: (3) Transform to world coordinates:
12: pW ← TWC

[
pC

1

]
13: return pW

1:3 (the first three components)
14: end function

layouts and object types, while real-time performance sup-
ports dynamic scene changes. Challenges remain in handling
ambiguous language [52] and cultural or household-specific
conventions [53], yet the presented pipeline substantially low-
ers the cognitive load on human operators and provides a
foundation for more advanced human-robot interaction.

B. Task Execution in Unity Environment

The 3D positions and associated commands are transferred
to the Unity environment, enabling the robot to navigate and
execute the tasks specified in the natural language instruc-
tions. The Unity environment dynamically updates to reflect
the robot’s movements and interactions, providing real-time
feedback to the user.

This feedback loop is crucial to ensure that robot actions
align with user expectations and to make any necessary ad-
justments. By integrating visual and language models with the
Unity environment, the system offers a seamless and intuitive
user experience, enabling the efficient execution of complex
tasks through natural language commands.

V. METHODOLOGY

A. Procedure

Participants engaged in two experimental conditions, cor-
responding to both LSC and RSC. Upon arrival, they were
greeted by a researcher and asked to sign a consent form. They
were pre-screened for nausea or headaches before starting the
experiment. The experimenter demonstrated how to wear the
head-mounted display (HMD) and provided general instruc-
tions.

As shown in Fig.2, the task instructions for the static
environment were as follows: “Prepare hot coffee: collect the
cup from the hall, go to the kitchen near the stove, and bring
the coffee to the bedroom.”

For the dynamic environment, as shown in Fig.3, the instruc-
tions for LSC were: ”There is an emergency, and the doctor



requires an important book in room ER-205. First, collect the
book from the reception area, then go to the first aid kit in the
staff room, and deliver it to ER-205.” The task in the dynamic
environment in ER-206 becomes more complex and dynamic
due to the movement of people in the room.

Participants briefly practiced the controls, completed the
tasks, and then filled out a questionnaire about their expe-
rience.

Fig. 2. Task in static environment.

Fig. 3. Task in the dynamic environment.

B. Measures and Participants

This user study involved 15 participants (8 men, 7 women)
from various departments of a technical university. Of these,
31.8% had used VR frequently, 31.8% had used it a few times,
18.2% once or twice a year, and 18.2% had never used VR.

Participants performed tasks in both static and dynamic
environments using two control methods: LSC and RSC.
Objective measures such as task completion time and dis-
tance traveled were recorded, while subjective assessments
were gathered via the NASA-TLX questionnaire to evaluate
perceived effort and frustration. Participants also provided
feedback on their preferences and ease of use for each method
through open-ended questions, which explored the reasons

behind their choices. These measures aimed to comprehen-
sively assess the usability and effectiveness of LLM-powered
shared control versus traditional methods in varying task
environments.

VI. RESULTS

A. Confirmatory analysis
The Fig.4 the distributions of participants responses to the

forced-choice questions regarding preference and ease of use.
When asked ”Which control method did you prefer?” 11
out of 15 participants (74%) selected the LSC condition in
a static environment, while in a dynamic environment, 15
out of 15 participants (100%) selected the LSC condition.
An exact binomial test with Clopper-Pearson 95% confidence
intervals was performed, indicating that the LSC condition
was significantly preferred compared to the RSC condition
in the dynamic environment (p < 0.01), while in the static
environment, the preference was not statistically significant
(p = 0.302). This suggests that in the dynamic environment,
participants’ preference for the LSC condition was strong and
unlikely to be due to random chance, whereas in the static
environment, there was no strong evidence of a significant
preference for the LSC condition over the RSC condition.

Similarly, when asked ”Which control method felt easier?”
15 out of 15 participants (100%) selected the LSC condition
in both static and dynamic environments, as shown in Fig.4.
An exact binomial test with Clopper-Pearson 95% confidence
intervals was performed, indicating that the LSC condition was
significantly preferred compared to the RSC condition in the
static and dynamic environment (p < 0.01) over RSC.

Fig. 4. Comparison of user preference and ease of use between static and
dynamic environments for RSC and LSC Control Modes

We compared the differences in NASA-TLX workload
scores, as shown in Fig.5, and performed a Wilcoxon Signed-
Ranks test to analyze the TLX scores for effort in static
environments: RSC (Mdn = 33.33) and LSC (Mdn = 5). The
test indicated that LSC elicited statistically significantly lower
effort scores compared to RSC (Z = −3.455, p < 0.01, r =
−0.774).

Similarly, a Wilcoxon Signed-Ranks test was conducted to
compare the TLX scores for frustration in static environments:
RSC (Mdn = 32.66) and LSC (Mdn = 19.33). The test
revealed that LSC also elicited statistically significantly lower
frustration scores compared to RSC (Z = −3.399, p <
0.01, r = −0.761).



Fig. 5. Comparison of NASA TLX scores among static and dynamic
environments based on different control modes RSC and LSC - (a) Effort
(b) Frustration.

These findings suggest that the LSC is less demanding
in terms of both frustration and effort, which has important
implications for designing environments that reduce workload
and enhance performance in static environments.

B. Exploratory analysis

Fig. 6. Quantitative measures - Static Environments - (a) Time to completion
of tasks (blue), (b) Total Distance traveled (pink)

1) Static Environment: The task completion time data was
analyzed to determine if one method resulted in faster task
completion. A one-way ANOVA was performed on the task
completion time (in minutes), as shown in Fig.6, and revealed
a statistically significant result: F (3.343, 9.597) = 9.752,
p = 0.04. We observed that RSC (M = 4.088) performed

significantly worse, while LSC (M = 3.421) performed
considerably better.

Similarly, an ANOVA was conducted to analyze the im-
pact of control mode on the overall distance (in meters)
covered by the robot to reach multiple targets, as shown in
Fig.2. The analysis revealed a statistically significant result:
F (656.857, 312.485) = 58.857, p < 0.001. We observed that
RSC (M = 29.79) performed significantly worse, while LSC
(M = 20.43) performed considerably better.

Fig. 7. Quantitative measures - Dynamic Environments - (a) Time to
completion of tasks (blue), (b) Total Distance traveled (pink)

2) Dynamic Environment: A one-way ANOVA was con-
ducted to analyze task completion time (in minutes), as shown
in Fig.7, and revealed no statistically significant difference:
F (0.004, 17.811) = 0.007, p = 0.935. We observed that RSC
(M = 3.4671) performed similarly to LSC (M = 3.490).
Given the large p-value, the task completion times for both
methods are comparable, with any observed differences likely
due to random variation. Thus, both control methods per-
formed equivalently in terms of task completion time.

In contrast, the impact of the control modes on the total
distance traveled by the robot to reach multiple targets, as
depicted in Fig.7, was found to be statistically significant:
F (158.79, 508.68) = 8.470, p = 0.006. The analysis revealed
that RSC resulted in a significantly greater distance traveled
(M = 21.535) compared to LSC (M = 16.934).

3) Qualitative: The open-ended data was analyzed using
the thematic analysis method with an inductive approach.
Responses to the open-ended question about why participants
preferred each control method were examined. The most
frequently cited reason for preferring LSC in both environ-
ments was that it was “less demanding.” For participants who
preferred RSC in the static environment, the primary factor
was “having more control.” However, in the dynamic envi-
ronment, “having more control” was associated with increased
workload and cognitive load.



In response to the open-ended questions about why a
particular control method felt easiest to use, the majority of
comments for LSC in static environments highlighted that
it was “less demanding,” followed by reasons such as “no
switching” and “less collision.”

In dynamic environments, most users found the method
easier to use due to the ”no collision” feature in areas like
the first aid kit, as participants tended to avoid crowded areas
such as ER-206 (fig. 3). This was followed by reasons such
as “less demanding” and “no switching.”

VII. DISCUSSION

This study compared the efficacy of LSC and RSC methods
in both static and dynamic environments, revealing significant
insights into the future of human-robot interaction interfaces.
The results demonstrated distinct advantages of LSC, particu-
larly in dynamic environments, though with nuanced trade-offs
across different scenarios.

A fundamental trade-off emerged between perceived control
and operational efficiency. While RSC provided users with
a greater sense of direct control in static environments, this
came at the cost of increased cognitive and workload demands,
particularly in dynamic scenarios. LSC, conversely, achieved a
more balanced optimization of control and efficiency through
its unique human-as-global-planner architecture. In this sys-
tem, users provide natural language commands describing their
desired trajectory plan. These commands are then decomposed
into discrete action states by an LLM, while CLIP and SAM
models identify relevant navigational keypoints from the scene
image. While local path planning between keypoints utilizes
the traditional A* algorithm, the human effectively shapes
the global navigation strategy from source to goal. This
hierarchical approach enabled more efficient navigation around
dynamic obstacles, reducing the need for frequent trajectory
re-planning.

The performance metrics strongly supported LSC’s ad-
vantages. In static environments, LSC demonstrated superior
performance with 16.37% faster completion times and 31.04%
shorter distances traveled compared to RSC. In dynamic
environments, while task completion times were comparable
between methods, LSC achieved 21.28% shorter travel dis-
tances, indicating more efficient path planning and obstacle
avoidance. These improvements were further supported by
user experience feedback.

The qualitative feedback consistently highlighted LSC’s
intuitive design, with 100% of participants preferring LSC
in dynamic environments. Although 67% favored LSC in
static settings (p > 0.05), this preference was not statistically
significant.

NASA-TLX scores provided further evidence of LSC’s
benefits, particularly in reducing cognitive burden. In static
environments, LSC showed a 40.79% reduction in frustration
levels and a 85% decrease in effort compared to RSC (p <
0.01). This reduced cognitive load is particularly valuable for
prolonged or stressful operations, where minimizing opera-
tor fatigue is crucial for maintaining performance. Aligning

with our initial hypothesis, these results suggest that natural
language-based control interfaces can effectively bridge the
gap between human strategic thinking and robotic execution,
particularly in complex, dynamic environments.

These findings have important implications for the design
of robotcontrol and human-robot interaction systems. While
LSC demonstrates clear advantages in dynamic or complex
environments, the enhanced sense of control offered by RSC
in static settings suggests potential value in hybrid approaches.
Future research should explore the development of adaptive
systems that can seamlessly transition between LSC and RSC
based on environmental complexity, conduct long-term studies
examining operator fatigue and performance adaptation over
extended use periods, integrate more sophisticated natural
language understanding to handle increasingly complex nav-
igation scenarios, and apply this approach to diverse robotic
platforms and task domains.

In conclusion, this study provides compelling evidence for
the advantages of LLM-based shared control, particularly in
dynamic environments. By incorporating intuitive natural lan-
guage control schemes, robotic systems can achieve improved
human-robot interaction while reducing cognitive load and
enhancing operational efficiency. These insights contribute to
the ongoing evolution of robotic control interfaces, with po-
tential applications spanning from search-and-rescue missions
to space exploration.

VIII. CONCLUSION

In this paper, we introduced LLM-based Shared Control
(LSC), a novel approach for telepresence robots that incor-
porates user input through text commands to influence robot
trajectories. Our user study, conducted in virtual reality, across
both static and dynamic environments, required participants
to navigate a robot to multiple targets. The results showed
that participants generally preferred LSC for its ease of use,
particularly in dynamic environments, where it reduced frus-
tration and effort compared to Regular Shared Control (RSC).
While some users favored switching control methods in static
environments, citing a greater sense of control, no statistically
significant difference was found in the perceived feeling of
control between methods. Notably, in dynamic environments,
LSC led to decreased teleportation usage, indicating improved
navigation efficiency. These findings highlight the potential of
LSC as an effective control method for telepresence robots,
especially in complex, dynamic settings where it reduces
cognitive load and enhances the user experience.
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