
A Proofs

A.1 Proof of Lemma 3.4

Recall that the p-Wasserstein distance is the Lp metric between quantile functions (see Eq. 3). Thus,
we can re-write the CODAC objective as
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T̂ ⇡Ẑk(s,a)
(⌧)
���
p
d⌧

=

Z 1

0
ED(s,a)

h
↵ · c0(s, a) · F�1

Z(s,a)(⌧) +
���F�1

Z(s,a)(⌧)� F�1
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Taking the derivative with respect to ✏ at ✏ = 0, we have
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This term must equal 0 for F�1
Z(s,a) to minimize the objective; otherwise, some perturbation G✏

s,a

decreases the objective value. Since �s,a are arbitrary, it must equal zero for each s, a individually;
otherwise, increasing �s,a would increase the term, making it nonzero. Thus, we have
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for all s, a. Then, by the fundamental lemma of the calculus of variations, for each s, a, if this term is
zero for all �s,a, then the integrand must be zero—i.e.,
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where c(s, a) = |↵p�1c0(s, a)|1/(p�1)·sign(c0(s, a)), Clearly, this choice of Z is valid, so the claim
follows.

A.2 Proof of Theorem 3.6

First, we have the following result, which is a concentration bound on the quantile values; this result
enables us to bound the estimation error of T̂ ⇡ compared to T ⇡:
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This lemma follows by first using the Dvoretzky-Kiefer-Wolfowitz inequality to bound the error of
the empirical CDF F

T̂ ⇡Z(s,a) compared to the true CDF FT ⇡Z(s,a) using similar analysis as in [17],
and then leveraging monotonicity to bound the quantile functions; we give a proof in Appendix A.4.
Next, we have the following key lemma, which relates one-step distributional Bellman contraction to
an1-norm bound at the fixed point.
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We give a proof in Appendix A.5. As we discuss in Appendix A.6, we can use this result to obtain
bounds on the fixed point of the non-conservative empirical Bellman operator T̂ . Now, we prove
Theorem 3.6. First, with probability at least 1� �, we have
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mins,a{c(s, a)��(s, a)}. Finally, note that for the last term in (9) to be positive, we need

↵p�1c0(s, a) � �(s, a)p�1 (8s, a).

Since we have assumed that c0(s, a) > 0, this expression is in turn equivalent to

↵ � max
s,a

⇢
p ·�(s, a)p�1

c0(s, a)

�
,

so the claim holds.

A.3 Proof of Theorem 3.8

Lemma A.3. For any Z and any �̄, for sufficiently large ↵, with probability at least 1� �, we have
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respectively. Recall that p = 2. Then, subtracting the latter from the former and rearranging terms,
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The claim follows.

Now, let Z0 = Z̃0, and let Zk = (T ⇡)kZ0 and Z̃k = (T̃ ⇡)kZ̃0. Applying Lemma A.3 with Z = Z̃k
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A.4 Proof of Lemma A.1

We first prove a bound on the concentration of the empirical CDF to the true CDF. A similar result
has been previously derived in [17]; our proof is based on theirs.
Lemma A.4. For all � 2 R>0, with probability at least 1� �, for any Z 2 Z , for all (s, a) 2 D,
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Together, we have
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Finally, the inequalities can be bounded using the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality
and the Hoeffding’s inequality, giving us the desired results. By the DKW inequality, we have that
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The claim follows by combining the two inequalities.

Next, we prove a general result that translates bounds on CDFs into bounds on quantile functions.
Lemma A.5. Consider two CDFs F and G with support X . Suppose that F is ⇣-strongly monotone

and that kF �Gk1 ✏. Then, kF�1 �G�1k1 ✏/⇣.

Proof. First, note that

F�1(y)�G�1(y) =

Z F�1(y)

G�1(y)
dx =

Z y

F (G�1(y))
dF�1(y0),

where the first equality follows by fundamental theorem of calculus, and the second by a change of
variable y0 = F (x). Since F (F�1(y0)) = y0, we have F 0(F�1(y0))dF�1(y0) = dy0, so

dF�1(y0) =
dy0

F 0(F�1(y0))
 dy0

⇣
,

where the inequality follows by ⇣-strong monotonicity. As a consequence, we have
Z y

F (G�1(y))
dF�1(y0) 

Z y

F (G�1(y))

dy0

⇣
=

(y � F (G�1(y))

⇣
=

G(G�1(y))� F (G�1(y))

⇣
 ✏

⇣
,
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A.5 Proof of Lemma A.2

We prove the following slightly stronger result:
Lemma A.6. For any � 2 R, if Z satisfies
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3See https://nanjiang.cs.illinois.edu/files/cs598/note3.pdf for a derivation.
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Proof. We prove the first case; the cases with �, and the cases with T̂ ⇡ and Ẑ⇡ follow by the same
argument. First, we show that

FT ⇡Z(s,a)(x) � FZ(s,a)(x+ �) (8x 2 [Vmin, Vmax]). (13)
To this end, note that rearranging (12), we have
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Then, substituting ⌧ = FẐ⇡(s,a)(x + �) yields (13); note that such ⌧ must exist since the CDF is
defined on all of R. Next, we show that
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distributes additively to the constant �, and since T ⇡ is a �-contraction in d̄p, we have T ⇡�  ��.
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where the first step follows by derivation of the Bellman operator for the CDF, the second step follows
from (13), and the third step follows from the property of a CDF function. It follows that
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Subtracting common terms from both sides and evaluating the sum over �k, we have
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where we have used the fact that Z⇡ is the fixed point of T ⇡ . The claim follows.

A.6 Bound on error of the fixed-point of the empirical distributional bellman operator

We can use our techniques to prove finite-sample bounds on the error of using value iteration with the
empirical Bellman operator T̂ compared to the true Bellman operator T .
Theorem A.7. We have kF�1

Ẑ⇡(s,a)
� FZ⇡(s,a)k1 (1 � �)�1�max, where Ẑ⇡

and Z⇡
are the

fixed-points of T̂ ⇡
and T ⇡

, respectively.

Proof. Let �max = maxs,a �(s, a). We have kF�1
Ẑ⇡(s,a)

� F
T ⇡Ẑ⇡(s,a)k1 �max by Lemma A.1

with Z = Ẑ⇡ . Thus, we have kF�1
Ẑ⇡(s,a)

� FZ⇡(s,a)k1 (1� �)�1�max by Lemma A.2.
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B Algorithm and implementation details

In this section, we describe our practical implementation of CODAC in detail.

B.1 Actor-Critic objective

We first describe a modification to the CODAC objective, which admits learnable ↵, instead of having
to fix it to a constant value throughout the entirety of training. Recall that the original objective is

Ẑk+1 = argmin
Z

(
↵ · EU(⌧)

"
ED(s) log

X

a

exp(F�1
Z(s,a)(⌧))� ED(s,a)F

�1
Z(s,a)(⌧)

#
+ Lp(Z, T̂ ⇡k

Ẑk)

)
,

We first provide a derivation of the above objective; this portion largely follows from [21]. We first
introduce a regularization term R(µ) to obtain a well-defined optimization problem:

Ẑk+1 = argmin
Z

max
µ

n
↵ · EU(⌧)

h
ED(s),µ(a|s)F

�1
Z(s,a)(⌧)� ED(s,a)F

�1
Z(s,a)(⌧)

i
+ Lp(Z, T̂ ⇡k

Ẑk)
o
+R(µ)

If we set R(µ) to be the entropy H(µ), then we can see that µ(a | s) / exp(Q(s, a)) =

exp(
R 1
0 F�1

Z(s,a)(⌧)d⌧) is the solution to the inner-maximization. Plugging this choice into the
above regularized objective gives

Ẑk+1 = argmin
Z

(
↵ · EU(⌧)

"
ED(s) log

X

a

exp(F�1
Z(s,a)(⌧))� ED(s,a)F

�1
Z(s,a)(⌧)

#
+ Lp(Z, T̂ ⇡k

Ẑk)

)
,

as desired. As in [21], we introduce a parameter ⇣ 2 R>0 that thresholds the quantile value difference
between µ and ⇡̂� . In addition, we scale this difference by ! 2 R>0. This gives a learnable
formulation of ↵ via dual gradient descent:

min
Z

max
↵�0

(
↵ · EU(⌧)

"
! ·
"
ED(s) log

X

a

exp(F�1
Z(s,a)(⌧))� ED(s,a)F

�1
Z(s,a)(⌧)

#
� ⇣
#
+ Lp(Z, T̂ ⇡k

Ẑk)

)
,

Because our experiments are all conducted in continuous-control domains, we cannot enumerate
all actions a and compute log

P
a exp(F�1

Z(s,a)(⌧)) directly. To circumvent this issue, we use the
importance sampling approximation scheme introduced in [21]. To this end, we use the following
approximation in our implementation:

log
X

a

exp(F�1
Z(s,a)(⌧)) ⇡ log

0

@ 1

2M

NX

ai⇠U(A)

"
exp(F�1

Z(s,a)(⌧))

U(A)

#
+

1

2M

NX

ai⇠⇡(a|s)

"
exp(F�1

Z(s,a)(⌧))

⇡(ai | s)

#1

A

(15)
where U(A) = Uniform(A) denotes the uniform distribution over actions, and where we pick
M = 10. We summarize a single step of the actor and critic updates used by CODAC in Algorithm 1.

B.2 Neural network architecture

The policy network ⇡(· | s;�) consists of a two-layer fully connected architecture with 256 hidden
units and ReLU activations. For the quantile network, we use the architecture from [27], which builds
on top of the implicit quantile network (IQN) architecture [6]. Specifically, we represent the quantile
function F�1

Z(s,a)(⌧) as an element-wise (Hadamard) product of a state-action feature representation
 (s, a) and a quantile embedding '(⌧)—i.e., F�1

Z(s,a)(⌧) =  (s, a)� '(⌧). Following IQN, we use
the following embedding formula for '(⌧):

'j(⌧) := h

 
nX

i=1

cos(i⇡⌧)wij + bj

!
,

where wij , bj are weights of the neural network ', and h is the sigmoid function. We use a one-layer
256-unit fully connected neural network for  (s, a), and a one-layer 64-unit fully connected neural
network for '(⌧), followed with one-layer 256-unit fully connected network applied to  (s, a)�'(⌧).
We apply layer normalization [2] after each activation layer to ensure stable training.
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Algorithm 1 CODAC Update
1: Hyperparameters: Number of generated quantiles N , quantile Huber loss threshold , CODAC

penalty scale !, CODAC penalty threshold ⇣, discount rate �, learning rates ⌘actor, ⌘critic, ⌘↵
2: Parameters: Critic parameters ✓, Actor parameters �, Penalty ↵
3: Inputs: Tuple s, a, r, s0

4: Sample quantiles ⌧i (for i = 1, . . . , N ) and ⌧ 0j (for j = 1, . . . , N ) i.i.d. from Uniform([0, 1])
5: # Compute distributional TD loss
6: Get next actions for calculating target a0 ⇠ ⇡(· | s0;�)
7: for i = 1 to N do
8: for j = 1 to N do
9: �⌧i,⌧ 0

j
= r + �F�1

Z(s0,a0),✓0(⌧ 0j)� F�1
Z(s,a),✓(⌧i)

10: end for
11: end for
12: Compute Lcritic(✓) = N�2

PN
i=1

PN
j=1 L(�⌧i,⌧ 0

j
; ⌧i)

13: # Compute CODAC penalty
14: Sample i ⇠ U({1, ..., N}) and use quantile ⌧i
15: Estimate log

P
a exp(F�1

Z(s,a),✓(⌧i)) according to (15)

16: Compute LCODAC(✓,↵) = ↵·
⇣
! ·
⇣
log
P

a exp(F�1
Z(s,a),✓(⌧i))�N�1

PN
j=1 F

�1
Z(s,a),✓(⌧j)

⌘
� ⇣
⌘

17: Update ✓  ✓ � ⌘criticr✓(Lcritic(✓) + LCODAC(✓,↵))
18: Update ↵ ↵� ⌘↵r↵LCODAC(✓,↵)
19: # Update Policy Network ⇡�(a | s) with �g objective
20: Get new actions with re-parameterized samples ã ⇠ ⇡(· | s;�)
21: Compute�g(s, ã) using F�1

Z(s,ã),✓(⌧i), i = 1, ..., N

22: Lactor(�) = log(⇡(ã | s;�))� �g(s, ã)
23: Update � �+ ⌘actorrLactor(�)

B.3 Actor-Critic updates

We summarize a single actor-critic update performed by CODAC in Algorithm 1. We briefly discuss a
few implementation details. First, since computing the CODAC penalty to all quantiles is prohibitively
expensive, we apply the conservative penalty to a randomly chosen ⌧i on each update step (Line
13-15). This practical choice aligns well with our theoretical objective, whose outer expectation is
taken with respect to the uniform distribution U(⌧) over quantiles. We also found subtracting the
average quantile values (i.e., N�1

PN
j=1 F

�1
Z(s,a),✓(⌧j)) to be more stable than just subtracting the

corresponding quantile value F�1
Z(s,a),✓(⌧i). This step can be viewed as rewriting

EU(⌧)

"
ED(s) log

X

a

exp(F�1
Z(s,a)(⌧))� ED(s,a)F

�1
Z(s,a)(⌧)

#

as

EU(⌧)

"
ED(s) log

X

a

exp(F�1
Z(s,a)(⌧))

#
� EU(⌧)

h
ED(s,a)F

�1
Z(s,a)(⌧)

i

and implementing the latter as in Line 15. Finally, to compute �g(s, ã) in Line 21, we take the average
of all F�1

Z(s,ã),✓(⌧i) where ⌧i is less than or equal to the risk threshold value. For the expected-return

(i.e., risk-neutral objective), the threshold is 1, and �g(s, ã) =
PN

i=1 F
�1
Z(s,ã),✓(⌧i)/N . For CVaR0.1,

the threshold is 0.1, and �g(s, ã) =
Pmaxi:⌧i<0.1

i=1 F�1
Z(s,ã),✓(⌧i)/(maxi : ⌧i < 0.1).

C Experiment details and additional results

C.1 Risky robot navigation

Risky PointMass environment. The state space of the PointMass agent 4-dimensional, including
the agent’s position as well as the goal position, which is fixed to [0.1, 0.1]. The state space constraint
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Table 5: CODAC can optimize various distorted expectation based risk-sensitive objectives.

Algorithm Risky PointMass
Mean Median CVaR0.1 Violations

CODAC-CVaR -6.05 -4.89 -14.73 0.0
CODAC-CPW -8.34 -4.00 -54.18 103.0
CODAC-Neutral -8.60 -4.05 -51.96 108.3
CODAC-Wang -6.01 -4.46 -16.80 7.0

Table 6: Risky robot navigation quantitative evaluation.
Algorithm Risky PointMass Risky Ant

Mean Median CVaR0.1 Violations Mean Median CVaR0.1 Violations

DSAC (Online) -7.69 -3.82 -49.9 94 -866.1 -833.3 -1422.7 2247
CODAC-C (Ours) -6.05 ± 0.42 -4.89 ± 0.35 -14.73 ± 0.95 0.0 ± 0.0 -456.0 ± 24.0 -433.4 ± 17.1 -686.6 ± 149.8 347.8 ± 69.7
CODAC-N (Ours) -8.60 ± 1.62 -4.05 ± 0.12 -51.96 ± 12.34 108.3 ± 11.90 -432.7 ± 41.3 -395.1 ± 11.5 -847.1 ± 309.3 936.0 ± 186.1
ORAAC -10.67 ± 1.18 -4.55 ± 0.55 -64.12 ± 5.14 138.7 ± 16.4 -788.1 ± 82.0 -795.3 ± 144.4 -1247.2 ± 48.0 1196 ± 49.7
CQL -7.51 ± 1.05 -4.18 ± 0.13 -43.44 ± 10.57 93.4 ± 0.94 -967.8 ± 66.9 -858.5 ± 22.0 -1887.3 ± 236.1 1854.3 ± 369.1

is [0, 1]. Hence, the agent cannot enter a location outside of this unit square. The risky red region
is centered at [0.5, 0.5] with radius of 0.3. The agent’s initial state is randomly chosen inside the
[0.1, 0.9]2 box outside the risky red region. The agent dynamics is holomorphic, allowing the agent
to move freely in any direction with its x-axis and y-axis displacement capped at 0.1. The reward
the agent receives at each step is its negative Euclidean distance to the goal plus a constant �0.1,
which encourages the agent to reach the goal as fast as possible. When the agent is inside the risky
red region, with probability 0.1, an additional �50 reward is incurred. The episode terminates when
the agent is within 0.1 distance to the goal. An episode may last up to 100 steps.

Risky Ant environment. The state space of the Ant agent is identical to the original state space of
the Mujoco Ant agent. The goal is located at [10, 10], and the risky red region is centered at [5, 5]
with a radius of 3. The agent’s initial state is randomly chosen inside the [0, 7]2 box outside the risky
red region. The agent dynamics is also identical to the Mujoco Ant environment. At each timestep,
the agent receives its negative Euclidean distance to the goal plus 0.1⇥ velocity as its reward. When
the agent is inside the risky red region, with probability 0.1, an additional �50 reward is incurred.
The episode terminates when the agent is within 0.1 distance to the goal. When the agent is inside the
risky red region, with probability 0.05, an additional �90 reward is incurred. The episode terminates
when the agent is within distance 1 of the goal. An episode may last up to 200 steps.

Dataset and training details. We train a distributional SAC agent online for 100 (resp., 5000)
episodes in the PointMass (resp., Ant) environment, and use this agent’s replay buffer as the dataset
for offline RL training. All offline RL algorithms are trained for 104 (resp., 106) gradient steps. We
use the default hyperparameters for ORAAC, and use ! = 0.01 and ⇣ = 10 for both CODAC and
CQL. Our results are reported using 100 evaluation episodes with same set of initial states.

Additional results. In Table 6, we show full results for the risky robot navigation environments. As
can be seen, CODAC-C achieves the best performance on most metrics and is the only method that
learns risk-averse behavior. In addition, in Figure 5, we visualize trajectories for various Ant agents.
As can be seen, CODAC-C avoids the risky region shown in red, while still making it to the goal.

Alternative risk-sensitive objectives. On the risky pointmass domain, we also show that CODAC
can optimize CPW and Wang risk-sensitive objectives using the same offline dataset. As for CODAC-
CVaR (CODAC-C) and CODAC-Neutral (CODAC-N), we train CODAC-Wang and CODAC-CPW
using 5 random seeds and report the results in Table 5. As shown, CODAC-Wang performs similarly
to CODAC-CVaR, trading off slightly better average performance at the cost of safety. On the other
hand, CODAC-CPW is on par with CODAC-Neutral. These findings match our intuition that Wang
is slightly more risk-seeking than CVaR since it gives non-zero (but vanishingly small) weight to
quantile values above the risk cutoff threshold, and CPW is similar to risk-neutral due to its intended
modeling of human game-play behavior. These findings are also consistent with those in prior
work [6], which investigates these risk objectives for online distributional reinforcement learning.
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CODAC-C CODAC-N ORAAC CQL

Figure 5: 2D visualization of evaluation trajectories on the Risky Ant environment. The red region is
risky, the solid blue circles indicate initial states, and the blue lines are trajectories. CODAC-C learns
the most risk-averse behavior while consistently approaching the goal.

Table 7: Normalized Return on the Stochastic D4RL Mujoco Suite, averaged over 5 random seeds.

Algorithm Medium Mixed Expert
Mean CVaR0.1 Mean CVaR0.1 Mean CVaR0.1

C
he

et
ah

CQL 33.2 ± 21.6 -15.0 ± 14.3 214.1 ± 52.0 12.0 ± 23.8 -74.8 ± 22.6 -206.6 ± 46.9
ORAAC 361.4 ± 14.2 91.3 ± 42.1 307.1 ± 5.8 118.9 ± 27.1 598.3 ± 47.0 99.7 ± 71.3
CODAC-N 338.9 ± 65.7 -41.6 ± 16.7 347.7 ± 32.3 149.2 ± 79.2 686.3 ± 128.8 123.2 ± 90.1
CODAC-C 335.8 ± 80.6 -27.7 ± 60.3 396.4 ± 56.1 238.5 ± 58.9 551.6 ± 129.4 151.3 ± 133.0

H
op

pe
r CQL 877.9 ± 193.3 693.0 ± 160.9 189.2 ± 63.0 -21.4 ± 62.5 1165.0 ± 59.4 886.0 ± 132.7

ORAAC 1007.1 ± 58.5 767.6 ± 101.0 876.3 ± 86.7 524.9 ± 323.0 1156.8 ± 340.5 767.4 ± 372.6
CODAC-N 993.7 ± 32.9 952.5 ± 29.0 1483.9 ± 16.2 1457.6 ± 20.7 1292.7 ± 34.9 1024.0 ± 45.6
CODAC-C 1014.0 ± 281.7 976.4 ± 272.1 1551.2 ± 33.4 1449.6 ± 101.3 1270.6 ± 74.8 986.4 ±99.7

W
al

ke
r2

d CQL 1524.3 ± 87.9 1343.8 ± 248.2 74.3 ± 76.7 -64.0 ± -77.7 2045.2 ± 37.6 1868.2 ±55.1
ORAAC 1134.1 ± 235.4 663.0 ± 349.8 222.0 ± 37.4 -69.6 ± 76.3 991.2 ± 203.5 108.9 ± 73.2
CODAC-N 1537.3 ± 65.8 1158.8 ± 357.3 358.7 ± 125.4 106.4 ± 146.9 2170.3 ± 22.7 2035.4 ± 39.9
CODAC-C 1120.8 ± 319.3 902.3 ± 492.0 450.0 ± 193.2 261.4 ± 231.3 2056.7 ± 43.1 1889.4 ± 28.6

C.2 Stochastic D4RL Mujoco suite

Our experimental protocol largely follows [10]. All algorithms are trained for 500k gradient steps.
We use 10 evaluation episodes on the modified Mujoco environments (see below). Hyperparameters
are detailed in Appendix C.4.

Dataset descriptions. We describe the stochastic reward modification made to the original HalfChee-
tah, Hopper, and Walker2d environments [43]. These reward modifications are used to relabel the
reward label in D4RL datasets; the modified environments are also used for evaluation in this set of
experiments. The following paragraphs are adapted from [43]:

• Half-Cheetah: We use Rt(s, a) = r̄t(s, a)� 70 · v>v̄ · B0.1, where r̄t(s, a) is the original envi-
ronment reward, v is the forward velocity, and v̄ is a threshold velocity (v̄ = 4 for Medium/Mixed
datasets and v̄ = 10 for the Expert dataset). The maximum episode length is reduced to 200 steps.

• Walker2D/Hopper: We use Rt(s, a) = r̄t(s, a)� p · |✓|>✓̄ · B0.1, where r̄t(s, a) is the original
environment reward, ✓ is the pitch angle, ✓̄ is a threshold angle (✓̄ = 0.5 for Walker2d and ✓̄ = 0.1
for Hopper) and p = 30 for Walker2d and p = 50 for Hopper. When |✓|> 2✓̄ the robot falls, the
episode terminates. The maximum episode length is reduced to 500 steps.

Additional results. In Table 7, we present the full Stochastic D4RL Mujoco results, including results
on the Expert dataset. We repeat the results on the Medium and Mixed datasets in the main text here
for completeness. Recall that the Expert (resp., Medium) dataset consists of rollouts from a fixed
SAC agent trained to Expert (resp., Medium) performance, Expert is convergence and Medium is
50% of Expert performance. The Mixed dataset is the replay buffer of a SAC agent trained to achieve
50% of the expert return.

Qualitative analysis. To better interpret the stochastic D4RL results, we have collected behavioral
statistics of the agents trained on the risk-sensitive HalfCheetah-Mixed-v0 and Walker2d-Mixed-v0
datasets. We execute one trained agent for each method reported in Table 2 for 10 episodes in the
environment and record the percentage of timesteps where the agent violates the threshold and their
average velocity over these evaluation episodes.
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Table 8: Stochastic D4RL qualitative results

Algorithm HalfCheetah-Mixed-v0 Walker2d-Mixed-v0
% Violation Average Velocity % Violation Average Velocity

CODAC-C (Ours) 11 1.49 15 0.28
CODAC-N (Ours) 54 2.02 9 0.34
CQL 23 1.71 13 0.19
ORAAC 37 1.76 48 0.49

Table 9: Normalized Return on the D4RL Mujoco Suite, averaged over 5 random seeds.
Dataset BC BEAR BRAC-v BCQ MOPO CQL ORAAC CODAC
halfcheetah-random 2.1 25.1 24.1 2.2 35.4 35.4 13.5 34.6 ± 1.27
hopper-random 9.8 11.4 12.2 10.6 11.7 10.8 9.8 11 ± 0.43
walker2d-random 1.6 7.3 1.9 4.9 13.6 7.0 3.2 18.7 ± 4.5

halfcheetah-medium 36.1 41.7 43.8 40.7 42.3 44.4 41.0 46.3± 0.98
walker2d-medium 6.6 59.1 81.1 53.1 17.8 79.2 27.3 82.0 ± 0.45
hopper-medium 29.0 52.1 31.1 54.5 28.0 58.0 1.48 70.8 ± 11.4

halfcheetah-mixed 38.4 38.6 47.7 38.2 53.1 46.2 30.0 44 ± 0.76
hopper-mixed 11.8 33.7 0.6 33.1 67.5 48.6 16.3 100.2 ± 1.0
walker2d-mixed 11.3 19.2 0.9 15.0 39.0 26.7 28 33.2 ± 17.6

halfcheetah-medium-expert 35.8 53.4 41.9 64.7 63.3 62.4 24.0 70.4 ± 19.4
walker2d-medium-expert 6.4 40.1 81.6 57.5 44.6 98.7 28.2 106.0 ± 4.6
hopper-medium-expert 111.9 96.3 0.8 110.9 23.7 111.0 18.2 112.0 ± 1.7

As shown in Table 8, CODAC-C achieves the lowest percentage of violations in the HalfCheetah
environment, indicating that it has learned a safer policy than all other methods. On Walker2d, CQL
appears to be the safest; however, this result is due to the fact that CQL failed to learn the desirable
walking behavior as indicated by its low reward in the paper. Among the methods that learned to
walk, CODAC-C achieves the lowest average angular velocity while maximizing the return.

C.3 D4RL Mujoco suite

Our experimental protocol largely follows from [10]. All algorithms are trained for 1M gradient steps.
We use 10 evaluation episodes on the original Mujoco environments, which all last 1000 steps long.
Hyperparameters are detailed in Appendix C.4. In Table 9, we show the full results on the risk-neutral
D4RL Mujoco Suite, which includes additional baselines such as BEAR [20] and BRAC [46].

C.4 Hyperparameters

As CODAC builds on top of distributional SAC (DSAC), we keep the DSAC-specific hyperparameters
identical as the original work. These hyperparameters are shown in Table 10.

CODAC additionally introduces hyperparameters ↵,!, ⇣ (see Appendix B). In most cases, ↵ is a
learnable parameter initialized to 1 with learning rate ⌘↵ = 3 ⇥ 10�4; in few cases, we fix it to 1
throughout the entirety of training, which we indicate by setting ⇣ = �1, as in [21]. For ORAAC,
we use the default hyperparameters tuned on the stochastic D4RL Mujoco suite for all experiments;
for CQL, we use the default hyperparameters tuned on the original D4RL Mujoco suite for all
experiments. Below, we describe the specific CODAC hyperparameters we use for the risk-neutral
and risk-sensitive D4RL experiments.

Risk-neutral D4RL. We restrict the search range of the hyperparameters as follow: ! 2
{0.1, 1, 10}, ⇣ 2 {�1, 10}. We also experiment with enabling entropy tuning in DSAC and tune the
value network learning rate ⌘critic between 3e� 4 and 3e� 5, which improves performance on some
datasets. Table 11 summarizes the hyperparameters used for each dataset in our reported results. At a
high level, we find ! = 1 to be effective for Mixed and Random datasets and ! = 10 effective for
Medium and Medium-Expert datasets. These empirical findings match our intuition that the penalty
needs not to be high when the dataset has wide coverage.
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Table 10: CODAC backbone hyperparameters
Hyper-parameter Value

Policy network learning rate ⌘actor 3e-4
(Quantile) Value network learning rate ⌘critic 3e-5
Optimizer Adam
Discount factor � 0.99
Target smoothing 5e-3
Batch size 256
Replay buffer size 1e6
Minimum steps before training 1e4
Number of quantile fractions N 32
Quantile fraction embedding size 64
Huber regression threshold  1

Table 11: CODAC hyperparameters for risk-neutral D4RL
dataset ! ⇣ ⌘critic entropy tuning

halfcheetah-random 1 10 3e-5 yes
hopper-random 1 10 3e-5 yes
walker2d-random 1 10 3e-5 yes

halfcheetah-medium 10 10 3e-5 no
hopper-medium 10 10 3e-4 yes
walker2d-medium 10 10 3e-5 no

halfcheetah-mixed 1 10 3e-5 yes
hopper-mixed 1 10 3e-5 yes
walker2d-mixed 1 10 3e-5 yes

halfcheetah-medium-expert 0.1 -1 3e-4 no
hopper-medium-expert 10 10 3e-5 no
walker2d-medium-expert 10 10 3e-5 no

Risk-sensitive D4RL. We use the same hyperparameter range as in risk-neutral D4RL for a grid
search. Interestingly, the best value of ! is smaller across most datasets, suggesting less conservatism
may be needed due to the increased stochasticity in the environment. Table 12 summarizes the
hyperparameter choices.

C.5 Compute resources

We use a single Nvidia 2080-Ti with 32 cores to run our experiments. Each CODAC run takes about
10 hours in clock time.
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Table 12: CODAC hyperparameters for risk-sensitive D4RL
dataset ! ⇣ ⌘critic entropy tuning

halfcheetah-medium 1 -1 3e-5 no
hopper-medium 0.1 10 3e-5 yes
walker2d-medium 1 -1 3e-5 yes

halfcheetah-mixed 0.1 10 3e-5 yes
hopper-mixed 1 10 3e-5 yes
walker2d-mixed 1 10 3e-5 yes

halfcheetah-medium-expert 1 -1 3e-5 yes
hopper-medium-expert 10 10 3e-5 no
walker2d-medium-expert 10 10 3e-5 no
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