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ABSTRACT

Classical generative diffusion models learn an isotropic Gaussian denoising process,
treating all spatial regions uniformly, thus neglecting potentially valuable structural
information in the data. Inspired by the long-established work on anisotropic diffu-
sion in image processing, we present a novel edge-preserving diffusion model that
generalizes over existing isotropic models by considering a hybrid noise scheme.
In particular, we introduce an edge-aware noise scheduler that varies between

edge-preserving and isotropic Gaussian noise. We show that our model’s generative
process converges faster to results that more closely match the target distribution.
We demonstrate its capability to better learn the low-to-mid frequencies within the
dataset, which plays a crucial role in representing shapes and structural information.
Our edge-preserving diffusion process consistently outperforms state-of-the-art
baselines in unconditional image generation. It is also more robust for genera-
tive tasks guided by a shape-based prior, such as stroke-to-image generation. We
present qualitative and quantitative results showing consistent improvements (FID
score) of up to 30% for both tasks. We provide source code and supplementary
content via the public domain edge-preserving-diffusion.mpi-inf.mpg.de.
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Shape-guided generative task￼t = 0 ￼t = 100 ￼t = 200 ￼t = 240 ￼t = 400 ￼t = 499

Figure 1: A classic isotropic diffusion process (top row) is compared to our hybrid edge-aware diffu-
sion process (middle row) on the left side. We propose a hybrid noise (bottom row) that progressively
changes from anisotropic (t = 0) to isotropic scheme (t = 499). We use our edge-aware noise for
training and inference. On the right, we compare both noise schemes on an SDEdit framework (Meng
et al., 2022) for stroke-based image generation. Our model consistently outperforms DDPM, is more
robust against visual artifacts and produces sharper outputs without missing structural details.

1 INTRODUCTION

Previous work on diffusion models mostly uses isotropic Gaussian noise to transform an unknown
data distribution into a known distribution (e.g., normal distribution), which can be analytically
sampled (Song and Ermon, 2019; Song et al., 2021; Ho et al., 2020; Kingma et al., 2021). Due to the
isotropic nature of the noise, all regions in the data samples x0 are uniformly corrupted, regardless of
the underlying structural content, which is typically distributed in a non-isotropic manner. During
the backward process, the model is trained to learn an isotropic denoising process that ignores this
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potentially valuable non-isotropic information. In image processing literature (Elad et al., 2023),
denoising is a well studied topic. Following the work by Perona and Malik (1990) structure-aware
guidance has shown remarkable improvements in denoising. Since generative diffusion models can
also be seen as denoisers, we ask ourselves: Can we enhance the effectiveness of the generative
diffusion process by incorporating awareness of the structural content of the data samples in the
underlying dataset?

To explore our question, we introduce a new class of diffusion models that explicitly learn a content-
aware noise scheme. We call our noise scheme edge-preserving noise, which offers several advantages.
First, it allows the backward generative process to converge more quickly to accurate predictions.
Second, our edge-preserving model better captures the low-to-mid frequencies in the target dataset,
which typically represent shapes and structural information. Consequently, we achieve better results
for unconditional image generation. Lastly, our model also demonstrates greater robustness and
quality for generative tasks that rely on shape-based priors.

To summarize, we make the following contributions:

• We present a novel class of content-aware diffusion models and show how it is a generaliza-
tion of existing isotropic diffusion models

• We conduct a frequency analysis to better understand the modeling capabilities of our
edge-preserving model.

• We run extensive qualitative and quantitative experiments across a variety of datasets to
validate the superiority of our model over existing models.

• We observed consistent improvements in pixel space diffusion. We found that our model
converges faster to more accurate predictions and better learns the low-to-mid frequencies of
the target data, resulting in FID score improvements of up to 30% for unconditional image
generation and most remarkably a more robust behaviour and better quality on generative
tasks with a shape-based prior.

2 RELATED WORK

Most existing diffusion-based generative models (Sohl-Dickstein et al., 2015; Song and Ermon, 2019;
Song et al., 2021; Ho et al., 2020) corrupt data samples by adding noise with the same variance to
all pixels. These generative models can generate diverse novel content when the noise variance is
higher. On the contrary, noise with lower variance is known to preserve the underlying content of
the data samples. Rissanen et al. (2023) proposed to use an inverse heat dissipation model (IHDM),
which can be seen as an isotropic Gaussian blurring model. The idea is to isotropically blur the
images to corrupt them. They show that isotropic blurring in the spatial domain corresponds to adding
non-isotropic noise in the frequency domain, where they run the diffusion. Hoogeboom and Salimans
(2023) proposed an improved version of IHDM, where they not only blur but also use isotropic noise
to corrupt data samples. The resulting model gives far better quality improvements compared to
IHDM. Recently, Huang et al. (2024a) introduced correlated noise for diffusion models (BNDM).
They proposed to use blue noise which is negatively correlated and showed noticeable improvements
both in visual quality and FID scores. While IHDM and BNDM also consider a form of non-isotropic
noise, they do not explicitly take into account the structures present in the signal.

Various efforts (Bansal et al., 2023; Daras et al., 2023) were made to develop non-isotropic noise
models for diffusion processes. Dockhorn et al. (2022) proposed to use critically-damped Langevin
diffusion where the data variable at any time is augmented with an additional ”velocity” variable.
Noise is only injected in the velocity variable. Voleti et al. (2022) performed a limited study on
the impact of isotropic vs non-isotropic Gaussian noise for a score-based model. The idea behind
non-isotropic Gaussian noise is to use noise with different variance across image pixels. They use a
non-diagonal covariance matrix to generate non-isotropic Gaussian noise, but their sample quality
did not improve in comparison to the isotropic case. Yu et al. (2024) developed this idea further and
proposed a Gaussian noise model that adds noise with non-isotropic variance to pixels. The variance
is chosen based on how much a pixel or region needs to be edited. They demonstrated a positive
impact on editing tasks.
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Our definition of anisotropy follows directly from the seminal work by Perona and Malik (1990) on
anisotropic diffusion for image filtering. We apply a non-isotropic variance to pixels in an edge-aware
manner, meaning that we suppress noise on edges.

3 BACKGROUND

Generative diffusion processes. A generative diffusion model consists of two processes: the
forward process transforms data samples x0 into samples xT that are distributed according to a
well-known prior distribution, such as a normal distribution N (0, I). The corresponding backward
process does exactly the opposite: it transforms samples xT into x̂0, distributed according to the
target distribution p0(x). This backward process involves predicting a vector quantity, interpretable
as either noise or the gradient of the data distribution, which is precisely the task for which the
generative diffusion model is trained. Previous works (Song and Ermon, 2019; Song et al., 2021; Ho
et al., 2020; Kingma et al., 2021; Rissanen et al., 2023; Hoogeboom and Salimans, 2023) typically
formulate the forward process as the following linear equation:

xt = γtx0 + σtϵt (1)

here, xt is the data sample diffused up to time t, x0 stands for the original data sample, ϵt is a
standard normal Gaussian noise, and the signal coefficient γt and noise coefficient σt determine
the signal-to-noise ratio (SNR) (γt/σt). The SNR refers to the proportion of signal retained relative
to the amount of injected noise. Note that γt and σt are both scalars. Previous works have made
several different choices for γt and σt respectively, leading to different variants, each with their own
advantages and limitations. Typically, a noise schedule βt is employed to govern the rate at which γt
and σt vary over time (Ho et al., 2020). Let us first define αt = 1− βt and ᾱt =

∏t
i=1 αi. Song and

Ermon (2019) then defined their forward diffusion process with γt = 1 and σt =
√
1− ᾱt, leading

to a process with exploding variance. Instead, Ho et al. (2020) chose γt =
√
ᾱt and σt =

√
1− ᾱt

which better preserves variance.

Diffusion model paradigms. There are two widely-adopted general mathematical frameworks
that form the major ”paradigms” of generative diffusion models. The first paradigm is score-based
generative modelling, introduced by Song and Ermon (2019). In this paradigm, the generative
model essentially learns to estimate the gradients of the target distribution, allowing for iterative
sampling via these gradients. A prominent type of diffusion model that is based on this paradigm
are SDE-based diffusion models, which simulate the generative backward process as a stochastic
differential equation to take samples. In Appendix A.1, we perform a theoretical analysis showing
how our edge-preserving diffusion process can be interpreted under this paradigm.

Denoising probabilistic modeling paradigm, introduced by Ho et al. (2020) models the generative
process as a well-studied Gaussian process with known posteriors. The reverse process is then
modelled as a parameterized Markov chain that approximates this Gaussian process. In this paper, we
adopt this paradigm as it aligns well with the statistical property we are investigating: non-isotropic
variance driven by image content. Flow matching (Lipman et al., 2022) is another class of generative
models that are gaining a lot of traction. In Appendix B, we discuss in detail how our framework can
be adapted to flow matching.

Denoising probabilistic model. Following the probabilistic paradigm, we would like to introduce
the posterior probability distributions of the general diffusion process described by Eq. (1). We will
show the exact form that our forward and backward processes take in Section 4.1 and Section 4.3
respectively. For details and full derivations of the equations in this section, we would like to refer to
the appendix of Kingma et al. (2021). The isotropic diffusion process formulated in Eq. (1) has the
following marginal distribution:

q(xt|x0) = N (γx0, σ
2
t I) (2)

Moreover, it has the following Markovian transition probabilities:

q(xt|xs) = N (γt|sxs, σ
2
t|sI) (3)

with the forward posterior signal coefficient γt|s =
γt

γs
and the forward posterior variance (or square

of the noise coefficient) σ2
t|s = σ2

t − γ2
t|sσ

2
s and 0 < s < t < T . For a Gaussian diffusion process,

3
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given that q(xs|xt,x0) ∝ q(xt|xs)q(xs|x0), one can analytically derive a backward process that is
also Gaussian, and has the following marginal distribution:

q(xs|xt,x0) = N (µt→s, σ
2
t→sI). (4)

The backward posterior variance σ2
t→s has the following form:

σ2
t→s =

(
1

σ2
s

+
γ2
t|s

σ2
t|s

)−1

(5)

and the backward posterior mean µt→s is formulated as:

µt→s = σ2
t→s

(
γt|s

σ2
t|s

xt +
γs
σ2
s

x0

)
. (6)

Samples can be generated by simulating the reverse Gaussian process with the posteriors in Eq. (5)
and Eq. (6). A practical issue is that Eq. (6) itself depends on the unknown x0, the sample we are
trying to generate. To overcome this, one can instead approximate the analytic reverse process in
which x0 is replaced by its approximator x̂0, learned by a deep neural network fθ(xt, t). The network
can learn to directly predict x0 given an xt (a sample with a level of noise that corresponds to time
t), but previous work has shown that it is beneficial to instead optimize the network to learn the
approximator ϵ̂t. ϵ̂t predicts the unscaled Gaussian white noise that was injected at time t. x̂0 can
then be obtained via Eq. (7), which follows from Eq. (1).

x̂0 =
1

γt
xt −

σt

γt
ϵ̂t (7)

Edge-preserved filtering in image processing. In this work, we aim to choose γt and σt such
that we obtain a diffusion process that injects noise in a content-aware manner. To do this, we are
inspired by the field of image processing, where a classic and effective technique for denoising is
edge-preserved filtering via anisotropic diffusion (Weickert, 1998). Perona and Malik (1990) showed
that a Gaussian scale-space (a family of images obtained by convolving the original image x0 with
Gaussian kernels of varying scales) can also be expressed in terms of a diffusion process. However, if
the goal is to remove noise from an image, a disadvantage of a standard isotropic blurring process is
that the relevant structural information in the image also gets distorted. To overcome this problem,
Perona and Malik (1990) propose an anisotropic diffusion process of the form:

xt = x0 +

∫ t

0

c(xs, s)∆xs ds (8)

where the diffusion coefficient c(xs, s) takes the following form:

c(x, t) =
1√

1 + ||∇xt||
λ

(9)

where ||∇x|| is the gradient magnitude image, and λ is the edge sensitivity. Intuitively, in the regions
of the image where the gradient response is high (on edges), the diffusion coefficient will be smaller,
and therefore the signal gets less distorted there. The edge sensitivity λ determines how sensitive the
diffusion coefficient is to the image gradient response.

Inspired by the anisotropic diffusion coefficient presented in Eq. (9), we aim to design a linear
diffusion process that incorporates edge-preserving noise. Our hope is that by doing this, the
generative diffusion model will better learn the underlying structures of the target distribution, leading
to a more effective generative denoising process. To obtain our content-aware linear diffusion process,
we apply the idea of edge-preserved filtering to the noise term of Eq. (1). However, it is important
to note that we cannot directly adopt the formulation of (Perona and Malik, 1990). In the original
formulation, the diffusion coefficient c(x, t) is time-dependent (it depends on the state of the data
sample xt at each point in time) and therefore the resulting forward process would no longer be linear.
To overcome this, we let our diffusion coefficient only depend on x0. Intuitively, this preserves edges
by suppressing noise based on the original image content. When edge preservation is applied to
blurring (such as in Perona and Malik (1990)), this workaround fails because the edges gradually
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”blend” into each other over time, making the dependency on xt essential. Instead, we operate on the
noise, and define an edge-preserving forward process as follows:

xt = γtx0 +
b√

1 + ||∇x0||
λ(t)

ϵt (10)

Where b is the noise coefficient’s numerator and can be chosen as desired. To study the impact of
non-isotropic edge-preserving noise on the generative diffusion process, we choose our parameters
γt =

√
ᾱt and b =

√
1− ᾱt such that it closely matches the well-studied forward process of (Ho

et al., 2020), but nothing prevents us from making different choices for γt and b. Note that the
noise coefficient in Eq. (1) becomes a tensor σt instead of a scalar σt for our process. Intuitively,
we suppress noise on the edges and leave noise unchanged in more uniform image regions. In our
formulation, we also consider λ to be time-varying (more details in section Section 4.2).

4 AN EDGE-PRESERVING GENERATIVE PROCESS

4.1 FORWARD HYBRID NOISE SCHEME

The forward edge-preserving process described in Eq. (10) in its pure form is not very meaningful
in our setup. This is because if the edges are preserved all the way up to time t = T , we end up
with a rather complex distribution pT (x) that we cannot analytically take samples from. Instead, we
would like to end up with a well-known prior distribution at time t = T , such as the standard normal
distribution. To achieve this, we instead consider the following hybrid forward process:

xt = γtx0 +
b

(1− τ(t))
√

1 + ||∇x0||
λ(t) + τ(t)

ϵt (11)

A more general form of this equation can be found in Appendix A.1. The function τ(t) now
appearing in the denominator of the diffusion coefficient is the transition function. When τ(t) < 1,
we obtain edge-preserving noise (the edge-preservation is stronger when τ(t) ≈ 0). The turning point
where τ(t) = 1 is called the transition point tΦ. At the transition point, we switch over to isotropic
noise with scalar noise coefficient σt = b (note that we chose γt =

√
ᾱt and b =

√
1− ᾱt). This

approach allows us to flexibly design noise schedulers that start off with edge-preserving noise and
towards the end of the forward process fall back to an isotropic diffusion coefficient. Practically,
one can choose any function for τ(t), as long as it maps to [0; 1] and τ(t) = 1 for t in proximity
to T . We performed an ablation for different transition functions in Section 5.2. Observe how our
diffusion process generalizes over existing isotropic processes: by setting τ(t) = 1 constant, we
simply obtain an isotropic process with signal coefficient γt and noise coefficient σt = b. Choosing
any other non-constant function for τ(t) leads to a hybrid diffusion process that consists of a mix of
an edge-preserving stage and an isotropic stage (at τ(t) = 1).

4.2 TIME-VARYING EDGE SENSITIVITY λ(t)
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The edge sensitivity parameter λ controls the
granularity of the content preservation on image
edges. By setting λ very low, all levels of edges
and fine details are preserved. The higher we
increase λ, the less details will be preserved. By
choosing a very high λ (e.g. λ > 1e−1), the
edge-preserving stage of the diffusion process
almost resembles an isotropic process because
the noise suppression on the edges is unnotice-
able. We study this impact in detail in the abla-
tion study in Section 5.2.

We found that choosing constant values for λ
has negative impact on sample quality. Select-
ing a λ-value that is too low results in unreal-
istic, ”cartoonish” outputs, while a λ-value that is too high diminishes the effectiveness of the
edge-preserving diffusion model, making it nearly indistinguishable from an isotropic model.
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Figure 2: We visually compare the impact of our anisotropic edge-preserving noise on the generation
(reverse) process. In each column, we show predictions x̂0 at selected time steps. Our method
converges significantly faster to a sharper and less noisy image than its isotropic counterpart. This
is evident by the earlier emergence (from t = 400) of structural details like the pattern on the cat’s
head, eyes, and whiskers with our approach.

To overcome this, we instead consider a time-varying edge sensitivity λ(t). We set an interval
[λmin;λmax] that bounds the possible values for the time-varying edge sensitivity. The function that
governs λ(t) within this interval can in theory again be chosen freely. We have so far experimented
with a linear function and a sigmoid function. We experienced that a linear function for λ(t) resulted
in higher sample quality and therefore used this function for our experiments. Additionally, we have
attempted to optimize the interval [λmin;λmax], but this led to unstable behaviour.

4.3 BACKWARD PROCESS POSTERIORS AND TRAINING

Given our forward hybrid diffusion process introduced in Section 4.1, we can derive the actual
formulations for the posterior mean µt→s and variance σ2

t→s for the corresponding backward
process. To do this, we simply fill in Eq. (5) and Eq. (6) with our choices for the signal coefficient
γt and variance σ2

t . Recall that we chose σ2
t to be a tensor, which is why the backward posterior

variance σ2
t→s is again a tensor, contrary to isotropic diffusion processes considered in previous

works. Regardless, we can use the same equations and the algebra still works.

We first introduce an auxiliary variable σ2(t), which represents the variance of our forward process
at a given time t. This is simply the square of our choice for the noise coefficient σt formulated in
Eq. (11):

σ2(t) =
1− ᾱt

(1− τ(t))2
(
1 + ||∇x0||

λ(t)

)
+ 2

(
(1− τ(t))

√
1 + ||∇x0||

λ(t) τ(t)

)
+ τ(t)2

(12)

Here ᾱt has the same meaning as earlier described in Section 3. We now have the backward posterior
variance σ2

t→s:

σ2
t→s =

(
1

σ2(t)
+

ᾱt

ᾱs

σ2(t)− ᾱt

ᾱs
σ2(s)

)−1

(13)

and the backward posterior mean µt→s:

µt→s = σ2
t→s

 √
ᾱt√
ᾱs

σ2(t)− ᾱt

ᾱs
σ2(s)

xt +

√
ᾱs

σ2(s)
x0

 (14)

Given Eq. (13) and Eq. (14), the only unknown preventing us from simulating the Gaussian backward
process is x0.

Note that x0 in our case depends on a non-isotropic noise. Therefore, we cannot just use an isotropic
approximator ϵ̂t for the isotropic noise ϵt to predict x̂0 via Eq. (7). Instead, we need a model that can
predict the non-isotropic noise σtϵt . We introduce the loss function that trains such an approximator:

L = ||fθ(xt, t)− σtϵt||2. (15)

It is very similar to the loss function used in DDPM, with the difference that our model explicitly
learns to predict the non-isotropic (σtϵt) edge-preserving noise. In Appendix D, we show how

6
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IHDM (Rissanen et al.) BNDM (Huang et al.) DDPM (Ho et al.) Ours
Figure 3: We compare unconditionally generated samples for IHDM, BNDM, DDPM with our model.
Ours perform consistently better both qualitatively and quantitatively. Corresponding FID scores can
be found in Table 1. More results are presented in the appendix.

our formulation can be adapted to approximate the negative log-likelihood. fθ(xt, t) stands for the
time-conditioned U-Net used to approximate the time-varying noise function. The visual difference
between the backward process of an isotropic diffusion model (DDPM) and ours is shown in Fig. 2.
Our formulation introduces a negligible overhead. The only additional computation that needs to be
performed is the image gradient ||∇x||, which can very efficiently be done on modern GPUs. We
have not noticed any significant difference in training times between vanilla DDPM and our method.

5 EXPERIMENTS

Implementation details We compare our method against four baselines, namely DDPM (Ho et al.,
2020), Simple Diffusion (Hoogeboom et al., 2023), IHDM (Rissanen et al., 2023) and BNDM (Huang
et al., 2024a). The motivation for comparing with the latter two works is that they also consider
a non-isotropic form of noise. In Appendix B, we discuss how our method could be extended to
continuous normalizing flows via Flow Matching (Lipman et al., 2022).

We perform experiments on two settings: pixel-space diffusion following the setting of Ho et al.
(2020); Rissanen et al. (2023) and latent-space diffusion following (Rombach et al., 2022) noted as
LDM in Table 1, where the diffusion process can be driven by any method but runs in the latent space.
We use the following datasets: CelebA (1282, 30,000 training images) (Lee et al., 2020), AFHQ-Cat
(1282, 5,153 training images) (Choi et al., 2020), Human-Sketch (1282, 20,000 training images) (Eitz
et al., 2012) (see Appendix) and LSUN-Church (1282, 126,227 training images) (Yu et al., 2015) for
pixel-space diffusion. For high-resolution image generation with latent-space diffusion (Rombach
et al., 2022), we use on CelebA (2562), AFHQ-Cat (5122).

We used a batch size of 64 for all experiments in image space, and a batch size of 128 for all
experiments in latent space. We trained AFHQ-Cat (1282) for 1000 epochs, AFHQ-Cat (5122) (latent
diffusion) for 1750 epochs, CelebA(1282) for 475 epochs, CelebA(2562) (latent diffusion) for 1000
epochs and LSUN-Church(1282) for 90 epochs for our method and all baselines we compare to. Our
framework is implemented in Pytorch (Paszke et al., 2017). For the network architecture we use
a 2D U-Net from Rissanen et al. (2023). We use T = 500 discrete time steps for both training and
inference, except for AFHQ-Cat128, where we used T = 750. To optimize the network parameters,
we use Adam optimizer (Kingma and Ba, 2014) with learning rate 1e−4 for latent-space diffusion
models and 2e−5 for pixel-space diffusion models. We trained all datasets on 2x NVIDIA Tesla A40.

For our final results in image space, we used a linear scheme for λ(t) that linearly interpolates
between λmin = 1e−4 and λmax = 1e−1. We used a transition point tΦ = 0.5 and a linear transition
function τ(t). For latent diffusion, we used λmin = 1e−5 and λmax = 1e−1, with tΦ = 0.5 and a
linear τ(t).

To evaluate the quality of generated samples, we consider FID (Heusel et al., 2017). using the
implementation from Stein et al. (2024), with Inception-v3 network (Szegedy et al., 2016) as

7
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Figure 4: Unconditional samples for the Human Sketch (1282) dataset (Eitz et al., 2012). All models
were trained for an equal amount of 575 epochs. Our edge-aware model outperforms all models
including DDPM (see Fig. 6).

backbone. We generate 30k images to compute FID scores for unconditional generation for all
datasets.

Unconditional image generation We show unconditional image generation results in Fig. 3 and
Appendix E. The corresponding FID metrics are listed in Table 1. We observe improvements w.r.t.

Table 1: Quantitative FID score comparisons among IHDM (Rissanen et al.,
2023), DDPM (Ho et al., 2020), BNDM (Huang et al., 2024a) and our
method across different datasets.

FID (↓) CelebA(1282) LSUN-Church(1282) AFHQ-Cat(1282)

IHDM 89.67 119.34 53.86
DDPM 28.17 31.00 17.60
BNDM 26.35 29.86 14.54

Ours 26.15 23.17 13.06

all baselines both
visually and quanti-
tatively. While the
visual improvement
over DDPM is subtle,
our model generally
demonstrated greater
robustness to artifacts.
We attribute these
improvements to the
explicit training of our model on predicting the non-isotropic noise associated with the edges in
the dataset. We also performed comparisons in the latent space, which are listed in Table 3 in
Appendix E. For latent space diffusion (CelebA(2562) and AFHQ-Cat(5122)), although our model is
slightly outperformed on the FID metric, the visual quality of our samples is often comparable, and
at times even superior (see Fig. 12 and Fig. 13 in Appendix E). This highlights the known limitations
of FID, as it doesn’t always reliably capture visual quality (Liu et al., 2018). In particular we would
also like to draw attention to Fig. 4. The Human-Sketch (1282) dataset (Eitz et al., 2012) is very
uncommon to use for evaluation in the diffusion community, however we found it interesting given
its content is entirely composed of edges. Results for additional baselines are shown in Appendix E.
Training and inference time and memory consumptions of all methods are shown in Table 6.

Stroke-guided image generation (SDEdit) Motivated by the hope that our model would better
adhere to the guidance provided by shape-based priors such as sketches, we applied our edge-
preserving diffusion model to the SDEdit framework (Meng et al., 2022) for sketch-guided image
generation. More specifically, we converted a set of 1000 original images from the training set
into stroke painting images using k-means clustering. To generate samples, we then use the stroke
paintings as inputs to the SDEdit framework, for different diffusion models including BNDM (Huang
et al., 2024a), DDPM (Ho et al., 2020), Simple Diffusion (SimpleDiff) (Hoogeboom et al., 2023).
We used a hijack point of 0.55T , meaning that we run 55% of the forward process to get a noisy
stroke painting, which is then denoised to obtain the sample. We computed the FID score between
the set of original images and the set of generated samples, to measure which method is able to make
better reconstructions given a shape-based prior. A comparison is shown in Fig. 5. We observed that
our edge-preserving model better adheres to the guiding prior and overall behaves more robustly on
this task. It suffers less from artifacts that are present for the other methods, leading to a significant

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Simulated BNDM DDPM SimpleDiff Ours
strokes

FID (↓) BNDM DDPM Simple
Diff

Ours

CelebA(1282) 68.0 45.80 46.43 39.08
Church(1282) 93.81 72.54 45.93 56.14
Cat(1282) 51.05 27.61 34.26 23.50

Human DDPM Ours
painting

Figure 5: Left: Various diffusion models applied to the SDEdit framework (Meng et al., 2022) are
shown. The leftmost column displays the stroke-based guide, with the other three columns showing
the model outputs. Overall our model shows sharper details with less distortions compared to other
models, leading to a better visual and quantitative performance. The corresponding FID scores are
shown in the top right column. Right: Our model also effectively uses human-drawn paintings as
shape guides, with particularly precise adherence to details, such as the orange patches on the cat’s
fur, unlike DDPM (middle column).

improvement in performance both qualitatively and quantitatively. We evaluate precision/recall
metrics (Kynkäänniemi et al., 2019) in Tables 7 and 8 to show our method does not limit diversity.
We also compare CLIP score (Radford et al., 2021) in Table 10, showing our model better preserves
the semantics than Simple Diffusion and DDPM. Our edge-preserving framework can be seamlessly
integrated into existing diffusion-based algorithms like RePaint (Lugmayr et al., 2022) for image
inpainting, as shown in Table 9 and Figure 14.

5.1 FREQUENCY ANALYSIS OF TRAINING PERFORMANCE
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Training evolution of FID scores per cutoÆ frequency

æ = 1.0 (ours)

æ = 2.5 (ours)

æ = 5.0 (ours)

æ = 7.5 (ours)

æ = 10.0 (ours)

æ = 1.0 (ddpm)

æ = 2.5 (ddpm)

æ = 5.0 (ddpm)

æ = 7.5 (ddpm)

æ = 10.0 (ddpm)

FID score evolution over training time, per cutoÆ frequency

￼a) ￼b)

￼c) ￼d)

To better understand our model’s capacity
of modeling the target distribution, we con-
ducted an analysis on its training perfor-
mance for different frequency bands. Our
setup is as follows, we create 5 versions
of the AFHQ-Cat128 dataset, each with
a different cutoff frequency. This corre-
sponds to convoluting each image in the
dataset with a Gaussian kernel of a specific
standard deviation σ, representing a fre-
quency band. For each frequency band, we
then trained our model for a fixed amount
of 10000 training iterations. We place a
model checkpoint at every 1000 iterations,
so we can also investigate the evolution
of the performance over this training time.
We measure the performance by comput-
ing the FID score between 1000 generated
samples (for that specific checkpoint) and
the original dataset of the corresponding
frequency band. A visualization of the an-
alyzed results is presented in the inline fig-
ure on the right. We found that our model
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is able to learn the low-to-mid frequencies of the dataset significantly better than the isotropic model
(DDPM). The figure shows the evolution of FID score over the first 10,000 training iterations per
frequency band (larger σ values correspond to lower frequency bands). a) and b) show performance
in terms of FID score of DDPM and our model, respectively. c) shows their difference (positive
favors our method). d) visualizes the information in 2D for a more accurate comparison. Our model
significantly outperforms in low-to-mid frequency bands (lower FID is better).

5.2 ABLATION STUDY

Impact of transition function τ(t). We have experimented with three different choices for the tran-
sition function τ(t): linear, cosine and sigmoid. While cosine and sigmoid show similar performance,
we found that having a smooth linear transition function significantly improves the performance of
the model. A qualititative and quantitative comparison between the choices is presented in the inline
figure below.

0.25 0.750.5￼ :tΦ

33.0623.91 22.11FID:

Linear￼λ(t) : ￼λ(t) : 1e−2 ￼λ(t) : 1e−4

Cosine LinearSigmoid￼ :τ(t)

13.0621.23 18.01FID:Impact of transition points tΦ. We have
investigated the impact of the transition
point tΦ on our method’s performance by
considering 3 different diffusion schemes:
25% edge-preserving - 75% isotropic, 50%
isotropic - 50% edge-preserving and 75%
edge-preserving - 25% isotropic. A vi-
sual example for AFHQ-Cat (1282) is pre-
sented in the inline figure on the right. We
have experienced that there are limits to
how far the transition point can be placed
without sacrificing sample quality. Visu-
ally, we observe that the further the tran-
sition point is placed, the less details the
model generates. The core shapes however
stay intact. This is illustrated well by Fig. 7
in Appendix E. For the datasets we tested
on, we found that the 50%-50% diffusion
scheme works best in terms of FID metric
and visual sharpness. This again becomes
apparent in Fig. 7: although the samples
for tΦ = 0.25 contain slightly more details,
the samples for tΦ = 0.5 are significantly sharper.

Impact of edge sensitivity λ(t). As shown in the above inline figure, lower constant λ(t) values
lead to less detailed, more flat, ”water-painting-style” results. The intuition behind this is that a lower
λ(t) corresponds to stronger edge-preserving noise and our model is explicitly trained to accordingly
better learn the core structural shapes instead of the high-frequency details that we typically find in
interior regions. Our time-varying choice for λ(t) works better than other settings in our experiments,
by effectively balancing the preservation of structural information across different granularities.

6 CONCLUSION

We introduced a new class of edge-preserving generative diffusion models that extend existing
isotropic models with negligible overhead. In practice, we didn’t notice any increase in training/infer-
ence time. Our linear diffusion process operates in two stages: an edge-preserving phase followed
by an isotropic phase. The edge-preserving stage maintains core shapes, while the isotropic stage
fills in details. This decoupled approach captures low-to-mid frequencies better and converges to
sharper predictions faster. It improves performance on both unconditional and shape-guided tasks,
outperforming several state-of-the-art models. For future work it would be interesting to extend our
non-isotropic framework to the temporal dimension for video generation to improve time-consistency
of important image features.
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Ethics statement. We recognize that releasing generative models can open doors for malevolent
actors to exploit and make misuse of them. However, by being transparent about the workings of our
method and releasing the source code, we hope to support the research communities that are working
on methods to better detect machine-generated content and warn or protect against it.
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A RELATION TO SCORE-BASED GENERATIVE MODELING

A.1 TRAINING OF A SCORE-BASED MODEL

Given any Rd-valued (d ∈ N) forward process (xt)t∈[0, T ] such that x0 is distributed to a desired
data distribution µ on Rd, a score-based model can be trained by minimizing the loss:

L(s̃) :=
∫ T

0

α(t)

∫
µ(dx) Ex

[∥∥s̃(t,xt)
∥∥2 + 2∇x · s̃(t,xt)

]
dt, (16)

where T ∈ (0,∞), α : [0, T ] → [0,∞) is a suitable weighting function and s̃ : [0, T ]× Rd → Rd is
the desired score estimate. The score is defined to be

s(t, · ) := ∇ ln pt, (17)

where pt denotes the density of xt with respect to the Lebesgue measure on Rd, which we assume to
exist for all t ∈ [0, T ].

In order to ensure stability and convergence of the training, α(t) is usually chosen to be inversely
proportional to the expected squared norm:

E
[∥∥s(t,xt)

∥∥2] (18)

of the true score s(t, · ).
In practice, xt is often conditionally Gaussian given x0. In that case, the suggested choice for α(t)
can be easily computed. In fact, the score of a Gaussian random variable with covariance matrix Σ is
given by:

tr
(
Σ−1

)
. (19)

A.2 SAMPLING IN A SCORE-BASED MODEL

Assuming that (xt)t∈[0, T ] is the solution of a stochastic differential equation (SDE)

dxt = b(t,xt) dt+ σ(t,xt) dwt (20)

for some drift b : [0, T ] × Rd → Rd, diffusion coefficient σ : [0, T ] × Rd → Rd×d and Wiener
process (wt)t∈[0, T ], a mild condition (Haussmann and Pardoux, 1986) on the drift and diffusion
coefficent are sufficient to show that the reverse process

xt := xT−t for t ∈ [0, T ] (21)

is the solution of an SDE as well. In fact, in that case, (xt)t∈[0, T ] is the solution

dxt = b(t,xt) dt+ σ(t,xt) dwt, (22)

where

b(t, x) := (∇x · Σ)(T − t, x) + Σ(T − t, x)s(T − t, x)− b(T − t, x); (23)
σ(t, x) := σ(T − t, x) (24)

Σ := σσ∗ (25)

and (wt)t∈[0, T ] is another Wiener process. Since, by assumption, xT = x0 is distributed according
to our data distribution µ, sampling from the data distribution can be achieved by simulating the SDE
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(22). In practice, the usually unknown score s is replaced by the score estimate s̃ learned during the
training process.

A.3 INTEGRATING OUR FORWARD PROCESS TO THE SCORE-BASED FRAMEWORK

We can immediately use our forward process (11) for score-based generative modeling. To do so, we
can interpret the forward process (11) as the solution of the SDE:

dyt = βt dt+ ςt dwt; (26)
y0 = 0, (27)

where

βt :=
d

dt
btx0; (28)

ςt :=

√
2σ̃t

d

dt
σt (29)

and
bt :=

√
ᾱt; (30)

σt :=

√
1− ᾱt

(1− τ(t))
√

1 + ||∇x0||
λ(t) + τ(t)

; (31)

σ̃t := σt − σ0. (32)
However, it is more natural to translate our basic idea directly to an SDE and consider:

dyt = bt dt+ σt dwt; (33)
y0 = x0 (34)

instead. For the solution (yt)t∈[0, T ] of an SDE of the form (33), yt is conditionally Gaussian given
y0. Assuming y0 is distributed according to the target data distribution µ, we can use the general
procedure described in Appendix A.1 and Appendix A.2 to train the score and sample from µ.

B RELATION TO FLOW MATCHING

A recent advancement in the community of generative modeling is the framework of Flow Matching
Lipman et al. (2022). Examining the framework of this paper, we believe that our edge-preserving
noise scheduler fits naturally within their general framework for arbitrary functions µ(x1) and σt(x1).
Specifically, in their Equations (16)-(19), they derive a method for conditioning a vector field on the
diffusion processes of Song and Ermon (2019) and Ho et al. (2020). Since our paper follows the same
denoising probabilistic framework, and we chose γt and b consistent with Ho et al. (2020), the choice
of µ(x1) of the reversed diffusion path can remain consistent with that of the variance-preserving
path, while σt(x1) would incorporate our noise-suppressing denominator inspired by Perona and
Malik (1990). We believe the integration of our edge-preserving noise framework into Flow Matching
is a promising direction for future work, motivated by their promising results on unconditional image
generation, which we list in Table 2 below. Given our observations made in this paper, we are hopeful
that an edge-preserving version of Flow Matching can further improve its performance, as we have
seen with DDPM.

Table 2: Quantitative comparison for unconditional image generation between Flow Matching
(Lipman et al., 2022) and Ours. We used the implementation available in the library torchcfm
(with the ‘ConditionalFlowMatcher‘ model). We provide the FID score of Ours (the variant of an
edge-preserving process with our choices for γt and b) as a relative comparison. To investigate the
impact of edge-preserving noise, a more fair comparison would include an edge-preserving version
of Flow Matching.

Unconditional FID (↓) AFHQ-Cat(1282) CelebA(1282) LSUN-Church(1282)

Ours 13.06 26.15 23.17
Flow Matching 7.43 14.5 12.86
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C MOTIVATION BEHIND OUR HYBRID NOISE PROCESS

A valid observation to make is that given our hybrid forward process with two distinct stages, the
edges are preserved longer, but still lost in the end. How does longer preservation of edges help the
generative process? First thing to note is that the longer preservation of edges by itself does not have
any impact, if we still let the model predict isotropic noise. Secondly, by modifying the forward
process to be an edge-preserving one, the backward posterior formulation will also change and will
rely on a non-isotropic variance, as discussed Eq. (13). It is the combination of edge-preserving
noise, together with our structure-aware loss function that makes the model work. Furthermore, our
frequency analysis (Section 5.1) has quantitatively shown that our decoupling approach is beneficial
to learning the low-to-mid frequencies of the target dataset. This is consistent with recent work on
wavelet-based diffusion models (Huang et al., 2024b), that demonstrates it is advantageous to learn
low-frequency content separately from high-frequency content in the wavelet domain, using two
distinct modules. Instead, we use two distinct stages, one that focuses on lower-frequency primary
structural content (edge-preserving stage), and one that focuses on fine-grained high-frequency details
(isotropic stage).

D HOW NEGATIVE LOG LIKELIHOOD CAN BE APPROXIMATED

Here we explain how negative log likelihood in the original DDPM Ho et al. (2020) paper can be
approximated with our formulation.

The denoising probabilistic model paradigm defined in the DDPM paper defines the loss by minimiz-
ing a variational upper bound on the negative log likelihood. Because our noise is still Gaussian, the
derivation they make in Eq. (3) to (5) of their paper still holds for us. The difference however is that
we’re non-isotropically scaling our noise based on the image content. As a result, our methods differ
on Eq. (8) in their paper. Instead, we end up with the following form:

Lt−1 = Eq[Σ
−1(µ̃t(xt,x0)− µθ(xt, t)).(µ̃t(xt,x0)− µθ(xt, t))] (35)

In essence, for our formulation that considers non-isotropic Gaussian noise, we need to apply a
different loss scaling for each pixel.

Our formulation still provides an analytical variational upper bound to approximate the negative
log-likelihood. While our heuristic loss function (Eq. (15)) already proved effective for approximating
non-isotropic noise corresponding to structural content in the data, a more accurate KL-divergence
loss would include the scaling discussed above.

E ADDITIONAL RESULTS

In this section, we provide additional results and ablations.

Table 3 shows quantitative FID comparisons using latent diffusion (Rombach et al., 2022) models on
all the baselines.

Figure 9, Figure 10, Figure 11, Figure 12 and Figure 13 show more generated samples and compar-
isons between IHDM, DDPM on all previously introduced datasets. In Fig. 6 we show samples for
the Human-Sketch (1282) data set specifically. This dataset was of particular interest to us, given
the images only consist of high-frequency, edge content. Although we observed that this data is
remarkably challenging for all methods, our model is able to consistently deliver visually better
results. Note that although we report FID scores for this data set, they are very inconsistent with the
visual quality of the samples. This is likely due to the Inception-v3 backbone being designed for
continuous image data, leading to highly unstable results when applied to high-frequency binary data.

Figure 7 shows an additional visualization of the impact tΦ for the LSUN-Church (1282) dataset.
tΦ = 0.5 works best in terms of FID metric, consistent to the results shown in Section 5.2.
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Figure 6: Generated unconditional samples for the Human Sketch (1282) dataset (Eitz et al., 2012).
All models were trained for an equal amount of 575 epochs. Note that the FID scores are inconsistent
with visual quality. The cause for this is the Inception-v3 backbone, which is designed for continuous
image data, leading to highly unstable results when applied to high-frequency binary data like hand-
drawn sketches.

FID: 39.31 35.71 86.41

0.25 0.5 0.75
Figure 7: Impact of location of transition point tΦ on sample quality, shown for the LSUN-Church
(1282) dataset. If we place tΦ too far, the model happens to learn only the lowest frequencies and
generates no details at all. Placing it too early leads to results that are less sharp. We found that
by placing tΦ at 50%, we strike a good balance between the two, leading to better quantitative and
qualitative results.

Table 3: Quantitative FID score comparisons on latent diffusion models (Rombach et al., 2022)
among IHDM (Rissanen et al., 2023), DDPM (Ho et al., 2020), BNDM (Huang et al., 2024a) and our
method.

Unconditional FID (↓) CelebA(2562, latent) AFHQ-Cat(5122, latent)

IHDM 88.12 28.09
DDPM 7.87 22.86
BNDM 10.93 13.62

Ours 13.89 18.91
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Table 4: We performed unconditional image generation experiments on an unofficial implementation
of SimpleDiffusion (Hoogeboom et al., 2023). Note that this implementation is missing the architec-
tural changes proposed in their paper. We are using the same simple architecture as Ours. As a result,
the FID numbers are in double-digit range and comparable to ours. We contend that to measure the
impact of edge-preserving noise, it would be more fair to compare against an edge-preserving version
of Simple Diffusion using the framework presented in this work.

Unconditional FID (↓) CelebA(1282) LSUN-Church(1282) AFHQ-Cat(1282)

Ours 26.15 23.17 13.06
Simple Diffusion 19.28 17.87 15.66

Table 5: Additional results for the unofficial implementation of SimpleDiffusion (Hoogeboom et al.,
2023) applied to the shape-guided generative task according to SDEdit (Meng et al., 2022). Note that
this unofficial version does not include the architectural changes proposed in the paper. While the
version of our method presented in this paper already outperforms Simple Diffusion in the majority
of test cases, we again would like to make the comment that a comparison with an edge-preserving
version of Simple Diffusion would be more fair. We consider the integration of our edge-preserving
noise framework into other works, like Simple Diffusion, a promising direction for future work.

Shape-guided task FID (↓) CelebA(1282) LSUN-Church(1282) AFHQ-Cat(1282)

Ours 39.08 56.14 23.50
Simple Diffusion 46.43 45.93 34.26

Table 6: Our measurements on time and memory consumptions are based on data resolution (128x128)
and a batch size of 64. Note that BNDM and Flow Matching make use of less inference steps (T=250
vs. T=500 for Ours, DDPM and Simple Diffusion), and therefore are expected to be faster for
inference. Given that the official implementations of Simple Diffusion (Hoogeboom et al., 2023)
and Flow Matching (Lipman et al., 2022) are unavailable, we used simpleDiffusion and torchcfm
respectively. Our setup consisted of 2 NVIDIA Quadro RTX 8000 GPUS. We see that timings and
memory usage of Ours is very similar to DDPM and Simple Diffusion, suggesting that the Sobel
filter we apply to approximate brings minimal overhead.

Ours DDPM BNDM Flow Matching Simple Diffusion

Training time (seconds per iteration) 1.12 1.11 0.74 2.74 1.48
Inference time (seconds per iteration) 301.5 277.5 77.2 84.78 290.7

Inference Memory (GB) 9.16 9.16 10.3 22.18 10.42

Table 7: Shape-guided image generation (based on SDEdit (Meng et al., 2022)): precision (metric
for realism) and recall (metric for diversity) scores (Kynkäänniemi et al., 2019) for isotropic model
DDPM, and our edge-preserving model. We consistently outperform in terms of precision, and again
closely match in terms of recall.

Ours DDPM
Shape-guided image generation Precision (↑) Recall (↑) Precision (↑) Recall (↑)

AFHQ-Cat(1282) 0.93 0.80 0.92 0.66
CelebA(1282) 0.65 0.46 0.53 0.53

LSUN-Church(1282) 0.87 0.46 0.84 0.50
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Table 8: Unconditional image generation: precision (metric for realism) and recall (metric for
diversity) scores for isotropic model DDPM, and our edge-preserving model. While we slightly
get outperformed, we find that our edge-preserving model closely matches DDPM on both metrics.
therefore we would argue that edge-preserving noise minimally impacts diversity.

Ours DDPM
Unconditional image generation Precision (↑) Recall (↑) Precision (↑) Recall (↑)

AFHQ-Cat(1282) 0.76 0.20 0.77 0.21
CelebA(1282) 0.90 0.16 0.92 0.17

LSUN-Church(1282) 0.65 0.33 0.47 0.38

Table 9: We additionally integrate our method into RePaint (Lugmayr et al., 2022), a state-of-
the-art pixel-space inpainting algorithm. We made a comparative analysis between RePaint and
”Edge-preserving RePaint” by performing an inpainting task over 100 images for multiple datasets.
Visual results for this task are shown in Fig. 14. Note that lower FID is better, and higher CLIP
Score (Radford et al., 2021) is better. We find that our model closely matches the performance of
RePaint.

FID/CLIP Ours RePaint

AFHQ-Cat(1282) 20.50/97.91 19.77/98.21
CelebA(1282) 49.12/91.58 44.95/93.64

Table 10: We provide additional comparison for our shape-guided generative task (Meng et al., 2022)
evaluated using the CLIP metric (Radford et al., 2021). Our method consistently outperforms the
baselines on this metric, indicating that the generated images are more semantically aligned with the
ground-truths (the original images used to generate the stroke paintings). We show several examples
(Fig. 5 and Fig. 8) where our model solves visual artifacts that are apparent with other baselines,
which can improve the semantical meaning of the generated image.

CLIP Ours DDPM Simple Diffusion

AFHQ-Cat(1282) 88.97 88.78 88.23
CelebA(1282) 61.15 61.02 60.72

LSUN-Church(1282) 64.32 62.57 62.13
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Synthetic BNDM DDPM Ours
painting

Synthetic BNDM DDPM Ours
painting

Figure 8: More samples for our model and other baselines applied to SDEdit (Meng et al., 2022).
Note how our model is able to generate sharper results that suffer less from artifacts. Although
BNDM can generate satisfactory results in certain cases (e.g., cat and church), it often deviates
from the stroke painting guide, potentially producing outcomes that differ significantly from the
user’s original intent. In contrast, our method closely follows the stroke painting guide, accurately
preserving both shape and color.
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IHDM BNDM DDPM Ours

Figure 9: More unconditional samples for IHDM, DDPM and our method on the AFHQ-Cat (1282)
dataset. Although the difference between DDPM and our method is subtle, we consistently found
that our approach captures geometric details more effectively (e.g., whiskers) and experiences fewer
blurry artifacts (e.g., right sample in row 3, DDPM vs. Ours).

IHDM BNDM DDPM Ours

Figure 10: More unconditional samples for IHDM, BNDM, DDPM and our method on the CelebA
(1282) dataset. While BNDM is only slightly outperformed by our model in terms of FID metric,
its samples look noticeably different in terms of colors. We attribute this difference to the fact that
BNDM simulates an ODE, where we in contrast simulate an SDE, possibly causing both methods to
sample a different part of the manifold. In terms of visual quality the BNDM samples also show more
artifacts, but it is known from previous work that FID score does not always well reflect percepted
quality (Liu et al., 2018).
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IHDM BNDM DDPM Ours

Figure 11: More unconditional samples for IHDM, BNDM, DDPM and our method on the LSUN-
Church (1282) dataset. lthough our results appear similar to DDPM’s, our method more effectively
captures the geometric details of buildings and exhibits fewer artifacts, such as blurry regions,
compared to DDPM.

IHDM BNDM DDPM Ours

Figure 12: More unconditional samples for IHDM, DDPM and our method on the AFHQ-Cat (5122,
LDM) dataset. All samples are generated via diffusion in latent space. Note that despite the deficit in
FID score, our method is able to produce results of very similar perceptual quality.
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IHDM BNDM DDPM Ours

Figure 13: More unconditional samples for IHDM, DDPM and our method on the CelebA (2562,
LDM) dataset. All samples are generated via diffusion in latent space. Although our method is slightly
outperformed in terms of the FID metric, the visual quality of our samples is highly comparable to
the baselines, and in some cases, even superior (e.g., third row of DDPM vs. Ours).

DDPM Ours
Figure 14: Visual comparisons on RePaint (Lugmayr et al., 2022) using the isotropic DDPM model
and our edge-preserving noise model. We find that our model closely matches the performance of
RePaint.
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