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The supplementary material provides:
• Section 1.1: Ablation over different prompts.
• Section 1.2: Ablation on 𝑝 in partial score.
• Section 2.1: Comparison with SOTA on different LLMs.
• Section 2.2: Comparison with generative methods.
• Section 2.3: Comparison with CLIP without prior on labels.
• Section 3: Training details.
• Section 4: Details of less-described categories.
• Section 5: Examples of category documents.

1 EXTRA ABLATIONS ON EMDEPART
1.1 Ablation over Different Prompts
To find a robust prompt, we consider the following three prompts
for enriching less-described documents:

Direct Prompt: “ What does a {class name} look like? Please
describe within 500 words. ”

Detailed Prompt: “ Now you are a {type} expert. I will give you
{type} name, and you need to give detailed information. I want you to
define {class name}. Please describe within 500 words. ”

Visual Prompt: “Now you are a {type} expert. I will give you
{type} name, and you need to give detailed visual information about
its shape, color, appearance, habitat, etc. I want you to define {class
name}. Please describe within 500 words.”

We leverage the coarse-grained species as {type}, i.e., animal
for AWA2, bird for CUB, and flower for FLO. Besides, {class name}
denotes the name of the labeled class.

In Table 1, we see that all prompts achieve performance im-
provements, verifying the effectiveness of enriching less-described
documents. The visual prompt achieves the best result, which en-
riches less-described classes with more diverse descriptions.

Table 1: Ablation over different prompts on AWA2 and FLO
datasets. We test each prompt with three times. The best
results overall are in bold.

Template AWA2 FLO
Style T1 H T1 H
Wiki 81.4 81.5 47.2 59.5
Direct Prompt 82.2±0.95 82.6±0.81 48.2±0.68 59.9±0.57
Detailed Prompt 84.1±0.53 83.7±0.47 51.2±0.45 64.7±0.87
Visual Prompt 86.1±0.16 84.8±0.29 53.3±0.41 67.3±0.82

1.2 Ablation on 𝑝 in Partial Score
In Table 2, we ablate the value of 𝑝 in the partial score function
to determine the optimal value on three datasets. The number of
view embeddings 𝑘 are set to 4, 5, and 4 for AWA2, CUB, and FLO
datasets, respectively.

Table 2: Ablation on 𝑝 in partial score function. The best
results overall are in bold.

Model
AWA2 CUB FLO
T1 T1 T1

w/o Partial Score 85.71 52.58 52.99
𝑝 = 1 85.32 52.64 53.31
𝑝 = 2 86.00 52.71 53.19
𝑝 = 3 86.13 52.84 52.91
𝑝 = 4 - 52.74 -

The results show that the optimal value of 𝑝 in the partial score
function varies with the dataset. Specifically, for the AWA2 and
CUB datasets, a higher value (𝑝 = 3) leads to better performance. In
contrast, for the FLO dataset, a lower value (𝑝 = 1) is more effective.
It is noteworthy that lower values, such as 𝑝 = 1 for AWA2 and
CUB, result in the performance decrease. This is due to insufficient
engagement with semantic information from view embeddings.

2 EXTRA EXPERIMENTS
2.1 Comparison with SOTA on Different LLMs
In Table 3, we compare the SOTA method in document-based
ZSL on different LLMs (GPT3 [1], PaLM [3], ChatGPT [6]). We
see that our EmDepart with Wiki outperforms I2MVFormer with
Wiki+ChatGPT across all metrics. It verifies that modeling partial
association is helpful for knowledge transfer and significantly im-
proves performance. With the larger scale of LLMs, the EmDepart
achieves better performance with more diverse visual descriptions.
The model with ChatGPT achieves the best result.

Table 3: Comparison with SOTA methods on different LLMs.
The best results within a method are underline. The best
results overall are in bold.

Model
Auxiliary AWA2 FLO

Information T1 H T1 H

I2MVFormer [9]

Wiki 73.6 73.8 41.3 51.2
Wiki+GPT3 74.2 74.2 44.2 54.5
Wiki+PaLM 79.6 76.6 46.2 57.1

Wiki+ChatGPT 79.9 80.5 47.7 59.1

EmDepart (Ours)
Wiki 81.4 81.5 47.2 59.5

Wiki+GPT3 82.3 82.2 53.2 65.5
Wiki+PaLM 84.1 82.5 50.2 64.3

Wiki+ChatGPT 86.1 84.8 53.3 67.3
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Table 4: Comparison with SOTA methods in document-based ZSL on three benchmark datasets. We evaluate methods on
documents sourced fromWiki. The best results overall are in bold.

Zero-Shot Learning Generalized Zero-Shot Learning

Type Model
Auxiliary

Information AWA2 CUB FLO AWA2 CUB FLO

T1 T1 T1 U S H U S H U S H

Generative
GAZSL [17] Wiki 83.1 42.9 34.2 56.8 94.7 71.0 15.9 50.4 24.1 28.8 90.1 43.7
f-VAEGAN-D2 [16] Wiki 85.1 41.9 36.9 73.2 81.7 77.2 33.4 57.3 42.2 30.0 97.3 45.8

Discriminative
I2DFormer [10] Wiki 76.4 45.4 40.0 66.8 76.8 71.5 35.3 57.6 43.8 35.8 91.9 51.5
I2MVFormer [9] Wiki 73.6 42.1 41.3 66.6 82.9 73.8 32.4 63.1 42.8 34.9 96.1 51.2
EmDepart (Ours) Wiki 81.4 50.2 47.2 76.0 87.8 81.5 42.6 56.3 48.5 42.7 97.6 59.5

2.2 Comparison with Generative Methods
In Table 4, we compare our EmDepart with SOTA generative meth-
ods, which generate samples for unseen classes and convert the
ZSL to a supervised task.

On the AWA2 dataset, generative methods achieve superior per-
formance. This is because AWA2 is a coarse-grained dataset, where
collected documents provide richer discriminative information than
traditional attributes. By generating samples for unseen classes,
these methods achieve better results. However, generative methods
fail on CUB and FLO datasets compared to discriminative methods.
This is due to non-visual noisy descriptions (such as sound, diet,
and organ) in documents, Which lead to hard knowledge transfer
and generate low-quality samples for unseen classes.

In contrast, discriminative methods enhance the fine-grained
alignment between image patches and text words, implicitly fil-
tering out irrelevant information. Our EmDepart generates em-
beddings from multiple semantic views, accurately modeling the
semantic alignment according to the matching information and
achieving better performance.

2.3 Comparison with CLIP without Prior on
Class Labels

Recently, some work [7, 8, 11, 13, 14] shows that visual descrip-
tions are helpful for improving the performance of vision-language
models like CLIP [12] on image classification tasks. However, these
methods heavily rely on prior information on class names. We con-
sider the following prompts to evaluate the generalization ability of
models under the situation with and without the class name prior.

Prompt with document: “A photo of a {class name}. {docu-
ment}.”

Prompt with document and without class name prior: “A
photo of a {type}. {document} ”

The {type} denotes the species of categories, such as animal, bird,
and flower. Besides, the {class name} denotes labels in the dataset.We
enrich each class with documents sourced from the encyclopedia.

In Table 5, we show the results of CLIP and our EmDepart in this
situation. We see that the performance of CLIP increases with the
help of documents similar to [7, 8, 11, 13, 14]. However, the perfor-
mance decreases a lot when the model is without prior information
on the class name. In this situation, our EmDepart outperforms
CLIP and demonstrates superior generation ability.

Table 5: Comparison with CLIP in different settings. The
best and worst results are in bold and red, respectively. We
evaluate mean per-class accuracy for CLIP.

Model AWA2 CUB FLO

CLIP [12] 92.0 54.1 66.8
CLIP w/ document 92.2 57.6 71.0
EmDepart 84.8 51.9 67.3

CLIP w/ document and w/o class name 47.2 14.1 18.2
EmDepart w/o class name 68.5 43.2 56.4

3 TRAINING DETAILS
3.1 Calibrated Stacking
We apply calibrated stacking (CS) [2] to trade-off calibration degrees
in the GZSL settings. This is helpful for reducing the bias towards
seen classes. We modify Eq. 13 in the main paper:

𝒚̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝒅′∈D𝑠∪D𝑢 (𝑆𝑝 (𝒙, 𝒅′) − 𝛾ID𝑠 (𝒚̂)). (1)

Here, ID𝑠 represents an indicator function, which is 1 when 𝒅′ ∈
D𝑠 and 0 otherwise. A calibrated factor 𝛾 is applied to trade off the
calibration degree on seen classes.

3.2 Grid Search
Hyperparameters are optimized by grid search in the validation
split. We set the range for 𝜆𝑙𝑜𝑐𝑎𝑙 ∈ [0, 0.01, 0.1, 0.25, 0.5, 0.75, 1],
𝜆𝑣𝑎𝑟 ∈ [0, 0.01, 0.1, 0.5, 1, 3, 5], 𝜆𝑑𝑖𝑣 ∈ [0, 0.01, 0.1, 0.5, 1, 3, 5], and
𝑘 ∈ [0, 1, 2, 3, 4, 5, 6, 7, 8]. Once the hyperparameters are confirmed,
we merge the validation with the training split to obtain the perfor-
mance on the test split. The effect of hyperparameters in EmDepart
is shown in Figure 7 in the main paper.

3.3 Additional Training Details
We implement our framework with Pytorch and train on an Nvidia
GeForce RTX 3090 GPU. Similar to [9, 10], we use the ViT-B/16 [5]
pre-trained on ImageNet 1K [4] as the visual backbone, which re-
spects the GUB split [15]. The detailed hyperparameters are shown
in Table 6 for AWA2, Table 7 for CUB and Table 8 for FLO.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplementary - Visual-Semantic Decomposition and Partial Alignment for Document-based Zero-Shot Learning ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 6: Hyperparameters settings for AWA2 dataset.

Config AWA2

Regular Training Setting
optimizer Adam
base learning rate 1.0e-4
dropout 0.35
batch size 64
learning rate schedule cosine decay
warmup epochs 0
epochs 32
augmentation RandomResizedCrop

Specific Settings in EmDepart
𝜆𝑙𝑜𝑐𝑎𝑙 0.1
𝜆𝑣𝑎𝑟 1.0
𝜆𝑑𝑖𝑣 3.0
number of view embeddings 𝑘 4
𝑝 in partial score 3
𝜏 in Eq. 9 32.0
𝜖 in Eq. 4 1e-4
𝛾 in Eq.4 0.10
dimension of semantic embedding 𝑟 256
layers of text encoder 2
layers of MLP in image perceiver 2
layers of visual SDM 2
layers of textual SDM 2

Table 7: Hyperparameters settings for CUB dataset.

Config CUB

Regular Training Setting
optimizer Adam
base learning rate 8.0e-4
dropout 0.15
batch size 40
learning rate schedule cosine decay
warmup epochs 2
epochs 32
augmentation RandomResizedCrop

Specific Settings in EmDepart
𝜆𝑙𝑜𝑐𝑎𝑙 0.5
𝜆𝑣𝑎𝑟 1.0
𝜆𝑑𝑖𝑣 3.0
number of view embeddings 𝑘 5
𝑝 in partial score 3
𝜏 in Eq. 9 4.2
𝜖 in Eq. 4 1e-4
𝛾 in Eq.4 0.25
dimension of semantic embedding 𝑟 64
layers of text encoder 2
layers of MLP in image perceiver 2
layers of visual SDM 2
layers of textual SDM 2

Table 8: Hyperparameters settings for FLO dataset.

Config FLO

Regular Training Setting
optimizer Adam
base learning rate 5.0e-4
dropout 0.12
batch size 48
learning rate schedule cosine decay
warmup epochs 0
epochs 40
augmentation RandomResizedCrop

Specific Settings in EmDepart
𝜆𝑙𝑜𝑐𝑎𝑙 0.5
𝜆𝑣𝑎𝑟 1.0
𝜆𝑑𝑖𝑣 3.0
number of view embeddings 𝑘 4
𝑝 in partial score 1
𝜏 in Eq. 9 4.0
𝜖 in Eq. 4 1e-4
𝛾 in Eq.4 0.75
dimension of semantic embedding 𝑟 128
layers of text encoder 2
layers of MLP in image perceiver 2
layers of visual SDM 2
layers of textual SDM 2

4 DETAILS OF LESS-DESCRIBED CATEGORIES
In our work, we leverage LLMs to supplement less-described cat-
egory documents. To save computation costs, we select a set of
categories instead of all categories for enriching documents. The
less-described categories for each dataset are shown below.

Table 9: Details of less-described categories.

AWA2 CUB FLO

number of classes 50 200 102
number of less-described classes 21 74 59

AWA2: dalmatian, persian cat, german shepherd, blue whale,
siamese cat, moose, gorilla, ox, fox, rabbit, chihuahua, collie, dol-
phin, grizzly bear, skunk, hippopotamus, spider monkey, wolf,
weasel, zebra, buffalo.

CUB: Laysan Albatross, Parakeet Auklet, Yellow headed Black-
bird, Bobolink, Lazuli Bunting, Gray Catbird, Yellow breasted Chat,
Eastern Towhee, Chuck will Widow, Red faced Cormorant, Shiny
Cowbird, Fish Crow, Mangrove Cuckoo, Least Flycatcher, Scis-
sor tailed Flycatcher, Vermilion Flycatcher, American Goldfinch,
Eared Grebe, Pied billed Grebe, Ivory Gull, Anna Hummingbird,
Ruby throated Hummingbird, Long tailed Jaeger, Blue Jay, Florida
Jay, Green Jay, Tropical Kingbird, Gray Kingbird, Pied Kingfisher,
Hooded Merganser, Red breasted Merganser, Clark Nutcracker,
White breasted Nuthatch, Orchard Oriole, Ovenbird, Horned Puffin,
Common Raven, American Redstart, Baird Sparrow, Clay colored
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Sparrow, Henslow Sparrow, Vesper Sparrow, Cape Glossy Starling,
Summer Tanager, Elegant Tern, Black capped Vireo, Philadelphia
Vireo, Bay breasted Warbler, Black throated Blue Warbler, Blue
winged Warbler, Canada Warbler, Cerulean Warbler, Hooded War-
bler, Kentucky Warbler, Magnolia Warbler, Prairie Warbler, Pro-
thonotaryWarbler, LouisianaWaterthrush, Red belliedWoodpecker,
Red cockaded Woodpecker, Red headed Woodpecker, Bewick Wren,
Rock Wren, Black footed Albatross, Least Auklet, Acadian Fly-
catcher, Yellow bellied Flycatcher, Pomarine Jaeger, Mockingbird,
Black throated Sparrow, Cape May Warbler, Golden winged War-
bler, Northern Waterthrush, Bohemian Waxwing.

FLO: hard-leaved pocket orchid, canterbury bells, sweet pea,
monkshood, colt’s foot, spear thistle, yellow iris, purple coneflower,
peruvian lily, balloon flower, giant white arum lily, fritillary, grape
hyacinth, prince of wales feathers, artichoke, sweet william, carna-
tion, garden phlox, love in the mist, alpine sea holly, ruby-lipped cat-
tleya, cape flower, greatmasterwort, sword lily, poinsettia, wallflower,
marigold, oxeye daisy, wild pansy, primula, sunflower, gaura, black-
eyed susan, silverbush, californian poppy, osteospermum, bearded
iris, windflower, thorn apple, morning glory, passion flower, lo-
tus, toad lily, anthurium, frangipani, clematis, hibiscus, columbine,
tree mallow, magnolia, canna lily, bee balm, ball moss, foxglove,
bougainvillea, mexican petunia, blanket flower, trumpet creeper,
blackberry lily.

5 EXAMPLES OF CATEGORY DOCUMENTS
We show two examples of category documents for three datasets,
which are the auxiliary information in our EmDepart. We will
release all the documents after the review process.

5.1 AWA2
Giraffe: The Giraffe is an animal with an enormously long neck
which allows it to exploit the leaves and vegetation that are too high
up for other animals to find. Despite their length, the neck of the
Giraffe actually contains the same number of bones as numerous
other hoofed mammals but they are simply longer in shape. The
giraffe’s elongated neck leads into a short body, with long and
thin, straight legs and a long tail that is tipped with a black tuft
that helps to keep flies away. The Giraffe tends to be white in
color with brown or reddish markings that cover its body (with the
exception of its white lower legs). The markings of each Giraffe
are not only unique to that individual but they also vary greatly
between the different Giraffe species in size, color, and the amount
of white that surrounds them. All giraffes though have large eyes
that along with their height give them excellent vision, and small
horn-like ossicones on the top of their heads. Giraffes are animals
that inhabit openwoodlands and savannahwhere using their height
they are able to see for great distances around them to watch out
for approaching danger. A giraffe is a tall and slender mammal with
a long neck and legs. Their coat is pale yellow with dark brown
spots or irregular patches covering their whole body except for
their underbelly. Their spots are unique to each individual and help
them to blend into their habitat, making them difficult to spot by
predators. Giraffes have small horn-like ossicones on top of their
head, and their ears are small and tufted with hair. Their eyes are

large, dark, and have long eyelashes. Long neck: Giraffes are well-
known for their long necks, which are an adaptation for reaching
high branches and leaves in trees.
Horse: All horses have long necks that hold up their large, long
heads. They have big eyes and ears, which are well-adapted for
many environments. A mane of long hair grows down along their
necks and their short tails are covered in coarse hairs, too. They
come in a variety of colors because they have been bred so long for
different traits. These animals are famously a hoofed mammal with
one large toe at the end of each leg. Their hooves consist of horn
material which comes in different colors. Black is the most common
hoof color, but horses with white feet often have white hoofs. White
hooves are actually more brittle than pigmented ones. Appaloosa
horses have a beautiful mixture of multiple colors. These types of
painted horses often have striped hoofs that include both pigmented
and white hoof material. These animals are well-suited to all kinds
of environments and climates. Domestic horses can live almost
anywhere as long as they have shelter, food, and space to run. horses
are generally known for their distinct physical characteristics such
as a long face, large nostrils, muscular build, four legs, hooves, a
mane and tail of hair, and varying coat colors and patterns. They also
have big, expressive eyes, long necks, and pointed ears. horses are
generally found in open fields, meadows, pastures, and sometimes
in stables or barns if they are domesticated. Their natural habitat
includes grassy plains, hills, and forests with access to water sources.
Their surroundings are usually green and have varying degrees of
vegetation cover.

5.2 CUB
Brown Creeper: Tiny, lanky songbirds with long, spine-tipped
tails, slim bodies, and slender, decurved bills. Length: 4.7-5.5 in
(12-14 cm). Weight: 0.2-0.3 oz (5-10 g). Wingspan: 6.7-7.9 in (17-
20 cm).The bill is slender and decurved, perfect for probing into
crevices in tree bark to find insects and spiders.Brown Creeper
have streaked brown and buff upperparts, with a broad, buffy stripe
over the eye. The underparts are white, usually hidden against
the tree trunk.Their legs and feet are specialized for clinging to
tree trunks, supporting their unique foraging behavior.The tail is
long and spine-tipped, used for support as Brown Creeper hitch
upward in a spiral around tree trunks.Their wings arewell-suited for
short flights between trees, necessary for their foraging style.Brown
Creeper forage by hitching upward in a spiral around tree trunks
and limbs, using their stiff tails for support, and fly weakly to
the base of another tree to continue foraging.Brown Creeper are
found in mature evergreen or mixed evergreen-deciduous forests
for breeding. In winter, Brown Creeper can be found in a broader
variety of forests, including deciduous woodlands.
Mockingbird: Medium-sized songbird, more slender than a thrush
with a longer tail. Length: 8.3-10.2 in (21-26 cm). Weight: 1.6-2.0
oz (45-58 g). Wingspan: 12.2-13.8 in (31-35 cm).Long, thin bill
with a hint of a downward curve.Overall gray-brown, paler on
the breast and belly. Two white wingbars on each wing and a white
patch in each wing. White outer tail feathers are also flashy in
flight.Long legs that are well-adapted for running and hopping
on the ground.Long tail that is gray-brown like the body, which
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appears particularly long in flight and aids in balance and maneu-
verability.Short, rounded, and broad wings, which are efficient for
quick takeoffs and agile flight.Mockingbird are known for their
songs and mimicry. Mockingbird sit conspicuously on high vegeta-
tion, fences, eaves, or telephone wires, or run and hop along the
ground. Mockingbird are territorial and will aggressively chase off
intruders.Found in towns, suburbs, backyards, parks, forest edges,
and open land at low elevations.

5.3 FLO
King Protea: The king protea, scientifically known as Protea cy-
naroides, is an extraordinary flowering plant native to the south-
western coastal regions of South Africa. As the largest and most
iconic member of the Protea family, this majestic flower possesses
an enchanting beauty that captures the essence of its royal title.
The king protea boasts a distinctively regal appearance, with a
large, spherical inflorescence that can reach up to 12 inches (30
centimeters) in diameter. This magnificent flower is characterized
by its intricate structure, composed of multiple layers of petals
surrounding a prominent central cone. The cone is adorned with an
array of feathery, needle-like styles that extend outwards, adding
a unique texture to the overall appearance. The petals of the king
protea are large and sturdy, each measuring around 4 to 6 inches
(10 to 15 centimeters) in length. They can vary in color, ranging
from soft hues of creamy whites, blush pinks, and delicate mauves
to vibrant shades of deep crimson, burgundy, and coral. The petals
exhibit a velvety texture and often feature a slightly waxy coat-
ing, enhancing their appeal and adding a touch of lustrous shine.
One of the distinguishing characteristics of the king protea is the
presence of a prominent ring of long, stiff bracts that encircle the
base of the flower. These bracts, often referred to as p̈hylloidb̈racts,
serve to protect and support the blooms, giving the inflorescence
an impressive crown-like appearance. The bracts themselves can
vary in color and are typically seen in shades of pale green, silvery
grey, or even a reddish hue. In its natural habitat, the king protea
thrives in a diverse range of environments, predominantly found
in the fynbos biome of South Africa. It prefers well-drained soils
and can be seen flourishing along sandy coastal areas, mountain
slopes, and even in the slightly more arid landscapes of the region.
This resilient flower has adapted to withstand harsh conditions,
including periods of drought and occasional wildfires, showcas-
ing its remarkable ability to survive and retain its majestic allure.
The king protea is not merely a flower; it represents a symbol of
strength, beauty, and resilience. Its captivating presence has made
it an iconic emblem and a highly sought-after ornamental bloom.
This regal flower is often used as a centerpiece or featured in flo-
ral arrangements, adding a sense of grandeur and elegance to any
setting, whether it be a sophisticated event or a serene garden.
Sunflower: Sunflowers, scientifically known as Helianthus annuus,
are iconic and dazzling flowers that invoke thoughts of warm, sunny
days and vibrant landscapes. These majestic plants belong to the
Asteraceae family and can reach impressive heights, often towering
over other plants in gardens and fields. With their distinct appear-
ance and widespread popularity, sunflowers have become a true
symbol of joy, vitality, and positivity. The most striking feature
of a sunflower is, undoubtedly, its enormous flower head. These

flower heads, also known as inflorescences, are an incredible sight
to behold, with an impressive size measuring between 10 to 30
centimeters in diameter or even larger in some cultivated varieties.
Sunflowers are aptly named due to their stunning resemblance to
the sun, both in shape and color. When we examine a sunflower’s
blossoming head, we find a captivating arrangement of intricate
details. A circular or semi-circular cluster of florets forms the center
of the flower, aptly called the disk florets or the central disc. These
disc florets are small, tubular-shaped, and densely packed together,
creating a textured surface in stunning shades of dark brown, deep
maroon, or even a rich purple-black hue. Upon closer inspection,
the disc florets reveal intricate patterns and textures, often show-
casing a striking contrast to the vibrant yellow petals surrounding
them. The disk florets are embraced by a ring of larger, elongated
florets called ray florets, which contribute to the iconic shape of a
sunflower. These ray florets possess a petal-like appearance, fea-
turing vivid yellow or sometimes orange tones. Standing upright
and radiating from the center, the ray florets resemble the rays
of sunshine, providing an ethereal aura to the flower. While most
sunflowers bear yellow petals, cultivated varieties may display a
delightful array of shades, including vibrant oranges, warm reds,
and even pale creams. Sunflowers possess a well-defined reproduc-
tive structure, positioned at the center of the broad flower head.
This structure consists of pistils and stamens, responsible for the
plant’s pollination and fertilization processes. Bees, butterflies, and
other insects are commonly attracted to the sunflower’s nectar and
vibrant colors, aiding in the transfer of pollen from flower to flower.
In terms of habitat, sunflowers are native to North America and
are highly adaptable plants, capable of thriving in diverse environ-
ments. They prefer areas with abundant sunlight, often gracing
the landscape of fields, meadows, and gardens. Sunflowers have a
notable preference for fertile, well-draining soil, but they can also
withstand periods of drought.
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