
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A CODE AVAILABILITY

The Gen-POMCP implementation is available here: https://anonymous.4open.
science/r/GenPlan-FBCD/README.md

B PERFORMANCE BOUNDS FOR STRUCTURE-BASED PLANNING

In structured environments Gen-POMCP can explore the environment faster than Naive-POMCP
(using fewer rollouts and in less time) by taking advantage of limited resources. However, it simpli-
fies the planning problem by entirely exploring each fragment it enters before moving to the next.
This heuristic can result in longer overall paths taken to search the environments. It is reasonable
to ask by how much the global Naive-POMCP can actually improve on the path length taken by
Gen-POMCP (and specifically the Structure-Based Planner).

Below give a sense of this answer by sketching a proof that considers the limit in which each plan-
ner fully optimizes its respective objective: Naive-POMCP follows the Bayes-optimal plan in each
fragment and Gen-POMCP follows the Bayes-optimal global policy for the maze. We bound the
cost difference according to expected and worst-case cost in steps (the latter is more analytically
tractable).

Expected and worst-case The expected number of steps it takes for a policy to explore a maze is
the average over the length of path this policy takes to reach uniformly sampled exit locations. The
worst-case number of steps is the largest number of steps that the policy could take for some exit
position. This is bounded below by the number of steps required to fully explore the maze.

Lemma 1. There exists a fragment of size n→ n which takes O(n2) steps to search in expectation,
and to explore fully.

Figure 5: Consider a maze with a spiral wall - the white cells indicate traversable floor, and black
indicate intraversable wall. Simulating these environments shows that the maximal length of path
(white cells) in the environment grows as ↑ 1

2n
2

.

Proof. Consider a fragment with the maximum spiral path (e.g. Figure 5). The length of this path
scales quadratically with n. In particular, following a spiral path takes a series of four legs at each
depth, and the length of every other leg reduces by two (one for the wall and one for the path itself).

14

https://anonymous.4open.science/r/GenPlan-FBCD/README.md
https://anonymous.4open.science/r/GenPlan-FBCD/README.md


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

This yields

n+

→n/2↑↓1∑

i=0

2(n↓ 2i↓ 1) =
n

2
2n↓ 4

(n/2)(n/2 + 1)

2
+O(n)

=
1

2
n2 +O(n)

(3)

Theorem 2. In the an n → n maze, the expected number of steps taken by SBP may exceed the
expected number of steps of an optimal policy by !(n2).

Proof. Build a fragment by adjoining an empty room and a spiral by a single door at a corner. Now
connect the two fragments by adding a door between the empty rooms in the opposite corner. As-
sume the size of the empty rooms is such that the optimal algorithm can find the exit with probability
1/2 by checking each empty room, but the SBP algorithm must explore entirely the first fragment
that it enters. With probability 3/4, the exit is not in the first empty room, so it must explore the
spiral, which takes time !(n2) to fully explore by Lemma 1. The spiral also must be exited, so
around n2 steps are spent when the exit is in the other empty room (in this case the optimal planner
finds immediately by checking each room). Since the optimal planner takes only a constant number
of steps to check each empty room, and then behaves identically to the SBP, the expected cost when
the exit is in any other location is asymptotically the same, so the expected cost difference is roughly
1
4n

2 = !(n2).

Theorem 3. The number of steps to fully explore a maze is O(n2).

Proof. Consider a v-vertex connected graph. The maximum width (roughly achievable by the spiral)
is v, leading to a naive bound of O(v2) = O(n). This can be improved to O(v) by running a
depth-first search. Since there are 4 movement directions the degree of this graph is 4 meaning
the maximum number of backtracks to a vertex is 3, which immediately gives 4v. However, in a
depth first search there is only one backtrack from each vertex is 1, which leads to an easy inductive
proof that the bound is O(2v ↓ 1) regardless of degree, yielding 2n2 ↓ 1 = O(n2). Note that
further improvements should be possible by considering the number of walls required to induce the
worst-case topology.

This implies that the Bayes-optimal policy has O(n2) expected cost (since its expected cost must
be at least as good as the expected cost of exhaustive search), regardless of the maze. Together,
Lemma 1 and Theorem 3 demonstrate that the SBP heuristic does not damage the (asymptotic)
expected cost in the worst maze.
Theorem 4. Assume that an n → n maze is fragmented in such a way that any time a fragment
is entered, it can be fully explored before exiting, into c2 square (n/c) → (n/2) fragments. The
asymptotic expected cost is ”(n2) in the worst such maze for the modular optimal and globally
optimal policies.

Proof. First, consider the global optimal policy. The additional requirements placed on the maze
cannot make the O(n2) bound in Theorem 3 worse, and we can get a matching lower bound by
simply adjoining multiple spiral examples as in Lemma 1 and adding doors between them.

Now consider the modular optimal policy. It is clear that the globally optimal policy has an ex-
pected cost as least as low as the modular optimal policy (even in their respective worst mazes), by
definition, so the !(n2) lower bound automatically carries over to the modular optimal policy. We
assumed that the modular optimal policy takes the Bayes-optimal paths between fragments. This
must be at least as good as the following strategy: mimic the global optimal policy, but any time a
new fragment is entered, first explore it completely and return to the entrance. By Theorem 3, each
such “extra” exploration detour takes at most 2(n

c
)2 ↓ 1 steps, and the return takes at most (n

c
)2

steps. The total is 3(n
c
)2 ↓ 1. There are exactly c2 such detours, for 4n2 ↓ c2 = ”(n2) extra steps.

The global optimal policy also takes ”(n2) steps.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Therefore, in the worst case the modular algorithm is inferior by at least a constant factor of the total
search time in expectation. Examining the proof of Theorem 4 yields a factor of 2.5 over our upper
bound in Theorem 3, but presumably this can be improved substantially since a lot of exploration is
being redone after the detours.

Improving expected cost upper bounds Substantial improvements to the worst-case cost bound
in Theorem 3 are easy to obtain when the proof is applied to expected cost by e.g. noting that the
depth-first search visits at least one new cell every two steps, meaning that there is clearly at least
a 1/4 chance of finding the exit after n2 steps, or by noting that the true number of “vertices” is
reduced by walls. These improvements seem to apply equally to the modular and global optimal
policies, and probably do not affect our constants much.

For worst-case cost, the situation is similar. However, the worst-case cost analysis simplifies signif-
icantly with the additional assumption that transitions between fragments are negligible (say, if they
all branch off from a central room). This observation is trivial but worth stating explicitly:
Theorem 5. When the cost to transition between fragments is negligible, each has one entrance,
and there is no line-of-sight across fragments, the modular algorithm has the same worst-case step
count as the optimal algorithm.

Proof. In the worst case, the optimal algorithm must explore each fragment, and since there is only
one entrance to each fragment it is not possible to gain any advantage by exiting a fragment before
it has been fully explored.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL ENVIRONMENTS

Figure 6: Environments used in Behavioral Experiment 1.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 7: Environments used in Simulation Experiment 2.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D ADDITIONAL RESULTS - SIMULATION EXPERIMENT

Figure 8: The fractions of each environment searched by Gen-POMCP and Naive-POMCP given
identical computational budget. Gen-POMCP requires fewer rollouts and saves computing costs.
Each environment is shown in a different color (see also Figure 4.)

Figure 9: The fractions of each environment searched by Gen-POMCP and Naive-POMCP given
identical computational budget. In each individual environment Gen-POMCP requires fewer rollouts
and saves computing costs.)

19


