
A Proofs450

The main part of our model identifiability is essentially the same as that of Theorem 1 in [37], but451

now adapted to the dependency on t. Here we give an outline of the proof, and the details can be452

easily filled by referring to [37]. In the proof, subscripts t are omitted for convenience.453

Proof of Lemma 1. Using (M1) i) and ii) , we transform pf ,λ(y|x, t) = pf ′,λ′(y|x, t) into equality454

of noiseless distributions, that is,455

qf ′,λ′(y) = qf ,λ(y) := pλ(f−1(y)|x, t)vol(Jf−1(y))IY(y) (15)
where pλ is the Gaussian density function of the conditional prior defined in (4) and vol(A) :=456 √

detAAT . qf ′,λ′ is defined similarly to qf ,λ.457

Then, apply model (4) to (15), plug the 2n+ 1 points from (D1) into it, and re-arrange the resulting458

2n+ 1 equations in matrix form, we have459

F ′(y) = F(y) := LT t(f−1(y))− β (16)
where t(z) := (z, z2)T is the sufficient statistics of factorized Gaussian, and βt := (αt(x1) −460

αt(x0), ..., αt(x2n)−αt(x0))T where αt(x;λt) is the log-partition function of the conditional prior461

in (4). F ′ is defined similarly to F , but with f ′,λ′, α′462

Since L is invertible, we have463

t(f−1(y)) = At(f ′−1(y)) + c (17)
whereA = L−TL′T and c = L−T (β − β′).464

The final part of the proof is to show, by following the same reasoning as in Appendix B of [61], that465

A is a sparse matrix such that466

A =

(
diag(a) O
diag(u) diag(a2)

)
(18)

whereA is partitioned into four n-square matrices. Thus467

f−1(y) = diag(a)f ′−1(y) + b (19)
where b is the first half of c.468

Proof of Proposition 2. Under (G2), and (M3), we have469

Epθ (y|x, t) = E(y|x, t) =⇒ ft ◦ h(x) = jt ◦ P(x) on (x, t) such that p(t,x) > 0. (20)
We show the solution set of (20) on overlapped x is470

{(f ,h)|ft = jt ◦∆−1,h = ∆ ◦ P,∆ : P → Rn is injective}. (21)

By (G2)(M1), and with injective ft, jt and dim(z) = dim(y) ≥ dim(P), for any ∆ above, there471

exists a functional parameter ft such that jt = ft ◦∆. Thus, set (21) is non-empty, and any element472

is indeed a solution because ft ◦ h = jt ◦∆−1 ◦∆ ◦ P = jt ◦ P.473

Any solution of (20) should be in (21). A solution should satisfy h(x) = f−1
t ◦ jt ◦ P(x) for both t474

since x is overlapped. This means the injective function f−1
t ◦ jt should not depend on t, thus it is475

one of the ∆ in (21).476

We proved conclusion 1) with v := ∆. And, on overlapped x, conclusion 2) is quickly seen from477

µ̂t(x) = ft(h(x)) = jt ◦ v−1(v ◦ P(x)) = jt(P(x)) = µt(x). (22)

We rely on overlapped P to work for non-overlapped x. For any xt with p(1− t|xt) = 0, to ensure478

p(1 − t|P(xt)) > 0, there should exist x1−t such that P(x1−t) = P(xt) and p(1 − t|x1−t) > 0.479

And we also have h(x1−t) = h(xt) due to (M2). Then, we have480

µ̂1−t(xt) = f1−t(h(xt)) = f1−t(h(x1−t)) = j1−t(P(x1−t)) = j1−t(P(xt)) = µ1−t(xt). (23)
The third equality uses (20) on (x1−t, 1− t).481

Proof of Theorem 1. By (M1) and (G1’), for any injective function ∆ : P → Rn, there exists a482

functional parameter f∗t such that jt = f∗t ◦∆. Let h∗t = ∆ ◦ Pt, then, clearly from (M3’), such483

parameters θ∗ = (f∗,h∗) are optimal: pθ∗(y|x, t) = p(y|x, t).484
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Since have all assumptions for Lemma 1, we have485

∆ ◦ j−1(y) = f∗−1(y) = A ◦ f−1(y)|t, on (y, t) ∈ {(jt ◦ Pt(x), t)|p(t,x) > 0}, (24)
where f is any optimal parameter, and “|t” collects all subscripts t. Note, except for ∆, all the486

symbols should have subscript t.487

Nevertheless, using (D2), we can further prove A0 = A1.488

We repeat the core quantities from Lemma 1 here: At = L−Tt L′Tt and ct = L−Tt (βt − β′t).489

From (D2), we immediately have490

L−1
0 L1 = L′−1

0 L′1 = C ⇐⇒ A0 = A1 (25)

And also,491

L−1
0 L1 = C ⇐⇒ L−T0 C−T = L−T1

β0 −C−Tβ1 = β′0 −C−Tβ′1 = d/k ⇐⇒ CT (β0 − β′0) = β1 − β′1
(26)

Multiply right hand sides of the two lines, we have c0 = c1. Now we have A0 = A1 := A. Apply492

this to (24), we have493

ft = jt ◦ v−1, v := A−1 ◦∆ (27)
for any optimal parameters θ = (f ,h). Again, from (M3’), we have494

pθ(y|x, t) = p(y|x, t) =⇒ pε(y − ft(ht(x))) = pe(y − jt(Pt(x))) (28)
where pε = pe. And the above is only possible when ft ◦ht = jt ◦Pt. Combined with ft = jt ◦v−1,495

we have conclusion 1).496

And conclusion 2) follows from the same reasoning as Proposition 2, applied to both P0 and P1.497

We include an erratum here. The definition of the domain of v in Theorem 1 was incorrect. As seen498

from (24), the domain of v should be {Pt(x)|p(t,x) > 0}, which is the support of factual PtS Pt(x).499

This error was minor for identification of CATE since we assume overlapped Pt(x) and (M2).500

Note, when multiplying the two lines of (26), the effects of k → 0 cancel out, and ct is finite and501

well-defined. Also, it is apparent from above proof that (D2) is a necessary and sufficient condition502

for A0 = A1, if other conditions of Theorem 1 are given.503

Below, we prove the results in Sec. 4.2. To make it apparent that the definitions and results work for504

the posterior, we replace pt with qt and prove the results. The dependence on f and q (or p when505

repeating the proofs for the prior) prevail, and the sub / superscripts are omitted. The arguments x506

are sometimes also omitted.507

Proof of Lemma 2.

εCF −
∑
t

p(1− t|x)εF,t

= p(0|x)(εCF,1 − εF,1) + p(1|x)(εCF,0 − εF,0)

= p(0|x)

∫
Lf (z, 1)(q0(z|x)− q1(z|x))dz + p(1|x)

∫
Lf (z, 0)(q1(z|x)− q0(z|x))dz

≤ 2MTV(q1, q0) ≤MD.
508

TV(p, q) := 1
2E|p(z)−q(z)| = 1

2

∫
|p(z)−q(z)|dz is the total variance distance between probability509

density p, q. The last inequality uses Pinsker’s inequality TV(p, q) ≤
√
DKL(p‖q)/2 twice, to get510

the symmetric D.511

The statement of Theorem 2 in the main text contains typos, and we include an erratum below. The512

typos are minor and all the implications of the result remain the same.513

Theorem 3 (Theorem 2, typos fixed). Assume |Lf (z, t)| ≤M and |gt(z)| ≤ G, then,514

εf (x) ≤ 2[G2(εF,0(x) + εF,1(x) +MD(x))− Vy(x)]|p (29)

where Vpy(x) := Ep(z|x)

∑
t Ep(y(t)|Pt=z)(y(t)−mt(z))2, and “|p” collects all superscripts p.515
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Theorem 2 is a direct corollary of Lemma 2 and the following.516

Lemma 3. Define εF =
∑
t p(t|x)εF,t. We have517

εf ≤ 2(G2(εF + εCF )− Vy). (30)

Simply bound εCF in (30) by Lemma 2, we have Theorem 2. To prove Lemma 3, we first examine a518

bias-variance decomposition of εF and εCF .519

εCF,t = Eq1−t(z|x)gt(z)−2Ep(y(t)|Pt=z)(y(t)− ft(z))2

≥ G−2Eq1−t(z|x)Ep(y(t)|Pt=z)(y(t)− ft(z))2

= G−2Eq1−t(z|x)Ep(y(t)|Pt=z)((y(t)−mt(z))2 + (mt(z)− ft(z))2)

(31)

The second line uses |gt(z)| ≤ G, and the third line is a bias-variance decomposition. Now we can520

define VqCF,t(x) := Eq1−t(z|x)Ep(y(t)|Pt=z)(y(t) −mt(z))2 and BqCF,t(x) := Eq1−t(z|x)(mt(z) −521

ft(z))2, and we have522

εCF,t ≥ G−2(VCF,t(x) + BCF,t(x)) =⇒ εCF ≥ G−2(VCF (x) + BCF (x)) (32)

where VCF :=
∑
t p(1− t|x)VCF,t =

∑
t Eq(z,t=1−t|x)Ep(y(t)|Pt=z)(y(t)−mt(z))2 and similarly523

BCF =
∑
t Eq(z,t=1−t|x)(mt(z)− ft(z))2. Repeat the above derivation for εF , we have524

εF ≥ G−2(VF (x) + BF (x)) (33)

where VF =
∑
t Eq(z,t=t|x)Ep(y(t)|Pt=z)(y(t)−mt(z))2 and BF =

∑
t Eq(z,t=t|x)(mt(z)−ft(z))2.525

Now, we are ready to prove Lemma 3.526

Proof of Lemma 3.

εf = Eq(z|x)((f1 − f0)− (m1 −m0))2

= Eq((f1 −m1) + (m0 − f0))2

≤ 2Eq((f1 −m1)2 + (m0 − f0)2)

= 2

∫
[(f1 −m1)2q(z, 1|x) + (m0 − f0)2q(z, 0|x)+

(f1 −m1)2q(z, 0|x) + (m0 − f0)2q(z, 1|x)]dz

= 2(BF + BCF ) ≤ 2(G2(εF + εCF )− Vy)

527

The first inequality uses (a + b)2 ≤ 2(a2 + b2). The next equality splits q(z|x) into q(z, 0|x)528

and q(z, 1|x) and rearranges to get BF and BCF . The last inequality uses the two bias-variance529

decompositions, and Vy = VF + VCF .530

B Additional backgrounds531

B.1 Prognostic score and balancing score532

In the fundamental work of [22], prognostic score is defined equivalently to our P0 (P0-score), but533

it in addition requires no effect modification to work for y(1). Thus, a useful prognostic score534

corresponds to our PtS. We give main properties of PtS as following.535

Proposition 3. If v gives exchangeability, and Pt(v) is a PtS, then y(t) |= v, t|Pt.536

The following three properties of conditional independence will be used repeatedly in proofs.537

Proposition 4 (Properties of conditional independence). [51, Sec. 1.1.55] For random variables538

w,x,y, z. We have:539

x |= y|z ∧ x |= w|y, z =⇒ x |= w,y|z (Contraction).
x |= w,y|z =⇒ x |= y|w, z (Weak union).
x |= w,y|z =⇒ x |= y|z (Decomposition).
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Proof of Proposition 3. From y(t) |= t|v (exchangeability of v), and since Pt is a function of v, we540

have y(t) |= t|Pt,v (1).541

From (1) and y(t) |= v|Pt(v) (definition of Pt-score), using contraction rule, we have y(t) |= t,v|Pt542

for both t.543

Prognostic scores are closely related to the important concept of balancing score [54]. Note particu-544

larly, the proposition implies y(t) |= t|Pt (using decomposition rule). Thus, if P(v) is a P-score, then545

P also gives weak ignorability (exchangeability and overlap), which is a nice property shared with546

balancing score, as we will see immediately.547

Definition 4 (Balancing score). b(v), a function of random variable v, is a balancing score if548

t |= v|b(v).549

Proposition 5. Let b(v) be a function of random variable v. b(v) is a balancing score if and only550

if f(b(v)) = p(t = 1|v) := e(v) for some function f (or more formally, e(v) is b(v)-measurable).551

Assume further that v gives weak ignorability, then so does b(v).552

Obviously, the propensity score e(v) := p(t = 1|v), the propensity of assigning the treatment given553

v, is a balancing score (with f be the identity function). Also, given any invertible function v, the554

composition v ◦ b is also a balancing score since f ◦ v−1(v ◦ b(v)) = f(b(v)) = e(v).555

Compare the definition of balancing score and prognostic score, we can say balancing score is556

sufficient for the treatment t (t |= v|b(v)), while prognostic score (Pt-score) is sufficient for the557

potential outcomes y(t) (y(t) |= v|Pt(v)). They complement each other; conditioning on either558

deconfounds the potential outcomes from treatment, with the former focuses on the treatment side,559

the latter on the outcomes side.560

B.2 VAE, Conditional VAE, and iVAE561

VAEs [40] are a class of latent variable models with latent variable z, and observable y is generated562

by the decoder pθ(y|z). In the standard formulation [39], the variational lower bound L(y;θ,φ) of563

the log-likelihood is derived as:564

log p(y) ≥ log p(y)−DKL(q(z|y)‖p(z|y))

= Ez∼q log pθ(y|z)−DKL(qφ(z|y)‖p(z)),
(34)

where DKL denotes KL divergence and the encoder qφ(z|y) is introduced to approximate the true565

posterior p(z|y). The decoder pθ and encoder qφ are usually parametrized by NNs. We will omit the566

parameters θ,φ in notations when appropriate.567

The parameters of the VAE can be learned with stochastic gradient variational Bayes. With Gaussian568

latent variables, the KL term of L has closed form, while the first term can be evaluated by drawing569

samples from the approximate posterior qφ using the reparameterization trick [39], then, optimizing570

the evidence lower bound (ELBO) Ey∼D(L(y)) with data D, we train the VAE efficiently.571

Conditional VAE (CVAE) [60, 41] adds a conditioning variable c, usually a class label, to standard572

VAE (See Figure 1). With the conditioning variable, CVAE can give better reconstruction of each573

class. The variational lower bound is574

log p(y|c) ≥ Ez∼q log p(y|z, c)−DKL(q(z|y, c)‖p(z|c)). (35)

The conditioning on c in the prior is usually omitted [14], i.e., the prior becomes z ∼ N (0, I) as in575

standard VAE, since the dependence between c and the latent representation is also modeled in the576

encoder q. Moreover, unconditional prior in fact gives better reconstruction because it encourages577

learning representation independent of class, similarly to the idea of beta-VAE [25].578

As mentioned, identifiable VAE (iVAE) [37] provides the first identifiability result for VAE, using579

auxiliary variable x. It assumes y |= x|z, that is, p(y|z,x) = p(y|z). The variational lower bound is580

log p(y|x) ≥ log p(y|x)−DKL(q(z|y,x)‖p(z|y,x))

= Ez∼q log pf (y|z)−DKL(q(z|y,x)‖pT ,λ(z|x)),
(36)

where y = f(z) + ε, ε is additive noise, and z has exponential family distribution with sufficient581

statistics T and parameter λ(x). Note that, unlike CVAE, the decoder does not depend on x due to582

the independence assumption.583
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Here, identifiability of the model means that the functional parameters (f ,T ,λ) can be identified584

(learned) up to certain simple transformation. Further, in the limit of ε → 0, iVAE solves the585

nonlinear ICA problem of recovering z = f−1(y).586

C Expositions587

The order of subsections below follows that they are referred in the main text.588

C.1 Discussions and examples of (G2)589

We focus on univariate outcome on R which is the most practical case and the intuitions apply to590

more general types of outcomes. Then, i, the mapping between µ0 and µ1, is monotone, i.e, either591

increasing or decreasing. The increasing i means, if a change of the value of x increases (decreases)592

the outcome in the treatment group, then it is also the case for the controlled group. This is often true593

because the treatment does not change the mechanism how the covariates affect the outcome, under594

the principle of “independence of causal mechanisms (ICM)” [31]. The decreasing i corresponds595

to another common interpretation when ICM does not hold. Now, the treatment does change the596

way covariates affect y, but in a global manner: it acts like a “switch” on the mechanism: the same597

change of x always has opposite effects on the two treatment groups.598

We support the above reasoning by real world examples. First we give two examples where µ0 and599

µ1 are both monotone increasing. This, and also that both µt are monotone decreasing, are natural600

and sufficient conditions for increasing i, though not necessary. The first example is form Health.601

[63] mentions that gestational age (length of pregnancy) has a monotone increasing effect on babies’602

birth weight, regardless of many other covariates. Thus, if we intervene on one of the other binary603

covariates (say, t = receive healthcare program or not), both µt should be monotone increasing in604

gestational age. The next example is from economics. [18] shows that job-matching probability605

is monotone increasing in market size. Then, we can imagine that, with t = receive training in job606

finding or not, the monotonicity is not changed. Intuitively, the examples corresponds to two common607

scenarios: the causal effects are accumulated though time (the first example), or the link between a608

covariate and the outcome is direct and/or strong (the second example).609

Examples for decreasing i are rarer and the following is a bit deliberate. This example is also about610

babies’ birth weight as the outcome. [1] shows that, with t = mother smokes or not and x = mother’s611

age, the CATE τ(x) is monotone decreasing for 20 < x < 26 (smoking decreases birth weight, and612

the absolute causal effect is larger for older mother). On the other hand, it is shown that birth weight613

slightly increases (by about 100g) in the same age range in a surveyed population [73]. Thus, it is614

convince that, smoking changes the the tendency of birth weight w.r.t mother’s age from increasing615

to decreasing, and gives the large decreasing of birth weight (by about 300g) as its causal effect. This616

could be understood: the negative effects of smoking on mother’s heath and in turn on birth weight617

are accumulated during the many years of smoking.618

C.2 Complementarity between the two identifications619

We examine the complementarity between the two identifications more closely. The conditions (M3) /620

(M3’) and (G2) / (D2) form two pairs, and are complementary inside each pair. The first pair matches621

model and truth, while the second pair restricts the discrepancy between the treatment groups. In622

Theorem 1, (G2) (P0 = P1) is replaced by (D2) which instead makes A0 = A1 := A in (6). And623

(D2) is easily satisfied with high-dimensional x, even if the possible values of C,d are restricted to624

C = cI and d = 0 (see below). On the other hand, pε = pe in (M3’) is impractical, but it ensures625

that pθ(y|x, t) = p(y|x, t) so that (6) can be used. In Sec. 4.1, we consider practical estimation626

method and introduce the regularization that encourages learning a PtS similar to PS so that pε = pe627

can be relaxed.628

(D2) is general despite (or thanks to) the involved formulation. Let us see its generality even under a629

highly special case: C = cI and d = 0. Then, L−1
0 L1 = cI requires that, h1(xk) − ch0(xk) is630

the same for 2n+ 1 points xk. This is easily satisfied except for n� m where m is the dimension631

of x, which rarely happens in practice. And, β0 − C−Tβ1 = d becomes just β1 = cβ0. This632

is equivalent to α1(xk) − cα0(xk) same for 2n + 1 points, again fine in practice. However, the633

high generality comes with price. Verifying (D2) using data is challenging, particularly with high-634

dimensional covariate and latent variable. Although we believe fast algorithms for this purpose could635
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be developed, the effort would be nontrivial. This is another motivation to use the extreme case636

λ0 = λ1, which corresponds to C = I and d = 0.637

C.3 Ideas and connections behind the ELBO (8)638

Bayesian approach is favorable to express the prior belief that balanced PtSs exist and the prefer-639

ence for them, and to still have reasonable posterior estimation when the belief fails and learning640

general PtS is necessary. This is the causal importance of VAE as an estimation method for us. By641

the unconditional but still flexible λ, and also the identifications, the ELBO encourages the discovery642

of an equivalent DGP with a balanced PtS and the recovery of it as the posterior, which still learns the643

dependence on t if necessary. Moreover, β expresses our additional knowledge (or, inductive bias)644

about whether or not there exist balanced PtSs (e.g., from domain expertise).645

In fact, β connects our VAE to β-VAE [25], which is closely related to noise and variance control646

[14, Sec. 2.4][49].647

Considerations on noise modeling. In Theorem 1, with large and mismatched noises (then (M3’)648

is easily violated), the identification of outcome model ft = jt ◦ v−1 would fail, and, in turn, the649

prior would learn confounding bias, by confusing the causal effect of t on Pt and the correlation650

between t and x. This is another reason to prefer λ0 = λ1, besides balancing. On the other hand,651

the posterior conditioning on y provides information of noise e, and it is shown in [5] that posterior652

effect estimation has minimum worst-case error under model misspecification (of the noise and prior,653

in our case).654

Under large e, a relatively small β implicitly encourages g smaller than the scale of e, through655

stressing the third term in ELBO (8). And the the model as a whole would still learn p(y|x, t) well,656

because the randomness of e can be moved to and modeled by the prior. This is why k is not set657

to zero because learnable prior noise (variance) allows us to implicitly control g via β. Intuitively,658

smaller g strengthens the correlation between y and z in our model, and this naturally reflects that659

posterior conditioning on y is more important under larger e. Hopefully, precise learning of outcome660

noise (M3’) is not required, as in Proposition 2.661

Now, it is clear that β naturally controls at the same time noise scale and balancing. And the662

regularization can also be understood as an interpolation between Proposition 2 and Theorem 1:663

relying on PS, or on model identifiability; learning loosely, or precisely, the outcome regression.664

When the noise scale is different from truth, there would be error due to imperfect recovery of j.665

Sec. 4.2 shows that this error and balancing form a trade-off, which is adjusted by β.666

Importance of balancing from misspecification view. If we must learn an unbalanced PtS, we667

have larger misspecification under a balanced prior and rely more on y in the posterior. Both are668

bad because it is shown in [5] that posterior only helps under bounded (small) misspecification,669

and posterior estimator has higher variance than prior estimator (see below for an extreme case).670

Again, we want a regularizer to encourage learning of PS, so that we can explore the middle ground:671

relatively low-dimensional P, or relatively small e.672

Example. Assume the true outcome noise is (near) zero. By setting ε → 0 in our model, the673

posterior pθ(z|x,y, t) = pθ(y, z|x, t)/pθ(y|x, t) degenerates to f−1
t (y) = f−1

t (jt(Pt)) = v−1(Pt),674

a factual PtS. However, f−1
1−t(y) = f−1

1−t(jt(Pt)) = v−1(j−1
1−t ◦ jt(Pt)) 6= v−1(P1−t), the score675

recovered by posterior does not work for counterfactual assignment! The problem is, unlike x, the676

outcome y = y(t) is affected by t, and, the degenerated posterior disregards the information of x677

from the prior and depends exclusively on factual (y, t).678

C.4 Consistency of VAE and prior estimation679

The following is a refined version of Theorem 4 in [37]. The result is proved by assuming: i) our VAE680

is flexible enough to ensure the ELBO is tight (equals to the true log likelihood) for some parameters;681

ii) the optimization algorithm can achieve the global maximum of ELBO (again equals to the log682

likelihood).683

Proposition 6 (Consistency of Intact-VAE). Given model (4)&(7), and let p∗(x,y, t) be the true684

observational distribution, assume685

i) there exists (θ̄, φ̄) such that pθ̄(y|x, t) = p∗(y|x, t) and pθ̄(z|x,y, t) = qφ̄(z|x,y, t);686

ii) the ELBO ED∼p∗(L(x,y, t;θ,φ)) (5) can be optimized to its global maximum at (θ′,φ′);687
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Then, in the limit of infinite data, pθ′(y|x, t) = p∗(y|x, t) and pθ′(z|x,y, t) = qφ′(z|x,y, t).688

Proof. From i), we have L(x,y, t; θ̄, φ̄) = log p∗(y|x, t). But we know L is upper-bounded by689

log p∗(y|x, t). So, ED∼p∗(log p∗(y|x, t)) should be the global maximum of the ELBO (even if the690

data is finite).691

Moreover, note that, for any (θ,φ), we have DKL(pθ(z|x,y, t)‖qφ(z|x,y, t) ≥ 0 and, in the limit of692

infinite data, ED∼p∗(log pθ(y|x, t)) ≤ ED∼p∗(log p∗(y|x, t)). Thus, the global maximum of ELBO693

is achieved only when pθ(y|x, t) = p∗(y|x, t) and pθ(z|x,y, t) = qφ(z|x,y, t).694

Consistent prior estimation of CATE follows directly from the identifications. The following is a695

corollary of Theorem 1.696

Corollary 1. Under the conditions of Theorem 1, further require the consistency of Intact-VAE. Then,697

in the limit of infinite data, we have µt(x) = ft(ht(x)) where f ,h are the optimal parameters698

learned by the VAE.699

C.5 Pre / Post-treatment prediction700

Sampling posterior requires post-treatment observation (y, t). Often, it is desirable that we can also701

have pre-treatment prediction for a new subject, with only the observation of its covariate x = x. To702

this end, we use prior as a pre-treatment predictor for z: replace qφ with pλ in (9) and all the others703

remain the same. We also have sensible pre-treatment prediction even without true low-dimensional704

PSs, because pλ gives the best balanced approximation of the target PtS. The results of pre-treatment705

prediction are given in the experimental section below.706

C.6 Novelties of the bounds in Sec. 4.2707

We summarize the novelties of our bounds compared to those in [58, 47]. Most importantly, our708

bounds and balancing are conditional on x. The previous works are based on bound and balancing709

among the whole population, and thus overfit the PEHE error, a population version of the CATE710

error (See Experiments, particularly Sec. 6.2). Focusing on VAE, our method strengthens [47], in a711

simpler and principled way: we distinguish true score and latent z and show that identification is the712

link; considering both prior and posterior, we show the symmetric nature of the balancing term and713

relate it to our KL term in (8), without ad hoc regularization; moreover, we consider outcome noise714

modeling which is a strength of VAE and relate it to hyperparameter β. Particularly, in [47], latent715

variable z is confused with the true representation (Pt up to invertible mapping in our case). Without716

identification, the method in fact has unbounded error.717

C.7 Prior / Posterior CATE error as surrogates of the truth718

Note that, ε∗f = εf if τ(x) = τm(z), z ∼ p(z|x), and we have zt = Pt(x) =⇒ τ(x) =719

τm(zt), zt ∼ pt(z|x) under the recovery of scores in Sec. 3.2 (the invertible v is omitted; replace720

Pt = z with Pt = v(z) in the definitions, and others remain the same). Thus, we have τ(x) = τm(z)721

if Pt is a PS. Generally, if Pt is well balanced and recovered, the error between τ(x) and τm(z) is722

expected to be small and, thus, is not considered in Sec. 4.2. Instead, by bounding εpf (or, εqf for723

posterior), we consider the error between τ̂f and τm, due to the unknown outcome noise, which is not724

accounted by our Theorem 1.725

D Other related work726

D.1 Injectivity, invertibility, monotonicity, and overlap727

Let us note that any injective mapping defines an invertible mapping, by restrict the domain of the728

inverse function to the range of the injective mapping. Also note that injectivity is weaker than729

monotonicity; a monotone mapping can be defined by an injective and order-preserving mapping730

between ordered sets. Particularly, an injective and continuous mapping on R is monotone, and many731

works in econometrics give examples of this case.732

Many classical and recent works (with many real world applications, see C.1) in econometrics are733

based on monotonicity. Particularly, there is a long line of work based on monotonicity of treatment734

[29]. More related to our method is another line of work based on monotonicity of outcome, see735
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[8] and references therein for early results. Some recent works apply monotonicity of outcome to736

nonparametric IV regression (NPIV) [17, 45, 10], where the structural equation of the outcome is737

assumed to be y = f(t) + ε, and f is monotone and t (the treatment) is often continuous. Particularly,738

[10] combines monotonicity of both treatment and outcome, and [17] considers discrete treatment739

(note continuity or differentiability is not necessary for monotonicity). NPIV with monotone f is740

closely related to our method, but the difference is that t is replaced by a PtS in our method, and the741

PtS is recovered from observables. Finally, as we mentioned in Sec. 3.2, monotonicity is a kind of742

shape restriction which also includes, e.g., concavity and symmetry and attracts recent interests [9].743

However, most of NPIV works focus on identifying f but not directly on TEs, and we do not know744

any works that use monotonicity to address weak overlap.745

Recently in machine learning, [35, 80, 34] note the relationship between invertibility and overlap. As746

mentioned, [34] gives bounds without overlap, but the relationship between invertibility and overlap747

is not explicit in their theory. [35] explicitly discuss overlap and invertibility, but does not focus on748

TEs. [80] assumes overlap so that identification is given, and then focuses on learning overlapped749

representation that preserves the overlap of the covariate. However, it does not relate invertibility and750

overlap, but uses invertible representation function to preserve exchangeability given the covariate,751

and linear outcome regression to simply the model. Related, our identifications required (M2), of752

which linearity of PtS and representation function is a sufficient condition, and our outcome model is753

injective, to preserve the exchangeability given the PtS. Thus, our method works under more general754

setting, and arguably under weaker conditions.755

D.2 VAEs for TE estimation756

VAEs are suitable for causal estimation thanks to its probabilistic nature. However, most VAE757

methods for TEs, e.g. [46, 79, 71, 47], add ad hoc heuristics into their VAEs, and thus break down758

probabilistic modeling, not to mention identifiable representation. Moreover, the methods rely on759

learning sufficient representations from proxy variables, leading to either impractical assumptions or760

conceptual inconsistency, in causal identification.761

On identification. First, as to causal identification, [46] assumes unobserved confounder can be762

recovered, which is rarely possible even under further structural assumptions [68], and [52] recently763

gives evidence that the method often fails. Other methods [79, 71, 47] assume unconfoundedness but764

still rely on proxy at least intuitively; particularly, [47] factorizes the decoder as in the proxy setting.765

However, unconfoundedness and proxy should not be put together. The conceptual inconsistency766

is that, by definition, unconfoundedness means covariates fully control confounding, while the767

motivation for proxy is that unconfoundedness is often not satisfied in practice and covariates are768

at best proxies of confounding, which are non-confounders causally connected to confounders [68].769

Second, without identifiable representation, the empirical results of the methods lacks solid ground;770

under settings not covered by their experiments, the methods would silently fail to learn proper771

representations, as we show in Sec. 6.1.772

On ad hoc heuristics. Ad hoc heuristics break down probabilistic modeling and / or give ELBOs773

that do not estimate the probabilistic models. For example, [46] uses separated NNs for the two POs774

to mimic TARnet [58]. And, to have pre-treatment estimation, q(t|x) and q(y|x, t) are added into the775

encoder. As a result, the ELBO of [46] has two additional likelihood terms corresponding to the two776

distributions. [79] is even more ad hoc because it splits the latent variable z into three components,777

and applies the ad hoc tricks of [46] to each of the component. Particularly, when constructing the778

encoder, [79] implicitly assumes the three components of z are conditional independent give x, which779

violates the intended graphical model.780

Our method is motivated by the important concept of PGS, and is naturally based on (2). As a781

consequence, our VAE architecture is a natural combination of iVAE and CVAE (see Figure 1). Our782

ELBO (5) is derived by standard variational lower bound. Moreover, in our Intact-VAE, pre-treatment783

prediction is given naturally by our conditional prior, thanks to the correspondence between our784

model and (2).785

E Details and additions of experiments786

E.1 Synthetic data787
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We detail how the random parameters in the DGPs are sampled. µi and788

σi are uniformly sampled in range (−0.2, 0.2) and (0, 0.2), respectively.789

The weights of linear functions h,k, l are sampled from standard normal790

distributions. The NNs f0, f1 use leaky ReLU activation with α = 0.5791

and are of 3 to 8 layers randomly, and the weights of each layer are792

sampled from (−1.1,−0.9). To have a large but still reasonable outcome793

variance, the output of ft is divided by Ct := Var{D|t=t}(ft(z)). When794

generating DGPs with dependent noise, the variance parameter for the795

outcome is generated by adding a softplus layer after respective ft, and796

then normalized to range (0, 2).797

We use the original implementation of CFR6. Very possibly due to bugs in798

implementation, the CFR version using Wasserstein distance has error of799

TensorFlow type mismatch on our synthetic dataset, and the CFR version800

using MMD diverges with very large loss value often on one or two of801

the 10 random DGPs. We use MMD version, and, when the divergence of802

training happens, report the results from trained models before divergence, which still give reasonable803

results. We search the balancing parameter alpha in [0.16, 0.32, 0.64, 0.8, 1.28], and fix other804

hyperparameters as they were in the default config file.805
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Figure 5:
√
εPEHE on synthetic dataset with

dependent noise. Error bar on 10 random
DGPs.

We characterize the degree of weak overlap by examining806

the percentage of observed values x that give probability807

less than 0.001 for one of p(t|x). The threshold is chosen808

so that all sample points near those values x almost cer-809

tainly belong to a single group since we have 500 sample810

point in total. If we regard a DGP as very weakly over-811

lapped when the above percentage is larger than 50%, then,812

as shown in Figure 4, non (all) of the 10 DGPs are very813

weakly overlapped with ω = 6 (ω = 22).814

Figure 5 shows the importance of noise modeling under815

DGP of dependent noise. Compared to Figure 2 in the816

main text, our method works better here, particularly for817

large β, while CFR works worse. In the left panel, notably,818

we see our method is better than CFR even with only819

1-dimensional z. Interestingly, learning g in the model820

(the results of which are not shown) does not improve821

performance even under this setting, this might imply that learning k in the prior is enough, and the822

VAE can focus more on balancing with g fixed (see also the exposition C.3 on the ELBO).823

6 10 14 18 22
non-overlap (omega)

0.16

0.18

0.20

0.22

0.24

P
E

H
E

1 2 3 4 5
dim(w)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cfr
beta=1.0

beta=1.5
beta=2.0

beta=2.5
beta=3.0

Figure 6:
√
εPEHE on synthetic dataset,

with dim(z) = 200 in our model. Error
bar on 10 random DGPs.

Figure 6 shows, with dim(z) = 200, our method works824

better than CFR under dim(w) = 1 and as well as CFR825

under dim(w) > 1. As mentioned in Conclusion, this826

indicates that the theoretical requirement of injective ft in827

our model might be relaxed. Interestingly, larger β seems828

to give better results here, this is understandable because829

β controls the trade-off between fitting and balancing, and830

the fitting capacity of our decoder is much increased with831

dim(z) = 200.832

Figure 7 shows results of ATE estimation. Notably, CFR833

drops performance w.r.t degree of weak overlap. Our834

method does not show this tendency except for very large835

β (β = 3). This might be another evidence that CFR and836

its unconditional balancing overfit to PEHE (see Sec. 6.2).837

Also note that, under dim(w) = 1, β = 3 gives the best838

results for ATE although it does not work well for PEHE,839

and we do not know if this generalizes to the conclusion840

that large β gives better ATE estimation under the existence of PS, but leave this for future investiga-841

tion.842

6https://github.com/clinicalml/cfrnet
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Figure 8 shows results of pre-treatment prediction. In left843

panel, both our method and CFR perform only slightly844

worse than post-treatment. This is reasonable because845

here we have PS w with dim(w) = 1, there is no need to846

learn PtS. In the right panel, we also do not see significant847

drop of performance compared to post-treatment. This848

might be due to the hardness of learning balanced PtS in849

this dataset, and posterior estimation does not give much850

improvements.851

You can find more plots for latent recovery at the end of852

the paper.853

E.2 IHDP854

IHDP is based on an RCT where each data point represents855

a child with 25 features (6 continuous, 19 binary) about their birth and mothers. Race is introduced856

as a confounder by artificially removing all treated children with nonwhite mothers. There are 747857

subjects left in the dataset. The outcome is synthesized by taking the covariates (features excluding858

Race) as input, hence unconfoundedness holds given the covariates. Following previous work, we859

split the dataset by 63:27:10 for training, validation, and testing. Note, there is no ethical concerns860

here, because the treatment assignment mechanism is artificial by processing the data. Also our861

results are only quantitative and we make no ethical conclusions.862
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The generating process is as following [26, Sec. 4.1].863

y(0) ∼ N (ea
T (x+b), 1), y(1) ∼ N (aTx−c, 1), (37)

where a is a random coefficient, b is a constant bias with864

all elements equal to 0.5, and c is a random parameter865

adjusting degree of overlapping between the treatment866

groups. As we can see, aTx is a true PS. As mentioned867

in the main text, the PS might be discrete. Thus, this868

experiment also shows the importance of VAE, even if869

an apparent PS exists. Under discrete PSs, training an870

regression based on Proposition 2 is hard, but our VAE871

works well.872

The two added components in the modified version of our873

method are as following. First, we build the two outcome874

functions ft(z), t = 0, 1 in our learning model (4), using875

two separate NNs. Second, we add to our ELBO (5) a regularization term, which is the Wasserstein876

distance [11] between ED∼p(x|t=t)pλ(z|x), t ∈ {0, 1}. As shown in Table 2, best unconditional877

balancing parameter is 0.1, the results of which is reported in the main text. Larger parameters gives878

much worse PEHE and does not improve ATE estimation. Smaller parameters are more reasonable879

but still do not improve the results. The overall tendency is clear. Compared to ours, CFR with its880

unconditional balancing does not improve ATE estimation, it may improve PEHE results with fine881

tuned parameter, but possibly at the price of worse ATE estimation.882

Table 2: Performance of modified version with different unconditional balancing parameter, the values of which
are shown after “Mod.”.

Method Ours Mod. 1 Mod.
0.2

Mod.
0.1

Mod.
0.05

Mod.
0.01

CFR

εATE .178±.006 .196±.008 .177±.007 .167±.005 .177±.006 .179±.006 .25±.01

√
εPEHE .859±.033 1.979±.082 1.116±.046 .777±.026 .894±.039 .841±.029 .71±.02

Table 3 shows pre-treatment results, All methods gives reasonable results.883

E.3 Pokec Social Network Dataset884

This experiment shows our method is the best compared with the methods specialized for networked885

deconfounding, a challenging problem in its own right. Thus, our method has the potential to work886

under unobserved confounding, but we leave detailed experimental and theoretical investigation to887

future.888
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Table 3: Pre-treatment Errors on IHDP over 1000 random DGPs. We report results with dim(z) = 10. Bold
indicates method(s) that are significantly better. The results are taken from [58], except GANITE [78] and
CEVAE [46].

Method TMLE BNN CFR CF CEVAE GANITE Ours

pre-
εATE

NA .42±.03 .27±.01 .40±.03 .46±.02 .49±.05 .211±.011

pre-√
εPEHE

NA 2.1±.1 .76±.02 3.8±.2 2.6±.1 2.4±.4 .946±.048

Pokec [43] is a real world social network dataset. We experiment on a semi-synthetic dataset based889

on Pokec, which was introduced in [70], and use exactly the same pre-processing and generating890

procedure. The pre-processed network has about 79,000 vertexes (users) connected by 1.3 ×106891

undirected edges. The subset of users used here are restricted to three living districts that are within892

the same region. The network structure is expressed by binary adjacency matrixG. Following [70],893

we split the users into 10 folds, test on each fold and report the mean and std of pre-treatment ATE894

predictions. We further separate the rest of users (in the other 9 folds) by 6 : 3, for training and895

validation.896

Each user has 12 attributes, among which district, age, or join date is used as a confounder897

u to build 3 different datasets, with remaining 11 attributes used as covariate x. Treatment t and898

outcome y are synthesised as following:899

t ∼ Bern(g(u)), y = t + 10(g(u)− 0.5) + ε, (38)

where ε is standard normal. Note that district is of 3 categories; age and join date are900

also discretized into three bins. g(u), which is a PS, maps these three categories and values to901

{0.15, 0.5, 0.85}.902

Intact-VAE is expected to learn a PS fromG,x, if we can exploit the network structure effectively.903

Given the huge network structure, most users can practically be identified by their attributes and904

neighborhood structure, which means u can be roughly seen as a deterministic function ofG,x. This905

idea is comparable to Assumptions 2 and 4 in [70], which postulate directly that a balancing score can906

be learned in the limit of infinite large network. To extract information from the network structure,907

we use Graph Convolutional Network (GCN) [42] in conditional prior and encoder of Intact-VAE.908

The implementation details are given at the end of this subsection.909

Table 4 shows the results. The pre-treatment
√
εPEHE for Age, District, and Join date con-910

founders are 1.085, 0.686, and 0.699 respectively, practically the same as the ATE errors. Note that,911

[70] does not give individual-level prediction.912

Table 4: Pre-treatment ATE on Pokec. Ground truth ATE is 1, as we can see in (38). “Unadjusted” estimates
ATE by ED(y1)−ED(y0). “Parametric” is a stochastic block model for networked data [19]. “Embed-” denotes
the best alternatives given by [70]. Bold indicates method(s) that are significantly better than all the others. We
report results with 20-dimensional latent z. The results of the other methods are taken from [70].

Age District Join Date

Unadjusted 4.34± 0.05 4.51± 0.05 4.03± 0.06
Parametric 4.06± 0.01 3.22± 0.01 3.73± 0.01
Embedding-Reg. 2.77± 0.35 1.75± 0.20 2.41± 0.45
Embedding-IPW 3.12± 0.06 1.66± 0.07 3.10± 0.07
Ours 2.08± 0.32 1.68± 0.10 1.70± 0.13

To extract information from the network structure, we use Graph Convolutional Network (GCN) [42]913

in conditional prior and encoder of Intact-VAE. A difficulty is that, the networkG and covariatesX914

of all users are always needed by GCN, regardless of whether it is in training, validation, or testing915

phase. However, the separation can still make sense if we take care that the treatment and outcome916

are used only in the respective phase, e.g., (ym, tm) of a testing user m is only used in testing.917

GCN takes the network matrixG and the whole covariates matrixX := (xT1 , . . . ,x
T
M )T , where M918

is user number, and outputs a representation matrixR, again for all users. During training, we select919

the rows inR that correspond to users in training set. Then, treat this training representation matrix920

as if it is the covariates matrix for a non-networked dataset, that is, the downstream networks in921

conditional prior and encoder are the same as in the other two experiments, but take (Rm,:)
T where922

xm was expected as input. And we have respective selection operations for validation and testing.923
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We can still train Intact-VAE including GCN by Adam, simply setting the gradients of non-seleted924

rows ofR to 0.925

Note that GCN cannot be trained using mini-batch, instead, we perform batch gradient decent using926

full dataset for each iteration, with initial learning rate 10−2. We use dropout [62] with rate 0.1 to927

prevent overfitting.928

E.4 Additional plots on synthetic datasets929

See next pages.930
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Figure 9: Plots of recovered-true latent. Rows: first 10 nonlinear random models, columns: outcome noise level.
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Figure 10: Plots of recovered-true latent. Conditional prior depends on t. Rows: first 10 nonlinear random
models, columns: outcome noise level. Compare to the previous figure, we can see the transformations for
t = 0, 1 are not the same, confirming the importance of balanced prior.
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