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Multimodal-aware Multi-intention Learning for
Recommendation
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ABSTRACT
Whether it is an e-commerce platform or a short video platform,
the effective use of multi-modal data plays an important role in
the recommendation system. More and more researchers are ex-
ploring how to effectively use multimodal signals to entice more
users to buy goods or watch short videos. Some studies have added
multimodal features as side information to the model and achieved
certain results. In practice, the purchase behavior of users mainly de-
pends on some subjective intentions of users. However, it is difficult
for neural networks to effectively process noise information and ex-
tract high-level intention information. To investigate the benefits of
latent intentions and leverage them effectively for recommendation,
we propose a Multimodal-aware Multi-intention Learning method
for recommendation (MMIL). Specifically, we establish the relation-
ship between intention and recommendation objective based on
probability formula, and propose a multi-intention recommenda-
tion optimization objective which can avoid intention overfitting.
We then construct an intent representation learner to learn ac-
curate multiple intent representations. Further, considering the
close relationship between user intent and multimodal signals, we
introduce modal attention mechanisms to learn modal perceived
intent representations. In addition, we design a multi-intention
comparison module to assist the learning of multiple intention rep-
resentations. On three real-world data sets, the proposed MMIL
method outperforms other advanced methods. The effectiveness
of intention modeling and intention contrast module is verified by
comprehensive experiments.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
Benefiting from the improvement of data transmission and storage
performance, more and more rich modal data is used in various
applications [6]. E-commerce platform is one of the most full use of
multi-modal information scene, providing text description of goods,
picture style and corresponding video explanation [31]. Short video
programs are one of the most popular applications in recent years,
which are natively composed of multimodal data [34]. Each video
has detailed introduction, rich visual signals, and engaging audio
information. Whether it is an e-commerce platform or a short video
platform, the effective use of multi-modal data plays a vital role in
the recommendation system. More and more researchers begin to
explore how to effectively use multi-modal signals to improve the
accuracy of the recommendation system and attract more users to
buy goods or watch short videos [1, 11, 14].

In recent years, many researches have added multi-modal fea-
tures as side-info information tomodels and achieved certain results
[4, 7]. They encode images using visual encoders such as ResNet
[13] and ViT [8], and model user visual preferences using atten-
tional mechanisms. Hierarchical CNN are used to conduct semantic
characterization of product reviews and titles, so as to extract users’
personalized semantic preferences [4]. Then visual representation
and text representation are used as side-info features to carry out
feature interaction with users and item attributes. Since the im-
age representation supplements the visual attraction signal of the
product to the user, and the text representation supplements the
semantic attraction signal of the product, the use of these modal
data improves the effect of the recommendation system [3, 7]. In
addition, there are some work using graph neural networks to effec-
tively capture modal high order connectivity signals [41, 45]. For
example, MMGCN [34] performs graph convolution operations on
each bipartitic graph to learn representation vectors.

In the actual scenario, users often have their own intentions
when buying goods [5]. For example, one user is a 24-year-old fe-
male college student. When she goes shopping on the e-commerce
platform in summer, she tends to buy the latest fashion skirts and
clothes with beautiful colors. This reflects the user’s purchase inten-
tion of the required style and color before shopping. Considering
that intention is a preference expression at a higher level than the
original feature, it can better reflect the characteristics of user’s
personalized selection. Therefore, this paper focuses on how to con-
struct accurate representations of intent and provide personalized
recommendations based on intent. In addition, whether it is image,
text or audio signals, they often contain a lot of noise information.
Many of the previous work [4, 37] directly use the representation of
high noise for model learning, which is easy to damage the recom-
mendation effect. Therefore, it is necessary to extract a high-level
representation of intention based on multimodal data.

However, simply extracting intent representations from data
is unfriendly because neural networks cannot effectively process
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noisy information and extract high-level semantic representations.
Moreover, there are potential problems with intent-based recom-
mendations. In particular, models may overfit to some intentions
since there are usually a limited number of intentions and some
intentions may be highly weighted. For example, the model easily
learns a relationship between A: This user is a mom and B: this user
tends to buy kitchenware according to high frequency similar behav-
ior. However, it is also possible for a mum to buy fashionable new
dresses, making the above correlation untenable in other intentions.
In this work, we call such issue as intention overfitting, indicating
that recommendation models may overfit to some intentions with
unreliable correlations, and thus give wrong predictions on the
other intentions.

Considering the problems mentioned above, we propose a new
multi-intent modeling scheme. We propose a Multimodal-aware
Multi-intention Learning (MMIL) method for recommendation.
Specifically, we first propose a multi-intent recommendation frame-
work that can avoid intent overfitting, based on the probability
distribution relationship among predict targets and intents. We
transform the intentional-recommendation objective optimization
into the lower bound optimization according to the Jensen Inequal-
ity. We then construct an intent representation learner to learn
accurate multiple intent representations. Further, considering the
close relationship between user intent and multimodal signals, we
propose a modal information perceptron to learn modal - aware
intent representation. In addition, we design a multi-interest con-
trastive module to assist the learning of multi-interest representa-
tion. Finally, we combine the above optimization objectives as a
comprehensive loss function for model training.

The main contributions of this paper can be summarized as
follows:

• We propose a multi-intent recommendation scheme that
avoids intent overfitting, and transform the optimization
objective into a model-friendly optimization lower bound by
Jensen’s inequality.

• We propose a multimodal-aware multi-intention learning
method (MMIL) for recommendation. MMIL can not only
construct multi-intention representation of users, but also
learn intention information of modal attention by using
modal perceptron.

• We have carried out rich experiments on three real-world
public data sets, and the experimental results show that our
proposed MMIL method outperforms the state-of-the-art
methods. Further experimental analysis also verifies the ef-
fectiveness of our proposedmulti-intention recommendation
module and intention contrastive module.

2 RELATEDWORK
2.1 Multimodal Recommendation
The method based on collaborative filtering has been widely used
in early recommendation systems and has achieved certain results
[20, 28]. However, due to the impact of data sparsity and other
factors, collaborative filtering model has been unable to meet the
needs of large-scale recommendation systems. In recent years, with
the increasing abundance of multimodal data, many researchers
began to explore the use of multimodal signals, so as to alleviate

the problem of data sparsity in recommendation systems [11, 38,
41]. Multimodal recommendation systems are widely used in e-
commerce and short video platforms.

Many multimodal recommendation models mainly learn multi-
modal information of items as side information [4, 7]. The effect
of the model is improved by the interaction of multimodal fea-
tures and attribute features with high order features. For example,
VBPR [15] extracts visual features from product images and in-
corporates visual signals into matrix factorization models. DVBPR
[19] improves recommendation performance by jointly training
the image representation and recommendation system from the
pixel level. ACF [3] proposes an attention mechanism based on
the item layer and component layer to deal with recommendation
tasks in the multimedia domain. VECF [4] also models the user’s
attention perception information for different areas of the image
and review. More recently, fine-grained modeling methods have im-
proved multimodal recommendations [10]. SCAHN [23] designs a
semantic structure-enhanced contrastive adversarial hash network
to enhance model representation learning.

Recently, many research methods using graph neural network
have achieved good results. MMGCN [34] constructs a user-item
dichotomous graph on each mode and enriches the representation
of each node with the topology and characteristics of its adjacent
nodes. GRCN [33] adaptively adjusts the structure of the interaction
graph according to the training state of the model, and applies the
graph convolution layer to the refined graph to extract the user’s
preferred information signal. HUIGN [32] presents user intentions
in a hierarchical graph structure from fine to coarse-grained. It
achieves multiple levels of user intent by recursively performing
intra-level and inter-level aggregation operations.

2.2 Contrastive Learning for Recommendation
Self-supervised learning has been widely used in computer vision,
recommendation system and other fields in recent years [18, 25,
42]. As an important branch of self-supervised learning, contrast
learning can obtain robust and discriminant feature representations
by constructing enhanced positive and negative sample pairs. For
visual signals, a lot of work has been done to construct enhanced
samples by discarding, flipping, masking, etc., and to improve model
performance by contrast loss optimization [9, 12].

Many sub-direction studies in the recommendation system have
achieved good results through comparative learning [22, 39, 46].
CLS4Rec [36] designs three data enhancement modes of item crop,
item mask and item reorder, and improves the sequence recommen-
dation effect by constructing contrastive objectives. ICL [5] defines
user intention by means of clustering, and improves recommen-
dation effect based on intention contrastive learning. MHCN [40]
integrates self-supervised learning into the training of hypergraph
convolutional networks to obtain the connectivity information
that maximizes hierarchical mutual information. SLMRec [29] de-
signs three data augmentation methods such as feature dropout
and feature masking. SLMRec enables multimedia recommendation
models to better establish modal associations and learn stronger
multimodal representations.
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Recently, many methods combining graph neural network and
contrast learning have been widely studied [34, 41]. SGL [35] ex-
plores the application of SSL on user-item biparts, and applies
self-discrimination to learn more robust node representation, thus
assisting the recommendation model to improve its effectiveness.
GPT-GNN [17] designs a self-supervised property graph generation
task for GNN pre-training to model both structure and properties of
the graph, and then uses the pre-training GNN of the input graph as
model initialization for different downstream tasks. CFAA [24] pro-
poses a self-supervised contrastive multimodal alignment task to
make full use of cross-modal text and visual information. MMGCL
[39] builds data augmentation based on modal edge discarding and
modal mask, and then uses multiple views of users and projects to
construct contrastive learning objectives.

3 PRELIMINARIES
We assume that there are a set of𝑀 users 𝑈 and a set of 𝑁 items 𝐼 .
We denote a user-item interaction matrix 𝑌 ∈ 𝑅𝑁×𝑀 to represent
the interaction relations, where 𝑦𝑢𝑖 = 1 indicates user 𝑢 ∈ 𝑈

has positive feedback with item 𝑖 ∈ 𝐼 before, otherwise 𝑦𝑢𝑖 = 0.
Besides, multimodal features are offered as content information
of items. In this paper, we consider visual, textual and acoustic
modalities.We denote themultimodal features of items as 𝑧𝑚 , where
𝑚 ∈ 𝑀 = {𝑣, 𝑡, 𝑎}. 𝑣 denotes visual features, 𝑡 denotes textual
features and 𝑎 denotes acoustic features. The objective of model
learning is to learn user and item embeddings based on historical
interactions and multimodal features, where the internal product
between user embeddings and item embeddings represents the
likelihood of users selecting projects. Finally, we recommend the
top-𝑛 items to users.

4 THE PROPOSED MMIL MODEL
In this section, we give a detailed introduction to the proposed
MMIL. The MMIL consists of four main parts. Firstly, we establish
the relation between intention and recommendation objective based
on probability formula, and propose a multi-intention recommen-
dation optimization objective which can avoid intention overfitting.
Secondly, we construct an intention representation learner to learn
accurate multiple intention representations. Thirdly, considering
the close relationship between user intent and multimodal signals,
we introduce modal attention mechanisms to learn modal perceived
intent representations. Fourthly, we also design a multi-intention
comparison module to assist the learning of multi-intention repre-
sentation. Finally, we combine several optimization objectives for
model training.

4.1 Multi-intention Recommendation
Framework

Users have multiple intentions when they buy goods or watch short
videos. To avoid the model being overly influenced by some high-
frequency intent shown in Fig. 1., the intuitive idea is to intervene
with 𝑍 so that 𝑍 can avoid being influenced by 𝐼 → 𝑍 . For example,
we can mitigate the confounding bias by random sampling. How-
ever, due to the limited resources in practice, the efficiency and
stability of this method are relatively low.

Figure 1: Causation based on intent recommendation. (a)
To learn intentions without considering the confounding
influence between I and Z. (b) To learn intentions from data
and cuts off the confounding effect caused by I->Z.

Therefore, we consider cutting off the connection between data Z
and intent 𝐼 . Specifically, we define 𝑃 (𝑌 |𝐼 (𝑍 )) as objective function,
then 𝑃 (𝑌 |𝐼 (𝑍 )) can be represented as:

𝑃 (𝑌 |𝐼 (𝑍 )) =
∑︁
𝑖

𝑃 (𝑌 |𝐼 (𝑍 ), 𝑖)𝑃 (𝑖 |𝐼 (𝑍 ))

=
∑︁
𝑖

𝑃 (𝑌 |𝑍, 𝑖)𝑃 (𝑖 |𝐼 (𝑍 ))

=
∑︁
𝑖

𝑃 (𝑌 |𝑍, 𝑖)𝑃 (𝑖)

(1)

where 𝑖 indicates the intention of the user. The above transformation
is mainly based on conditional probability formula transformation.
In particular, since we cut off the connection of 𝐼 and 𝑍 , which can
be thought of 𝐼 and 𝑍 is independent of each other, thus satisfy
𝑃 (𝑖 |𝐼 (𝑍 )) = 𝑃 (𝑖).

However, the actual intentions cannot be observed. The difficulty
is that we need to build semantically accurate representations based
on data to approximate representations of intents. Therefore, we
introduce the distribution of 𝑄 (𝐼 |𝑋 ) to approximate the prior 𝑃 (𝐼 ),
so as to solve the problem above. Specifically, we can deduce the
following based on Jensen’s inequality:

𝑙𝑜𝑔
∑︁
𝑖

𝑃 (𝑌 |𝑍, 𝑖)𝑃 (𝑖) = 𝑙𝑜𝑔
∑︁
𝑖

𝑄 (𝑖 |𝑍 )𝑃 (𝑌 |𝑍, 𝑖) 𝑃 (𝑖)
𝑄 (𝑖 |𝑍 )

≥
∑︁
𝑖

𝑄 (𝑖 |𝑍 )𝑙𝑜𝑔𝑃 (𝑌 |𝑍, 𝑖) 𝑃 (𝑖)
𝑄 (𝑖 |𝑍 )

(2)

Therefore, we can obtain the optimization lower bound as:

𝐸𝑄 (𝐼 |𝑍 )𝑙𝑜𝑔𝑃 (𝑌 |𝑍, 𝑖) − 𝐷𝐾𝐿 [𝑄 (𝐼 |𝑍 ) | |𝑃 (𝐼 )] (3)

4.2 Intent Representation Learner
Due to the distribution of 𝑄 (𝐼 |𝑍 ) is unknown, we need to design
an intention representation module to approximate distribution of
𝑄 (𝐼 |𝑍 ). Simplified, we can learn 𝑄 (𝐼 |𝑍 ) by clustering method. The
core idea is to calculate the distance between each sample and each
intent vector. We believe that a user often has multiple intentions in
the process of buying and watching, but the importance of different
intentions is different. Therefore, we construct a soft cluster to
describe the probability that a sample belongs to each intent. In this
case, the intent module can use soft distance to learn distribution
𝑄 (𝐼 |𝑍 ), which is defined as follows:
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𝑄𝑠 (𝑖 |𝑧) = 𝑃 (𝑖 |𝑥) =
𝑒−𝑔 (𝑓 (𝑧 ),𝑖 )∑
𝑖′ 𝑒

−𝑔 (𝑓 (𝑧 ),𝑖′ ) (4)

where 𝑖 represents the learnable intent representation, 𝑔 represents
the distance function, and 𝑓 represents the metric space mapping
function. The main reason we introduce the mapping function 𝑓 is
to consider that the weights of different feature dimensions should
be different. This idea comes from design in related studies [40].

Further we set 𝑠𝑘
𝑗
equal to 𝑄 (𝐼 |𝑍 ), which is the probability that

the 𝑗-th sample contains the 𝑘-th intent. Our learning objective
is to minimize the distance expectation from each sample to the
intent vector, defined as follows:

𝐿𝑑 =
1
𝑁

𝐾∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑠𝑘𝑗 𝑔(𝑓 (𝑧 𝑗 ), 𝑖𝑘 ) (5)

In addition, we believe that intents satisfy the assumption of
conditional independence. In order to avoid homogeneity among
multiple intents, which will reduce the diversity of intents, we intro-
duce the intention constraint function to improve the orthogonality
among the representations of intents. The constraint loss function
is defined as follows:

𝐿𝑐 =

𝐾∑︁
𝑚=1

𝐾∑︁
𝑛=𝑛+1

(𝑖𝑚 ∗ 𝑖𝑛) (6)

4.3 Modal-specific Perceptron
In multimodal condition, the user’s intention is greatly affected by
visual and auditory signals. We propose the modal awareness mech-
anism and substitute it into Formula 2. We consider both the modal
independent attribute modality and the modal dependent visual
and text modalities. Specifically, we define 𝑃 (𝑌 |𝐼 , 𝑍 ) as follows:

𝑃 (𝑌 |𝐼 , 𝑍 ) =
∑︁

𝑚∈𝑀={𝑣,𝑡,𝑎}
𝑃 (𝑚 |𝐼 , 𝑍 )𝑃 (𝑌 |𝑚, 𝐼, 𝑍 ) (7)

where𝑀 represents different modal features, including visual fea-
ture 𝑣 , text feature 𝑡 and attribute feature 𝑐 . Then we can rewrite
Formula 3 as follows:

𝐸𝑄 (𝐼 |𝑍 )𝑙𝑜𝑔
∑︁
𝑚

𝑃 (𝑚 |𝐼 , 𝑍 )𝑃 (𝑌 |𝑚, 𝐼, 𝑍 ) − 𝐷𝐾𝐿 [𝑄 (𝐼 |𝑍 ) | |𝑃 (𝐼 )] (8)

where𝑚 ∈ 𝑀 = {𝑣, 𝑡, 𝑐} denotes the modal flag. To solve the above
formula, we introduce an intention inference module to calculate
each modal intention probability of a user. Considering the power
of multi-head attention mechanisms to capture context-important
semantic information, we use transformer [30] block to learn intent-
dependent modal probability. The definition is as follows:

𝑟 = 𝑓𝑟 (𝑀𝑢𝑙𝑡𝑖 − ℎ𝑒𝑎𝑑 − 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛( [𝑒𝑐 , 𝑒𝑣, 𝑒𝑡 ])) (9)

where 𝑟 ∈ 𝑅1×3 represents the probability distribution of intent
related to the modality, approximately 𝑃 (𝑚 |𝐼 , 𝑍 ). 𝑓𝑟 represents a
mapping function that converts representations into the weight
vector, implemented with a fully connected neural network with
softmax. 𝑒𝑚 represents the semantic representation of the 𝑚-th
modality, obtained by modal encoder 𝑔𝑚 .

Further, we consider using modal information to perceive intent
representations and establish the relationship between modal se-
mantics and intents. We take the intention representation matrix 𝐼
as query and the modal representation 𝐸𝑚 as key and value, and
use an attention-perception module to extract the modal intention
information as follows:

𝑉𝑚 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
(𝐼𝑚𝑊𝑞) (𝑒𝑚𝑊𝑘 )𝑇√︁

𝑑𝑘

) (𝑒𝑚𝑊𝑣) (10)

where 𝑉𝑚 ∈ 𝑅𝐾×𝑑 denotes the modal-aware intention representa-
tion matrix.𝑊𝑞 ,𝑊𝑘 and𝑊𝑣 represent parameter matrices. There-
fore, we can obtain the representation of the 𝑗-th sample 𝑧 𝑗 under
modal perception of the 𝑘-th intention as follows:

ℎ𝑘𝑗 =

3∑︁
𝑚=1

𝑟𝑚𝑉
𝑚
𝑘

(11)

where ℎ𝑘
𝑗
∈ 𝑅1×𝑑 represents modal perception intention.

4.4 Multi-intention Contrastive Regularization
Due to the problem of sparse data in large-scale recommendation
systems, the feature representation cannot be adequately trained.
Therefore, in order to further improve the accuracy of the inten-
tion representation constructed by us, we use the self-supervised
contrast learning method to improve the model training effect. In
particular, given the historical interaction sequence 𝑠𝑢 of user 𝑢 𝑗 ,
we construct the enhanced sample by random sampling. Two subse-
quences 𝑠′𝑢 , 𝑠′′𝑢 are obtained by random sampling of the interaction
sequence twice with sampling probability 𝜇. Then, based on two
sequence features, multi-modal features and user attribute features,
we use the above multi-intent extractor to construct multi-intent
representations as follows:

𝐻 ′ = 𝑀𝑢𝑙𝑡𝑖 − 𝐼𝑛𝑡𝑒𝑛𝑡 − 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 ({𝑠′𝑢 , 𝑒′𝑚, 𝑒𝑢 })
𝐻 ′′ = 𝑀𝑢𝑙𝑡𝑖 − 𝐼𝑛𝑡𝑒𝑛𝑡 − 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟 ({𝑠′′𝑢 , 𝑒′′𝑚, 𝑒𝑢 })

(12)

Then we construct comparative learning modules based on two
kinds of multi-intention representations. For user 𝑢 𝑗 , we construct
a positive sample pair as < ℎ′

𝑗
, ℎ′′
𝑗
> and 2𝐾 − 2 negative sample

pairs composed of other different intentions. It is common practice
to construct a comparative loss by taking the intent of other users in
the same batch as a negative sample. But there is no guarantee that
intentions will be different from one user to another. In addition,
considering that K may be a large number, constructing negative
samples in batch dimension will increase the computational com-
plexity of the model. Therefore, we construct multi-intent contrast
losses only in the single user dimension. Let the set formed by
2𝐾 − 2 negative sample pairs be 𝑆− , the multi-intention contrast
loss is defined as follows:

𝐿𝑐𝑙 = −𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑖𝑚(ℎ𝑘 ′

𝑗
, ℎ𝑘

′′
𝑗
)/𝜏)

𝑒𝑥𝑝 (𝑠𝑖𝑚(ℎ𝑘 ′
𝑗
, ℎ𝑘

′′
𝑗
)/𝜏) +∑

𝑠∈𝑆− 𝑒𝑥𝑝 (𝑠𝑖𝑚(ℎ𝑘 ′
𝑗
, 𝑠)/𝜏)

− 𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑖𝑚(ℎ𝑘 ′

𝑗
, ℎ𝑘

′′
𝑗
)/𝜏)

𝑒𝑥𝑝 (𝑠𝑖𝑚(ℎ𝑘 ′
𝑗
, ℎ𝑘

′′
𝑗
)/𝜏) +∑

𝑠∈𝑆− 𝑒𝑥𝑝 (𝑠𝑖𝑚(ℎ𝑘 ′′
𝑗
, 𝑠)/𝜏)

(13)
2024-04-13 11:58. Page 4 of 1–9.
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By optimizing multi-intent contrast loss on augmentation samples
to help model training, users’ multi-intent learning is no longer
sensitive to some specific positive samples. By reducing the inter-
ference of noise interaction, the model can be more effective in
training and alleviate the problem of data sparsity.

4.5 Prediction
The final prediction results are learned based on the captured sam-
ple multi-intention information. Based on the intention probability
𝑠𝑘
𝑗
and the intention representation ℎ𝑘

𝑗
of modal perception, the

final prediction result is:

𝑝 𝑗 = 𝑓𝑝 (
𝐾∑︁
𝑘=1

𝑠𝑘𝑗 ℎ
𝑘
𝑗 ) (14)

where 𝑝 𝑗 ∈ [0, 1] denotes the prediction result. 𝑓𝑝 represents the
encoder, directly using a three-layer MLP with softmax function.
Therefore, based on the predict value 𝑝 𝑗 and real label 𝑦, we con-
struct the cross entropy loss function as follows:

𝐿𝑝 = − 1
𝑁

𝑁∑︁
𝑗=1

(𝑦 𝑗 𝑙𝑜𝑔𝑝 𝑗 + (1 − 𝑦 𝑗 )𝑙𝑜𝑔(1 − 𝑝 𝑗 )) (15)

4.6 Training and Optimization
The ultimate learning goal of the model is to maximize the goal
in Formula 6. We can solve the first item by optimizing the final
estimated loss 𝐿𝑝 . For the KL loss of the second item, we can redefine
it as follows:

𝐷𝐾𝐿 =
1
𝑁

𝐾∑︁
𝑘=1

𝑁∑︁
𝑗=1

𝑠𝑘𝑗 𝑙𝑜𝑔(
𝑠𝑘
𝑗

𝑃 (𝐼 ) )

=
1
𝑁

𝐾∑︁
𝑘=1

𝑁∑︁
𝑗=1

𝑠𝑘𝑗 (𝑙𝑜𝑔𝑠
𝑘
𝑗 + 𝑙𝑜𝑔𝐾)

(16)

where we assume that the intention distribution follows a uniform
uniform distribution [xx]. Further, we can get the KL loss function
as:

𝐿𝑘𝑙 =
1
𝑁

𝐾∑︁
𝑘=1

𝑁∑︁
𝑗=1

𝑠𝑘𝑗 𝑠𝑙𝑜𝑔𝑠
𝑘
𝑗 (17)

Finally, multiple optimization objectives mentioned above are inte-
grated as the final learning objectives of the model as follows:

𝐿 = 𝐿𝑝 + 𝐿𝑘𝑙 + 𝜇𝐿𝑑 + 𝜃𝐿𝑐 + 𝛾𝐿𝑐𝑙 (18)

where 𝜇, 𝜃 and 𝛾 represent hyper-parameters used to control the
important weight of different loss functions. By optimizing the
fusion losses mentioned above, the model can learn accurate multi-
intention representation and make effective recommendations.

5 EXPERIMENTS
In this section, we conduct extensive experiments to answer the
following questions:

• RQ1 Compared with the state-of-the-art multimedia recom-
mendation frameworks, how does ourMMILmodel perform?

• RQ2 What is the impact of the different modules in the
MMIL on the model effect?

Table 1: Statistics of the three datasets.

Dataset User Item Interactions Density

Clothing 39,387 23,033 237,488 0.026%
Sports 35,598 18,357 256,308 0.039%
Baby 19,445 7,050 139,110 0.101%

• RQ3 How sensitive is our model under the perturbation of
several key hyper-parameters?

5.1 Experimental Settings
5.1.1 Datasets. We select three datasets1 from the Amazon prod-
uct dataset[21], including Clothing, Shoes and Jewelry, Sports and
Outdoors, and Baby. These datasets include rich meta informa-
tion about users and items, such as item descriptions and item
images. The visual features are published and represented as 4,096-
dimensional embeddings. Following [2], we concatenate the title,
descriptions, categories, and brand of each item to extract textual
features. Text feature embedding is generated by Sentence-Bert
[27]. The statistical results of the three datasets after preprocessing
are shown in Table 1.

5.1.2 Baselines. To evaluate the performance, we compared the
proposed MMIL model with the following baselines:

• VBPR [15] integrates visual features as auxiliary signals
into biased MF method to improve the accuracy of item rep-
resentation, especially the representation of long-tail sparse
items.

• LightGCN [16] effectively reduces the difficulty of model
training by simplifying structure and reducing model com-
plexity while ensuring the effect of graph convolutional net-
work

• MMGCN [34] proposes a multimodal graph convolutional
network based on the idea of graph neural network messag-
ing, which can generate specific modal representations of
users and microvideos to better capture user preferences

• GRCN [33] removes the noise information from the inter-
action graph and applies the graph convolution layer to the
refined graph to extract the information signal of user pref-
erence.

• LATTICE [43] performs graph convolution of the learned
potential graphs and explicitly injects higher-order affinities
into the item representation.

• HUIGN [32] learns multiple levels of user intent from the
interaction patterns of items in order to obtain high quality
representations of users and items and to further improve
recommendation performance.

• SLMRec [29] improves the self-supervised learning recom-
mendation effect by designing three data augmentationmeth-
ods such as feature dropout and feature masking.

• MICRO [44] designs a newmodal awareness structure learn-
ing module and performs graphic convolution to explicitly
inject item affinity into the modal awareness item represen-
tation.

1http://jmcauley.ucsd.edu/data/amazon/

2024-04-13 11:58. Page 5 of 1–9.
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• HCGCN [26] designs high-order graph convolutions inside
user-item and item-item clusters to capture various user
behavior patterns.

• MMGCL [39] designs two multimodal enhancement tech-
niques to construct multiple views of nodes. In order to
ensure the effective contribution of each mode, an effective
negative sampling strategy is proposed by pertub one of the
modes.

5.1.3 EvaluationMetrics. Following relatedwork [26], we use three
widely used evaluation indicators, including Recall, Precision and
Normalized Discounted Cumulative Gain (NDCG). NDCG is an
effective metric to measure ranking tasks. Each metric is calculated
based on the top 20 results. The reported results are calculated
based on the average of all test users.

5.1.4 Parameter Protocols. The dimension of the hidden vector
is selected from [16, 32, 64, 128]. Considering the training time
and convergence speed, the learning rate is adjusted from [0.00001,
0.00005, 0.0001, 0.0005]. The hyperparameters 𝜇,𝜃 and𝛾 are searched
in [0.0001, 0.001, 0.01, 0.1, 1]. Temperature coefficient 𝜏 is selected
from [0.005, 0.05, 0.5, 5, 50]. In addition, the number of intentions
is searched from [5, 10, 20, 50, 100].

5.2 Overall Performance (RQ1)
We conducted a comprehensive experiment on three amazon data
sets and compared our proposed MMIL model with other baseline.
The experimental results are shown in Table 2. According to the
observation, we can conclude:

• The MMIL model outperforms other state-of-the-art meth-
ods in three data sets, and has significant improvement in
all evaluation metrics. In particular, compared with VBPR,
which simply uses modal information as side-info model,
GRCN and MMGCL models which use graph convolution
and contrast learning methods have significantly higher ef-
fect. Due to the introduction of a better generalization of
intention representation method, compared with noise in-
terference representation learning, the multi-intention mod-
eling method can learn user preferences more accurately,
making MMIL model more effective than other methods.

• Compared with NCL, MMGCL and other multi-modal recom-
mendation methods based on contrast learning, MMIL has
significantly improved the effect. Since most of the previous
comparative learning models are based on direct learning of
feature representation by means of random sampling, the
models are easily affected by noise and mutually exclusive in-
formation in the original data. However, MMIL constructs a
fine representation of intent from a seemingly coarse-grained
perspective, effectively avoiding the interference of noise
and irrelevant information. Moreover, the contrast between
multiple intentions also improves the accuracy of intention
representation.

• MMIL also represents a significant improvement in the three
data sets compared to the HUIGN model, which was also
built with the intent to make multimodal recommendations.
HUIGN thinks that co-item reflects the fine-grained inten-
tions of users, and summarizes the fine-grained intentions

as coarse strength intentions. On the contrary, MMIL explic-
itly defines intent representation and optimizes the model
to learn accurate intent representation through multiple re-
liable constraint functions. As a result, MMIL can provide
more accurate multi-intent recommendations with signifi-
cantly less computational complexity than HUIGN.

5.3 Ablation Study (RQ2)
In order to explore the influence of the proposed modules on the
model effect, we consider conducting ablation experiments on three
data sets. We conducted the following ablation experiments, and
the experimental results are shown in Table 3.

• We removed the intentional learning (IL) module from the
model and only retained the feature coding and model pre-
diction parts, denoted as w/o IL. We can see that by removing
the intention-dependent modules completely, the effect is
significantly reduced, similar to the effect of VBPR, which
simply uses modal information. It can be seen that modeling
intentions is necessary and effective.

• We removed the modal awareness (MA) module from the
model and directly use modal independent implicit intention
representation, denoted as w/o MA. According to the exper-
imental results, the effect of the model decreases after the
modal awareness module is removed. This shows that user
intentions are strongly related to multimodal information
and need to be modeled effectively.

• We droped the intent orthogonal constraint (OC) function
from the optimization objective, denoted as w/o OC. With-
out the intention orthogonal constraint, multiple intents are
likely to overlap or be similar, which leads to inaccurate in-
tent modeling. The experimental results show that removing
intention constraint will damage the effect of model.

• We droped multi-intention contrast (IC) loss from the opti-
mization objective, denoted as w/o IC. After the intention
contrast loss is removed, the effect of the model decreases
on all data sets, indicating the validity of intention contrast.
However, in some data sets, the effect changes are not obvi-
ous, which indicates that different data sets have different
effects of contrast learning due to different data richness.

5.4 Parameter Analysis (RQ3)
There are some important parameters in our model. In order to
explore the impact of these parameters on the model effect, we
conducted sensitivity analysis on the following key parameters.

Impact of 𝜇 and 𝜃 . Since the parameters 𝜇 and determine
the loss weight of intentional representation learning, in order to
explore the influence of these two weights on the model effect, we
set the values of 𝜇 and 𝜃 in [0.0001, 0.001, 0.01, 0.1, 1]. As shown in
Fig. 2, with the increase of parameter values, the performance of
the model shows fluctuating changes, without a continuous trend
of getting better or worse. In general, the bigger value ensures the
effectiveness of intent representation learning, which makes the
performance better.

Impact of 𝛾 and 𝜏 . Since we introduce multi-intention contrast
learning, the parameters 𝛾 and 𝜏 determine the degree of influence.
We let the parameter 𝛾 adjust the value in [0.0001, 0.001, 0.01, 0.1,

2024-04-13 11:58. Page 6 of 1–9.
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Table 2: Overall performance comparison of all models on three data sets.

Model Amazon-Clothing Amazon-Sports Amazon-Baby
Recall@20 Percision@20 NDCG@20 Recall@20 Percision@20 NDCG@20 Recall@20 Percision@20 NDCG@20

VBPR 0.0481 0.0023 0.0205 0.0582 0.0031 0.0265 0.0486 0.0026 0.0213
LightGCN 0.0470 0.0024 0.0215 0.0782 0.0042 0.0369 0.0698 0.0037 0.0319
MMGCN 0.0501 0.0024 0.0221 0.0638 0.0034 0.0279 0.064 0.0032 0.0284
GRCN 0.0631 0.0032 0.0276 0.0833 0.0044 0.0377 0.0754 0.0040 0.0336
MMGCL 0.0693 0.0036 0.0307 0.0875 0.0046 0.0409 0.0758 0.0041 0.0331
HUIGN 0.0735 0.0043 0.0313 0.0865 0.0047 0.0412 0.0761 0.0042 0.0336
SLMRec 0.0724 0.0041 0.0325 0.0829 0.0043 0.0376 0.0765 0.0043 0.0325
LATTICE 0.0770 0.0039 0.0316 0.0915 0.0048 0.0424 0.0829 0.0044 0.0368
MICRO 0.0782 0.0040 0.0351 0.0968 0.0051 0.0445 0.0865 0.0045 0.0389
HCGCN 0.0810 0.0041 0.0370 0.1032 0.0055 0.0478 0.0922 0.0048 0.0415
MMIL 0.0853 0.0043 0.0392 0.1096 0.0059 0.0513 0.0991 0.0052 0.0452

Improvement 5.25% 4.78% 5.81% 6.16% 6.77% 7.25% 7.42 8.39% 8.92%

Table 3: Ablation experimental results.

Model Clothing Sports Baby
R@20 N@20 R@20 N@20 R@20 N@20

MMIL 0.0853 0.0392 0.1096 0.0513 0.0991 0.0452
w/o-IL 0.0517 0.0233 0.0625 0.0374 0.0638 0.0306
w/o-MA 0.0784 0.0365 0.0977 0.0452 0.869 0.0394
w/o-OC 0.0828 0.0384 0.1070 0.0496 0.0962 0.0435
w/o-IC 0.0813 0.0366 0.0994 0.0481 0.0945 0.0427

1] and 𝜏 adjust the value in [0.005, 0.05, 0.5, 5, 50]. As shown in
Fig. 3, as the temperature coefficient increases gradually, the model
effect becomes better first and then worse. As the temperature
coefficient determines the model’s attention to difficult negative
samples, appropriate values should be selected for different data
sets. In addition, the relatively small 𝛾 makes the model learn well.

Impact of embedding dimension 𝑑 . In order to explore the in-
fluence of the implicit vector dimension in the model on the model
effect, we adjusted the value of 𝑑 from [16, 32, 64, 128, 256, 512]. As
shown in Fig. 4, As the embedding dimension increases, the perfor-
mance of the model on all datasets shows a gradual improvement
trend. The larger the dimension of implicit vector, the stronger its
representation ability, so the effect will be gradually improved. Due
to the limited learning ability of the model, the improvement of its
effect gradually decreases.

6 CONCLUSION
In this paper, we propose a multimodal-aware multi-intention learn-
ing method for recommendation. MMIL accurately establishes the
relationship between intention and predicted target, and improves
recommendation effectiveness through effective intention repre-
sentation. Specifically, MMIL consists of intention representation
module, modal awareness module and intention contrast module.
The intentionality representation module introduces implicit inten-
tionality representation and improves intentionality representation
learning through intentionality optimization. The modal aware-
ness module models the difference of user’s intention distribution
among different modes and makes effective use of multi-modal
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Figure 2: Effect study of parameters 𝜇 and 𝜃
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Figure 3: Effect study of parameters 𝛾 and 𝜏

information. Intention contrast module further improves the effect
of intention learning through self-supervised learning.

2024-04-13 11:58. Page 7 of 1–9.
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Figure 4: Effect study of embedding dimension 𝑑

In the future, we plan to carry out further research from several
directions. First, we consider further exploring the relationship
between multimodal information and user intent. We want to try to
model the user’s multimodal shared intent and modal specific intent
to create a more accurate portrait of the user. Secondly, we consider
trying different multimodal data utilization methods, including
using graph neural network and knowledge graph to mine users’
multimodal preference information.
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