
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROOFS OF TECHNICAL RESULTS

A.1 PROOFS OF SECTION 4

Proof of Proposition 4.2. We recall the expression of G̃q:

G̃q =
1

n

n∑

j=1

(R̃j →
1

n

n∑

k=1

R̃k)Z̃j .

The expectation of G̃q is:

E[G̃q] = E[ 1
n

n∑

j=1

(R̃j →
1

n

n∑

k=1

R̃k)Z̃j ]

= E[ 1
n

n∑

j=1

R̃jZ̃j →
1

n2

n∑

j=1

n∑

k=1

R̃kZ̃j ]

=
1

n

n∑

j=1

E[R̃jZ̃j ]→
1

n2

n∑

j=1

n∑

k=1

E[R̃kZ̃j ]

= E[R̃Z̃]→ E[R̃Z̃] = 0 (by Assumption 4.1(i)).

The variance of G̃q is:

Var(G̃q)

= E[G̃2
q
]→ (E[G̃q])

2 = E[G̃2
q
]→ 0 = E[G̃2

q
]

= E







 1

n

n∑

j=1

R̃jZ̃j →
1

n2

n∑

j=1

n∑

k=1

R̃kZ̃j




2




= E




1

n2




n∑

j=1

R̃jZ̃j




2

+
1

n4




n∑

j=1

n∑

k=1

R̃kZ̃j




2

→ 2

n3




n∑

j=1

R̃jZ̃j








n∑

j=1

n∑

k=1

R̃kZ̃j









= E




1

n2




n∑

j=1

R̃jZ̃j




2




︸ ︷︷ ︸
↭C1

+E




1

n4




n∑

j=1

n∑

k=1

R̃kZ̃j




2




︸ ︷︷ ︸
↭C2

→E



 2

n3




n∑

j=1

R̃jZ̃j








n∑

j=1

n∑

k=1

R̃kZ̃j









︸ ︷︷ ︸
↭C3

.
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Next we compute each term. We find for C1:

C1 = E




1

n2




n∑

j=1

R̃jZ̃j




2


 =
1

n2
E








n∑

j=1

R̃jZ̃j




2




=
1

n2
E




n∑

j=1

R̃
2
j
Z̃

2
j
+

∑

1→j<k→n

R̃jZ̃jR̃kZ̃k





=
1

n2




n∑

j=1

E

R̃

2
j
Z̃

2
j


+

∑

1→j<k→n

E

R̃jZ̃jR̃kZ̃k






=
1

n2




n∑

j=1

E

R̃

2
j
Z̃

2
j


+

∑

1→j<k→n

E

R̃jZ̃j


E

R̃kZ̃k




 (independence between j and k)

=
1

n2


nE


R̃

2
Z̃

2

+ n(n→ 1)(E[R̃Z̃])2


(identically distributed)

=
1

n
E

R̃

2
Z̃

2

+

(n→ 1)

n
(E[R̃Z̃])2

=
1

n
E[R̃2](µ2

Z
+ ω

2
Z
) +

n→ 1

n
µ
2
z
(E[R̃])2

= E[R̃2](
1

n
µ
2
Z
+

1

n
ω
2
Z
) + (E[R̃])2(

n→ 1

n
µ
2
z
).

We next compute for C2:

C2 = E




1

n4




n∑

j=1

n∑

k=1

R̃kZ̃j




2


 =
1

n4
E




n∑

k=1

n∑

k→=1

n∑

j=1

n∑

j→=1

R̃kR̃k→Z̃jZ̃j→



 .

We can decompose the quadruple sum by whether the indices are equal or not. There are four
index-pattern types:

• When k = k
↑ and j = j

↑: there are n
2 such terms, each term is E[R̃2

Z̃
2] = (µ2

Z
+ ω

2
Z
)E[R̃2].

Total contribution to C2 is

T1 = n
2(µ2

Z
+ ω

2
Z
)E[R̃2].

• When k = k
↑ and j ↑= j

↑: there are n
2(n → 1) such terms. For any fixed k and distinct j, j↑,

E[R̃2
k
Z̃jZ̃j→ ] = E[R̃2

k
]E[Z̃jZ̃j→ ] = µ

2
Z
E[R̃2]. Total contribution to C2 is

T2 = n
2(n→ 1)µ2

Z
E[R̃2].

• When k ↑= k
↑ and j = j

↑: there are n
2(n → 1) such terms. For distinct k, k↑, E[R̃kR̃k→Z̃

2] =
E[R̃kR̃k→ ]E[Z̃2] = (µ2

Z
+ ω

2
Z
)(E[R̃])2. Total contribution to C2 is

T3 = n
2(n→ 1)(µ2

Z
+ ω

2
Z
)(E[R̃])2.

• When k ↑= k
↑ and j ↑= j

↑: there are n
2(n → 1)2 such terms. For all indices different,

E[R̃kR̃k→Z̃jZ̃j→ ] = µ
2
Z
(E[R̃])2. Total contribution to C2 is

T4 = n
2(n→ 1)2µ2

Z
(E[R̃])2.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Therefore, we find

C2 =
1

n4
(T1 + T2 + T3 + T4)

=
1

n4


n
2(µ2

Z
+ ω

2
Z
)E[R̃2] + n

2(n→ 1)µ2
Z
E[R̃2]

+ n
2(n→ 1)(µ2

Z
+ ω

2
Z
)(E[R̃])2 + n

2(n→ 1)2µ2
Z
(E[R̃])2



= E[R̃2]


µ
2
Z

n
+

ω
2
Z

n2


+ (E[R̃])2


n→ 1

n
µ
2
Z
+

n→ 1

n2
ω
2
Z


.

We next compute for C3:

C3 = E



 2

n3




n∑

j=1

R̃jZ̃j








n∑

j→=1

n∑

k=1

R̃kZ̃j→







 =
2

n3
E
 n∑

j=1

n∑

j→=1

n∑

k=1

R̃jZ̃jR̃kZ̃j→


.

We can decompose the triplet sum by whether the indies are equal or not. There are five index-
pattern types:

• When j = k = j
↑: there are n such terms. For each j, E[R̃2

j
Z̃

2
j
] = E[R̃2

j
]E[Z̃2

j
] = (µ2

Z
+

ω
2
Z
)E[R̃2]. Total contribution:

T1 = n(µ2
Z
+ ω

2
Z
)E[R̃2].

• When j = k ↑= j
↑: there are n(n → 1) such terms. For each j and j

↑ ↑= j, E[R̃2
j
Z̃jZ̃j→ ] =

E[R̃2
j
]E[Z̃jZ̃j→ ] = E[R̃2]E[Z̃j ]E[Z̃j→ ] = E[R̃2]µ2

Z
. Total contribution is

T2 = n(n→ 1)E[R̃2]µ2
Z
.

• When j = j
↑ ↑= k: there are n(n → 1) such terms. For each j and k ↑= j, E[R̃jZ̃

2
j
R̃k] =

E[R̃jR̃k]E[Z̃2
j
] = (µ2

Z
+ ω

2
Z
)(E[R̃])2. Total contribution is

T3 = n(n→ 1)(µ2
Z
+ ω

2
Z
)(E[R̃])2.

• When k = j
↑ ↑= j: there are n(n → 1) such terms. For each j and k ↑= j, E[R̃jZ̃jR̃kZ̃k] =

E[R̃jR̃k]E[Z̃jZ̃k] = µ
2
Z
(E[R̃])2. Total contribution is

T4 = n(n→ 1)µ2
Z
(E[R̃])2.

• When j, j
↑
, k are all distinct: there are n(n → 1)(n → 2) such terms. For each triple of distinct

indices, E[R̃jZ̃jR̃kZ̃j→ ] = µ
2
Z
(E[R̃])2. Total contribution is

T5 = n(n→ 1)(n→ 2)µ2
Z
(E[R̃])2.

Therefore, we find

C3 =
2

n3
(T1 + T2 + T3 + T4 + T5)

=
2

n3


n(µ2

Z
+ ω

2
Z
)E[R̃2] + n(n→ 1)E[R̃2]µ2

Z

+ n(n→ 1)(µ2
Z
+ ω

2
Z
)

E[R̃]

2
+ n(n→ 1)µ2

Z


E[R̃]

2

+ n(n→ 1)(n→ 2)µ2
Z


E[R̃]

2


= E[R̃2]


2

n
µ
2
Z
+

2

n2
ω
2
Z


+ (E[R̃])2


2n→ 2

n
µ
2
Z
+

2n→ 2)

n2
ω
2
Z


.
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Group terms with E[R̃2] and (E[R̃])2 coefficients:

C1 + C2 → C3 = E[R̃2]


1

n
µ
2
Z
+

1

n
ω
2
Z


+


µ
2
Z

n
+

ω
2
Z

n2


→


2

n
µ
2
Z
+

2

n2
ω
2
Z



+ (E[R̃])2

n→ 1

n
µ
2
Z
+


n→ 1

n
µ
2
Z
+

n→ 1

n2
ω
2
Z


→

2n→ 2

n
µ
2
Z
+

2n→ 2

n2
ω
2
Z


.

We simplify each bracket to obtain:

Var(G̃q) = C1 + C2 → C3 =
n→ 1

n2
ω
2
Z


E[R̃2]→ (E[R̃])2


=

n→ 1

n2
ω
2
Z
ω
2
R
.

For a given prompt, R̃ takes 1 with probability p and →1 with probability 1 → p, leading to its
variance of 4p(1→ p). We obtain the final variance of the per-prompt gradient estimator:

Var(G̃q) =
ω
2
Z
(n→ 1)

n2
· 4p(1→ p).

This completes the proof.

Proof of Proposition 4.3. We recall the expression of G̃q:

G̃q =
1

n

n∑

j=1



R̃j →
1

n→ 1

n∑

k=1
k ↓=j

R̃k



 Z̃j .

The expectation of G̃q is:

E[G̃q] = E




1

n

n∑

j=1



R̃j →
1

n→ 1

n∑

k=1
k ↓=j

R̃k



 Z̃j





= E




1

n

n∑

j=1

R̃jZ̃j →
1

n(n→ 1)

n∑

j=1

n∑

k=1
k ↓=j

R̃kZ̃j





=
1

n

n∑

j=1

E[R̃jZ̃j ]→
1

n(n→ 1)

n∑

j=1

n∑

k=1
k ↓=j

E[R̃kZ̃j ]

= E[R̃Z̃]→ E[R̃Z̃] (by Assumption 4.1(i))

= 0.

The variance of G̃q is:
Var(G̃q)

= E[G̃2
q
]→ (E[G̃q])

2 = E[G̃2
q
]→ 0 = E[G̃2

q
]

= E








1

n

n∑

j=1

R̃jZ̃j →
1

n(n→ 1)

n∑

j=1

n∑

k=1
k ↓=j

R̃kZ̃j





2



= E




1

n2




n∑

j=1

R̃jZ̃j




2

+
1

n2(n→ 1)2




n∑

j=1

n∑

k=1
k ↓=j

R̃kZ̃j





2

→ 2

n2(n→ 1)




n∑

j=1

R̃jZ̃j








n∑

j=1

n∑

k=1
k ↓=j

R̃kZ̃j









= E




1

n2




n∑

j=1

R̃jZ̃j




2




︸ ︷︷ ︸
↭C1

+E




1

n2(n→ 1)2




n∑

j=1

n∑

k=1
k ↓=j

R̃kZ̃j





2



︸ ︷︷ ︸
↭C2

→E




2

n2(n→ 1)




n∑

j=1

R̃jZ̃j








n∑

j=1

n∑

k=1
k ↓=j

R̃kZ̃j









︸ ︷︷ ︸
↭C3

.
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The first term C1 is already computed in the proof of Proposition 4.2, and we have:

C1 = E[R̃2](
1

n
µ
2
Z
+

1

n
ω
2
Z
) + (E[R̃])2(

n→ 1

n
µ
2
z
).

Next, we consider the term C2:

C2 = E




1

n2(n→ 1)2




n∑

j=1

n∑

k=1
k ↓=j

R̃kZ̃j





2



= E




1

n2(n→ 1)2








n∑

j=1

n∑

k=1

R̃kZ̃j



→




n∑

j=1

R̃jZ̃j








2




=
1

n2(n→ 1)2


E








n∑

j=1

n∑

k=1

R̃kZ̃j




2


→ 2E








n∑

j=1

n∑

k=1

R̃kZ̃j








n∑

j→=1

R̃j→Z̃j→







+ E








n∑

j=1

R̃jZ̃j




2





.

We can utilize the computation from the proof of Proposition 4.2 to have:

E




1

n4




n∑

j=1

n∑

k=1

R̃kZ̃j




2


 = E[R̃2]


µ
2
Z

n
+

ω
2
Z

n2


+ (E[R̃])2


n→ 1

n
µ
2
Z
+

n→ 1

n2
ω
2
Z


,

E



 2

n3




n∑

j=1

R̃jZ̃j








n∑

j→=1

n∑

k=1

R̃kZ̃j→







 = E[R̃2]


2

n
µ
2
Z
+

2

n2
ω
2
Z


+ (E[R̃])2


2n→ 2

n
µ
2
Z
+

2n→ 2

n2
ω
2
Z


,

E




1

n2




n∑

j=1

R̃jZ̃j




2


 = E[R̃2]


1

n
µ
2
Z
+

1

n
ω
2
Z


+ (E[R̃])2


n→ 1

n
µ
2
Z


.

Therefore,

C2 = E[R̃2]


n

(n→ 1)2
µ
2
Z
+

1

(n→ 1)2
ω
2
Z
→


2

(n→ 1)2
µ
2
Z
+

2

n(n→ 1)2
ω
2
Z


+

1

n(n→ 1)2
µ
2
Z
+

1

n(n→ 1)2
ω
2
Z



+ (E[R̃])2


n

(n→ 1)
µ
2
Z
+

1

(n→ 1)
ω
2
Z
→


2

n→ 1
µ
2
Z
+

2

n(n→ 1)
ω
2
Z


+

1

n(n→ 1)
µ
2
Z



= E[R̃2]


n
2 → 2n+ 1

n(n→ 1)2
µ
2
Z
+

n→ 1

n(n→ 1)2
ω
2
Z


+ (E[R̃])2


n
2 → 2n+ 1

n(n→ 1)
µ
2
Z
+

n→ 2

n(n→ 1)
ω
2
Z



= E[R̃2]


1

n
µ
2
Z
+

1

n(n→ 1)
ω
2
Z


+ (E[R̃])2


n→ 1

n
µ
2
Z
+

n→ 2

n(n→ 1)
ω
2
Z


.

We compute C3 as follows:

C3 = E




2

n2(n→ 1)




n∑

j=1

R̃jZ̃j








n∑

j→=1

n∑

k=1
k ↓=j

→

R̃kZ̃j→









= E



 2

n2(n→ 1)




n∑

j=1

R̃jZ̃j








n∑

j→=1

n∑

k=1

R̃kZ̃j→ →
n∑

j→=1

R̃j→Z̃j→









=
2

n2(n→ 1)


E








n∑

j=1

R̃jZ̃j








n∑

j→=1

n∑

k=1

R̃kZ̃j→







→ E








n∑

j=1

R̃jZ̃j








n∑

j→=1

R̃j→Z̃j→









.
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We can utilize the computation of n
3

2 C3 and n
2
C1 from the proof of Proposition 4.2 to have:

E








n∑

j=1

R̃jZ̃j








n∑

j→=1

n∑

k=1

R̃kZ̃j→







 = E[R̃2]

n
2
µ
2
Z
+ nω

2
Z


+ (E[R̃])2


n
2(n→ 1)µ2

Z
+ n(n→ 1)ω2

Z


,

E








n∑

j=1

R̃jZ̃j








n∑

j→=1

R̃j→Z̃j→







 = E[R̃2](nµ2
Z
+ nω

2
Z
) + (E[R̃])2(n(n→ 1)µ2

z
).

Plugging these terms to the computation of C3 yields us:

C3 =
2

n2(n→ 1)


E[R̃2]


n
2
µ
2
Z
+ nω

2
Z


+ (E[R̃])2


n
2(n→ 1)µ2

Z
+ n(n→ 1)ω2

Z



→

E[R̃2]


nµ

2
Z
+ nω

2
Z


+ (E[R̃])2


n(n→ 1)µ2

Z




= E[R̃2] · 2(n
2 → n)

n2(n→ 1)
µ
2
Z
+ (E[R̃])2 · 2n(n→ 1)

n2(n→ 1)


(n→ 1)µ2

Z
+ ω

2
Z



= E[R̃2]


2

n
µ
2
Z


+ (E[R̃])2


2n→ 2

n
µ
2
Z
+

2

n
ω
2
Z


.

We have:

Var(G̃q) = C1 + C2 → C3 = E[R̃2]


1

n→ 1
ω
2
Z


+ (E[R̃])2


→ 1

n→ 1
ω
2
Z



=
ω
2
Z

n→ 1
(E[R̃])2 → (E[R̃])2)

=
ω
2
Z

n→ 1
Var(R̃).

For a given prompt, R̃ takes 1 with probability p and →1 with probability 1 → p, leading to its
variance of 4p(1→ p). We obtain the final variance of the per-prompt gradient estimator:

Var(G̃q) =
ω
2
Z

n→ 1
· 4p(1→ p).

This completes the proof.

A.2 PROOFS OF SECTION 5

Proof of Theorem 5.1. For clarity and continuity, we restate problem (6) before proceeding with the
proof:

min
∑

q↔Bt

aq
nq → 1

n2
q

s.t.
∑

q↔Bt

nq = C

L ↓ nq ↓ U ↔q ↗ Bt.

(10)

Let V ({nq}) be the objective function of the above problem. We compute the first and second
derivatives of the objective function with respect to each coordinate nq:

εV

εnq

= →aq
nq → 2

n3
q

.

Since nq ↘ L ↘ 3, so for all q, ωV

ωnq
< 0. Thus, V is decreasing with respect to each nq on the

feasible set.

For the second derivatives:
ε
2
V

εnqεnq→
= 0 ↔q ↑= q

↑
,

ε
2
V

εn2
q

= aq
2nq → 6

n4
q

↘ 0 ↔q (Since nq ↘ L ↘ 3, and aq ↘ 0)
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Therefore, V is convex and decreasing in each nq on the feasible set



n ↗ RB :
∑

q↔Bt

nq = C, L ↓ nq ↓ U ↔q




 .

Hence, the minimizer exists and is unique whenever the feasible set is nonempty BL ↓ C ↓ BU .

The Lagrangian function is

L =
∑

q↔Bt

aq
nq → 1

n2
q

+ ϑ




∑

q↔Bt

nq → C



+
∑

q↔Bt

µq(L→ nq) +
∑

q↔Bt

ϖq(nq → U)

where ϑ ↗ R, and µq, ϖq ↘ 0 are Lagrangian multipliers. The KKT conditions are:

→ aq
nq → 2

n3
q

+ ϑ→ µq + ϖq = 0 ↔q,

µq ↘ 0, ϖq ↘ 0 ↔q,
µq(nq → L) = 0, ϖq(nq → U) = 0 ↔q,
L ↓ nq ↓ U ↔q,
∑

q↔Bt

nq = C.

We consider three cases of nq:

• For each q with L < nq < U , the KKT stationarity condition is

ϑ = aq
nq → 2

n3
q

,

where ϑ is the Lagrange multiplier for the sum constraint. Note that the right-hand side is
decreasing in nq .

For nq = L, the right-hand side is aq L↗2
L3 , and for nq = U , it is aq U↗2

U3 . Therefore, for each q

and any ϑ ↗ (aq
U↗2
U3 , aq

L↗2
L3 ), there is at most one solution nq to aq

nq↗2
n3
q

= ϑ in the interior

(L,U). If ϑ ↘ aq
L↗2
L3 or ϑ ↓ aq

U↗2
U3 , there is no interior solution, and the optimum for nq must

be at a bound.

• If nq = L, then µq ↘ 0 and ϖq = 0. According to the KKT condition, we obtain:

ϑ = aq
L→ 2

L3
+ µq ↘ aq

L→ 2

L3
.

• If nq = U , then µq = 0 and ϖq ↘ 0. According to the KKT condition, we obtain:

ϑ = aq
U → 2

U3
→ ϖq ↓ aq

U → 2

U3
.

For a value of ϑ, for each coordinate, the KKT solution for nq is defined as:

n
ε

q
(ϑ) =






U if ϑ ↓ aq
U↗2
U3 ,

the unique solution to ϑ = aq
nq↗2
n3
q

if aq U↗2
U3 < ϑ < aq

L↗2
L3 ,

L if ϑ ↘ aq
L↗2
L3 .

The coupling constraint
∑

q↔Bt
nq = C is enforced by selecting ϑ such that

S(ϑ) ↭
∑

q↔Bt

n
ε

q
(ϑ) = C.

Each n
ε

q
(ϑ) is non-increasing in ϑ since aq

nq↗2
n3
q

is decreasing and the projection preserves mono-
tonicity. Consequently, S(ϑ) is also non-increasing. In particular:
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• As ϑ ≃ →⇐, nε

q
(ϑ) ≃ U , so S(→⇐) = BU .

• As ϑ ≃ +⇐, nε

q
(ϑ) ≃ L, so S(+⇐) = BL.

Therefore, for any feasible C with BL ↓ C ↓ BU , there exists a unique ϑ
ε such that S(ϑε) = C.

Moreover, because S is non-increasing, finding ϑ
ε can be done by bisection. If C > BU or C <

BL, the problem is infeasible.

Proof of Theorem 5.2. For clarity and continuity, we restate Problem 8 before proceeding with the
proof:

min
∑

q↔Bt

aq
1

nq

s.t.
∑

q↔Bt

nq = C

L ↓ nq ↓ U ↔q ↗ Bt

(11)

Let V ({nq}) be the objective function of the above problem. We compute the first and second
derivatives of the objective function with respect to each coordinate nq:

εV

εnq

= →aq
1

(nq → 1)2

Since nq ↘ L ↘ 3 and aq > 0, we have ωV

ωnq
↓ 0 for all q. Thus, V is decreasing with respect to

each nq on the feasible set.

For the second derivatives:
ε
2
V

εnqεnq→
= 0 ↔q ↑= q

↑
,

ε
2
V

εn2
q

= 2aq
1

(nq → 1)3
> 0 ↔q

Therefore, V is convex and decreasing in each nq on the feasible set



n ↗ RB :
∑

q↔Bt

nq = C, L ↓ nq ↓ U




 .

Hence, the minimizer exists and is unique whenever the feasible set is nonempty (BL ↓ C ↓ BU ).

The Lagrangian function is

L =
∑

q↔Bt

aq
1

nq → 1
+ ϑ




∑

q↔Bt

nq → C



+
∑

q↔Bt

µq(L→ nq) +
∑

q↔Bt

ϖq(nq → U)

where ϑ ↗ R, µq, ϖq ↘ 0. The KKT conditions are:

→ aq
1

(nq → 1)2
+ ϑ→ µq + ϖq = 0 ↔q

µq ↘ 0, ϖq ↘ 0 ↔q
µq(nq → L) = 0, ϖq(nq → U) = 0 ↔q
L ↓ nq ↓ U ↔q
∑

q↔Bt

nq = C.

We consider three cases of nq:

• For each q with L < nq < U , the KKT stationarity condition is

ϑ = aq
1

(nq → 1)2
,
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where ϑ is the Lagrange multiplier for the sum constraint. Note that the right-hand side is
decreasing in nq since nq ↘ L ↘ 3.

For nq = L, the right-hand side is aq 1
(L↗1)2 , and for nq = U , it is aq 1

(U↗1)2 . Therefore, for each

q and any ϑ ↗ (aq
1

(U↗1)2 , aq
1

(L↗1)2 ), there is one solution nq =
√

aq

ϑ
+ 1 to aq

1
(nq↗1)2 = ϑ

in the interior (L,U). If ϑ ↘ aq
1

(L↗1)2 or ϑ ↓ aq
1

(U↗1)2 , there is no interior solution, and the
optimum for nq must be at a bound.

• If nq = L, then µq ↘ 0 and ϖq = 0. According to the KKT condition, we obtain:

ϑ = aq
1

(L→ 1)2
+ µq ↘ aq

1

(L→ 1)2
.

• If nq = U , then µq = 0 and ϖq ↘ 0. According to the KKT condition, we obtain:

ϑ = aq
1

(U → 1)2
→ ϖq ↓ aq

1

(U → 1)2
.

For a value of ϑ, for each coordinate, the KKT solution for nq is defined as:

n
ε

q
(ϑ) =






U if ϑ ↓ aq
1

(U↗1)2 ,√
aq

ϑ
+ 1 if aq 1

(U↗1)2 < ϑ < aq
1

(L↗1)2 ,

L if ϑ ↘ aq
1

(L↗1)2 .

The coupling constraint
∑

q↔Bt
nq = C is enforced by selecting ϑ such that

S(ϑ) :=
∑

q↔Bt

n
ε

q
(ϑ) = C.

Each n
ε

q
(ϑ) is non-increasing in ϑ (since aq 1

(nq↗1)2 is decreasing and the projection preserves mono-
tonicity), so S(ϑ) is also non-increasing. In particular:

• As ϑ ≃ →⇐, nε

q
(ϑ) ≃ U , so S(→⇐) = BU .

• As ϑ ≃ +⇐, nε

q
(ϑ) ≃ L, so S(+⇐) = BL.

Therefore, for any feasible C with BL ↓ C ↓ BU , there exists a unique ϑ such that S(ϑ) = C. If
C > BU or C < BL, the problem is infeasible.

B STATISTICAL TESTS FOR SECOND-ORDER UNCORRELATION

In this section, we provide statistical tests to validate the assumptions in our paper.

B.1 FIRST-ORDER CORRELATION TEST VIA FISHER’S METHOD

For each question q, consider the two random variables R̃q and Z̃q , with n independent observations

{(R̃q,j , Z̃q,j)}nj=1.

Compute per-question Pearson correlation. The sample Pearson correlation for question q is

ϱ̂q =

∑
n

j=1(R̃q,j → ¯̃
Rq)(Z̃q,j → Z̄q)√∑

n

j=1(R̃q,j → R̄q)2
∑

n

j=1(Z̃q,j → Z̄q)2
,

where

R̄q =
1

n

n∑

j=1

R̃q,j , Z̄q =
1

n

n∑

j=1

Z̃q,j .
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Compute per-question p-values. For each question q, we test the null hypothesis
H0,q : ϱq = 0.

The p-value pq is obtained directly from the standard Pearson correlation test.

Combine p-values across questions using Fisher’s method. Let Q be the total number of ques-
tions. Fisher’s method combines the per-question p-values {pq}Qq=1 into a single test statistic:

ς
2
Fisher = →2

Q∑

q=1

ln pq.

Under the global null hypothesis
H0 : ϱq = 0 ↔q,

the statistic ς
2
Fisher follows a chi-squared distribution with 2Q degrees of freedom:

ς
2
Fisher ⇒ ς

2
2Q.

Global p-value and decision rule. The global p-value for testing H0 across all questions is
pglobal = Pr


ς
2
2Q ↘ ς

2
Fisher


.

Given a significance level φ (e.g., φ = 0.05), we make the following decision:

• If pglobal < φ, we reject the global null hypothesis H0, which indicates that at least some of the
correlations ϱq are significantly different from zero across the questions.

• If pglobal ↘ φ, we fail to reject H0, which supports the hypothesis that the correlations ϱq are
zero for all questions at the significance level φ.

We conduct the correlation test described above on a benchmark of Q = 600 questions, each with
n = 16 independent rollouts. For each question q, we compute the Pearson correlation between
R̃q and Z̃q , obtain the corresponding p-value pq , and aggregate across all questions using Fisher’s
method to compute the global p-value pglobal.

We evaluate the policy model ↼ϖt at four checkpoints during training of Qwen2.5-Math-1.5B,
corresponding to 0.0, 0.5, 1.0 epochs. At each checkpoint, we report the resulting pglobal values in
Table 5. Since all global p-values exceed the chosen significance level φ = 0.05, we do not reject the
null hypothesis, which supports our assumption that the correlations ϱq are zero across all questions.

Epoch Global p-value

Z̃j = ↘
H(õj) Z̃j = ⇑H(õj)⇑2

0.0 0.3230 0.7322
0.5 0.3050 0.1108
1.0 0.3050 0.2186

Table 5: Global p-values (pglobal) across training epochs for Qwen2.5-Math-1.5B.

B.2 FIRST-ORDER CORRELATION TEST VIA EDGINGTON’S METHOD

For each question q, let ϱ̂q denote the sample Pearson correlation computed from n independent
rollouts, and let pq be the corresponding two-sided p-value for testing the null hypothesis

H0,q : ϱq = 0.

To aggregate evidence across all Q questions, we apply Edgington’s sum-of-p method.

Sum of p-values. Each per-question pq is treated as a realization of a Uniform(0, 1) variable under
its null hypothesis. Edgington’s statistic is defined by the simple sum

SEd =
Q∑

q=1

pq.
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Null distribution. Under the global null hypothesis

H0 : ϱq = 0 ↔q,

each pq ⇒ Uniform(0, 1), and therefore

SEd ⇒ Irwin–Hall(Q),

with mean and variance
E[SEd] =

Q

2
, Var(SEd) =

Q

12
.

For large Q, SEd is well approximated by a normal distribution:

SEd ⇓ N

Q

2
,
Q

12


.

Global p-value and decision rule. Small values of SEd indicate joint evidence against H0. The
corresponding one-sided global p-value is

pglobal = !


SEd →Q/2√

Q/12


,

where ! denotes the standard normal CDF. Given a significance level φ = 0.5, we reject H0 when
pglobal < φ.

We set up the experiment identically to the Fisher’s method test in Appendix B.1, using the same
benchmark of Q = 600 questions, each with n = 16 independent rollouts. For each checkpoint of
the policy model ↼ϖt , we compute the Edgington statistic and report the global p-value. Since all
global p-values exceed the chosen significance level φ = 0.05, we do not reject the null hypothesis,
which supports our assumption that the correlations ϱq are zero across all questions.

Epoch Global p-value

Z̃j = ↘
H(õj) Z̃j = ⇑H(õj)⇑2

0.0 0.9125 0.7894
0.5 0.8963 0.3964
1.0 0.8912 0.2148

Table 6: Global p-values (pglobal) across training epochs for Qwen2.5-Math-1.5B using Edging-
ton’s method.

B.3 EQUAL VARIANCE TEST VIA LEVENE’S TEST

In the numerical experiments, we have assumed that the variance for Z̃q is constant across different
prompts q. We proceed with a hypothesis test:

H0 : ω2
Zq

= ω
2
Zq→

↔q ↑= q
↑
, H1 : At least one ω

2
Zq

↑= ω
2
Zq→

For each question q, consider the random variable Z̃q with nq independent observations {Z̃q,j}
nq

j=1.

Transform observations for Levene’s test. Let Yq,j denote the absolute deviation from the per-
question median:

Yq,j =
∣∣Z̃q,j → median(Z̃q,1, . . . , Z̃q,nq )

∣∣.

Compute group means of transformed observations. The mean of the transformed observations
for question q is

Ȳq =
1

nq

nq∑

j=1

Yq,j ,

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

and the overall mean across all questions is

Ȳ =
1

N

Q∑

q=1

nq∑

j=1

Yq,j , N =
Q∑

q=1

nq.

Compute Levene’s test statistic. The test statistic is given by

W =
(N →Q)

∑
Q

q=1 nq(Ȳq → Ȳ )2

(Q→ 1)
∑

Q

q=1

∑nq

j=1(Yq,j → Ȳq)2
.

Under the null hypothesis that the variances are equal across questions,

H0 : ω2
Zq

= ω
2
Zq→

↔q ↑= q
↑
,

the statistic W approximately follows an F -distribution with Q→ 1 and N →Q degrees of freedom
W ⇒ FQ↗1,N↗Q.

Compute p-value and decision rule. The p-value for testing H0 is

pLevene = Pr(FQ↗1,N↗Q ↘ W ).

Given a significance level φ (e.g., φ = 0.05), we make the following decision:

• If pLevene < φ, we reject H0, indicating that the variances of Z̃q differ across questions.
• If pLevene ↘ φ, we fail to reject H0, the hypothesis that the variances are equal across all ques-

tions, at the significance level φ.

We conduct the variance homogeneity test described above on a benchmark of Q = 600 questions,
each with n = 16 independent rollouts. We perform Levene’s test across all questions to assess
the equality of variances. We evaluate the policy model ↼ϖt at four checkpoints during training of
Qwen2.5-Math-1.5B, corresponding to 0.0, 0.5, 1.0 epochs. At each checkpoint, we report the
resulting global p-values pLevene in Table 7. Since all pLevene exceed the chosen significance level
φ = 0.05, we can not reject the null hypothesis, which supports our assumption that the variances
ω
2
Zq

are equal across all questions.

Epoch Global p-value

Z̃j = ↘
H(õj) Z̃j = ⇑H(õj)⇑2

0.0 0.5019 0.2705
0.5 0.4132 0.4785
1.0 0.3847 0.3847

Table 7: pLevene from Levene’s test across training epochs for Qwen2.5-Math-1.5B, assessing
variance homogeneity of Z̃q .

B.4 EQUAL VARIANCE TEST VIA O’BRIEN’S TEST

In the numerical experiments, we have assumed that the variance for Z̃q is constant across different
prompts q. We proceed with a hypothesis test:

H0 : ω2
Zq

= ω
2
Zq→

↔q ↑= q
↑
, H1 : At least one ω

2
Zq

↑= ω
2
Zq→

For each question q, consider the random variable Z̃q with nq independent observations {Z̃q,j}
nq

j=1.

Transform observations for O’Brien’s test. Let Yq,j denote O’Brien’s transformation of the ob-
servations:

Yq,j =
(nq → 1.5)nq(Z̃q,j → ¯̃

Zq)2 → 0.5s2
q
(nq → 1)

(nq → 1)(nq → 2)
,
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where ¯̃
Zq is the sample mean for question q, and s

2
q

is the unbiased sample variance for question q.

Compute group means of transformed observations. The mean of the transformed observations
for question q is

Ȳq =
1

nq

nq∑

j=1

Yq,j ,

and the overall mean across all questions is

Ȳ =
1

N

Q∑

q=1

nq∑

j=1

Yq,j , N =
Q∑

q=1

nq.

Compute O’Brien’s test statistic. The test statistic is given by

WOB =
(N →Q)

∑
Q

q=1 nq(Ȳq → Ȳ )2

(Q→ 1)
∑

Q

q=1

∑nq

j=1(Yq,j → Ȳq)2
.

Under the null hypothesis that the variances are equal across questions,

H0 : ω2
Zq

= ω
2
Zq→

↔q ↑= q
↑
,

the statistic WOB approximately follows an F -distribution with Q→1 and N→Q degrees of freedom
WOB ⇒ FQ↗1,N↗Q.

Compute p-value and decision rule. The p-value for testing H0 is

pOB = Pr(FQ↗1,N↗Q ↘ WOB).

Given a significance level φ (e.g., φ = 0.05), we make the following decision:

• If pOB < φ, we reject H0, indicating that the variances of Z̃q differ across questions.

• If pOB ↘ φ, we fail to reject H0, the hypothesis that the variances are equal across all questions,
at the significance level φ.

We conduct the variance homogeneity test described above on a benchmark of Q = 600 questions,
each with n = 16 independent rollouts. We perform O’Brien’s test across all questions to assess
the equality of variances. We evaluate the policy model ↼ϖt at three checkpoints during training
of Qwen2.5-Math-1.5B, corresponding to 0.0, 0.5, 1.0 epochs. At each checkpoint, we report
the resulting global p-values pOB in Table 8. Since all pOB exceed the chosen significance level
φ = 0.05, we cannot reject the null hypothesis, which supports our assumption that the variances
ω
2
Zq

are equal across all questions.

Epoch Global p-value

Z̃j = ↘
H(õj) Z̃j = ⇑H(õj)⇑2

0.0 0.1612 0.3009
0.5 0.1215 0.2563
1.0 0.1229 0.2420

Table 8: pOB from O’Brien’s test across training epochs for Qwen2.5-Math-1.5B, assessing
variance homogeneity of Z̃q .

C ADDITIONAL INFORMATION ON NUMERICAL EXPERIMENTS

Hyperparameters. We curate a list of important training hyperparameters for our experiment in
Table 9.
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Table 9: Hyperparameter configuration.

Category Hyperparameter Value / Setting

Optimizer Optimizer AdamW
Learning rate 1⇔ 10↗6

Warm-up 20 rollout steps
rollout Prompt batch size 512

Responses per prompt 6/8/Dynamic
Training Mini-batch size 512

Max generation length 10 240 tokens
Temperature 1.0

C.1 ADDITIONAL INFORMATION ON ABLATION STUDIES

Inverse-accuracy allocation. We allocate more rollout budget to prompts with lower empirical
accuracy. Concretely, letting acci denote the running accuracy estimate for prompt i, we set target
weights wi ↖ (1→ acci + ↽) and normalize to meet the global budget and per-prompt bounds.

Inverse-variance allocation. We allocate more rollout budget to prompts whose answers exhibit
lower variance. Letting ω

2
i

be the (running) answer variance estimate, we set wi ↖ 1/(ω2
i
+ ↽) with

the same normalization.

Both heuristics are implemented via a continuously relaxed, constrained optimization that enforces
the total-budget and box constraints; we solve it with an online solver and then map fractional
solutions to integers using the rounding heuristic.

Figure 3: Comparison of optimal rollout allocations produced by different heuristics versus our
proposed variance-aware allocation strategy. The figure plots the optimal number of rollouts n

ε

i

against prompt difficulty pi, highlighting how our method allocates budget differently from inverse-
accuracy and inverse-variance baselines.

C.2 PROMPT TEMPLATE.

During training, we only use one prompt template for every prompt in the dataset. There are two
prompt templates, one for mathematical reasoning and one for tool-augmented reasoning.
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Figure 4: Prompt template for mathematical reasoning

Solve the following math problem step by step. The last line of your
response should be of the form Answer: $Answer (without quotes)
where $Answer is the answer to the problem. Do not wrap $Answer with
\boxed{}.

current question: {{question}}

Below are two examples for format reference.
Example question 1: Solve for x: 3x - 5 = 16.

Response:
Add 5 to both sides: 3x = 21.
Divide both sides by 3: x = 7.
Answer: 7

Solve the current question. Remember to put your answer on its own line
after "Answer:".

Figure 5: Prompt template for tool augmented reasoning

In this environment you have access to a set of tools you can use to
assist with the user query.

You may perform multiple rounds of function calls.

In each round, you can call one or more functions.

Here are available functions in JSONSchema format:
\n‘‘‘json\n{func_schemas}\n‘‘‘

In your response, you need to first think about the reasoning process in
the mind and then conduct function calling to get the information or
perform the actions if needed. \

The reasoning process and function calling are enclosed within <think>
</think> and <tool_call> </tool_call> tags. \

The results of the function calls will be given back to you after
execution, \

and you can continue to call functions until you get the final answer
for the user’s question. \

Finally, if you have got the answer, enclose it within \\boxed{{}} with
latex format and do not continue to call functions, \

i.e., <think> Based on the response from the function call, I get the
weather information. </think> The weather in Beijing on 2025-04-01
is \\[ \\boxed{{20C}} \\].

For each function call, return a json object with function name and
arguments within <tool_call></tool_call> XML tags:

<tool_call>
{{"name": <function-name>, "arguments": <args-json-object>}}
</tool_call>
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D ALGORITHMS

The algorithm capturing the complete flow the posterior update for the Gaussian Process is provided
in Algorithm 1.

Algorithm 1 Recursive GP Posterior Update

Require: Mini-batch Bt; rollout allocation {nq}Bt
q=1; prior mean mt(D) ↗ RQ, kernel matrix ” ↗

RQ≃Q;
1: for each q ↗ Bt do
2: # Run nq rollouts and observe outcomes R̃j ↗ {→1, 1}
3: R̄q ↙ 1

nq

∑nq

j=1 R̃j

4: ĝq ↙ sigmoid↗1

clip


R̄q+1

2 , ↽, 1→ ↽



5: end for
6: g

observe
t

↙ (ĝq)q↔Bt

7: Partition mt and ” according to Bt and Bc

t

8: m
ε

t,Bc
t
↙ mt,Bc

t
+ ”Bc

tBt”
↗1
BtBt

(gobserve
t

→mt,Bt)

9: ”ε ↙ ”Bc
tBc

t
→ ”Bc

tBt”
↗1
BtBt

”BtBc
t

10: for q = 1 to Q do
11: if q ↗ Bt then mt+1(xq) ↙ ĝq else mt+1(xq) ↙ m

ε

t,Bc
t
(xq) end if

12: end for
13: p̂t+1 = sigmoid(mt+1(D))
14: return {p̂t+1}, mt+1

Algorithm 2 presents our heuristic rounding procedure, which maps a continuous solution to a dis-
crete one while ensuring that the budget constraints remain satisfied.

Algorithm 2 Heuristic rounding for integer rollout allocation

Require: Solution {nε

q
}, total budget C, bounds {L,U}, objective functions fq(·) for each q

1: For each q, set n̂q ↙ ∝nε

q
′

2: Crem ↙ C →
∑

q↔Bt
n̂q

3: for each q with n̂q < U do
4: Compute incentive: #q ↙ fq(n̂q)→ fq(n̂q + 1)
5: end for
6: while Crem > 0 do
7: Select qε = argmaxq:n̂q<U #q

8: Set n̂qω ↙ n̂qω + 1
9: Recompute #qω ↙ fqω(n̂qω)→ fqω(n̂qω + 1)

10: Crem ↙ Crem → 1
11: end while
12: return Integer allocation {n̂q} with

∑
q↔Bt

n̂q = C and L ↓ n̂q ↓ U for all q

E EXTENSION TO CONTINUOUS REWARDS

This section details the necessary adaptations to our predictive rollout allocation strategy for the case
where the reward R(õj) is a real-valued random variable. All definitions, assumptions, and notation
follow the main text unless otherwise stated.

E.1 GRADIENT VARIANCE FOR CONTINUOUS REWARDS

We first state the analogues of our variance propositions for the continuous reward setting. The
proofs are intermediate results from proofs for binary case in Appendix A.
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Proposition E.1 (Dr. GRPO gradient variance, continuous reward). Let R(õj) = R̃ be a real-

valued random variable with variance Var(R̃). If Assumption 4.1 holds and Var(Z̃) = ω
2
Z

, then the

variance of the per-prompt projected Dr. GRPO gradient estimator with n rollouts is

Var(G̃) =
(n→ 1)ω2

Z

n2
Var(R̃).

Proposition E.2 (RLOO gradient variance, continuous reward). Let R(õj) = R̃ be a real-valued

random variable with variance Var(R̃). If Assumption 4.1 holds and Var(Z̃) = ω
2
Z

, then the

variance of the per-prompt projected RLOO gradient estimator with n rollouts is

Var(G̃) =
ω
2
Z

n→ 1
Var(R̃).

E.2 GAUSSIAN PROCESS PREDICTION OF REWARD VARIANCE

For continuous rewards, the per-prompt gradient variance depends on Var(R̃q), which is not directly
observable prior to rollout. To predict this quantity, we replace the GP model for success probability
with a GP model for reward variance. Specifically, for each prompt q, we model the reward variance
as vq,t = softplus(gt(xq)) = log(1 + exp(gt(xq))), where gt is a latent GP as in the main text.
After observing rewards {R̃q,j}

nq

j=1, we compute the sample variance ŝ
2
q

and set the observation for
the latent variable as ĝq,t = log(exp(ŝ2

q
) → 1). The GP posterior update and recursive prediction

steps proceed identically, replacing the sigmoid link with the softplus link.

E.3 BUDGET ALLOCATION OPTIMIZATION

Given predicted reward variances V̂ar(R̃q), we define aq := ω
2
Zq
V̂ar(R̃q). The continuous relax-

ation of the rollout allocation problem for Dr. GRPO becomes

min

{∑
q↔Bt

aq
nq → 1

n2
q

:
∑

q↔Bt

nq = C, L ↓ nq ↓ U, nq ↗ R ↔q
}
,

and for RLOO,

min

{∑
q↔Bt

aq
1

nq → 1
:
∑

q↔Bt

nq = C, L ↓ nq ↓ U, nq ↗ R ↔q
}
.

The optimal solutions are given by Theorems 5.1 and 5.2 in the main text, now with the updated
definition of aq . The rounding procedure described in Appendix D applies without modification.

F EMPIRICAL VALIDATION OF IMPORTANCE RATIOS IN PARTIALLY
OFF-POLICY TRAINING

In the off-policy regime, importance ratios rj,ϱ (⇀) rarely deviate from 1. This indicates that even
partially off-policy training methods produce updates that are close to on-policy, a phenomenon
particularly pronounced in LLM post-training. Consequently, Assumption 3.1 is unlikely to be
restrictive in our setting.

To support this assumption empirically, we measure importance ratios on the response tokens
of off-policy samples from our training runs. Prompt and padding tokens are excluded from
this analysis. Our evaluation uses 2,560 prompts sampled across different stages of training for
Qwen2.5-Math-1.5B, with 4 rollouts per prompt. We then collect the importance ratios for all
generated tokens and compute the fraction that falls within the interval [1 → φ, 1 + φ] for several
values of φ. The results are summarized in Table 10.

These results confirm that the vast majority of importance ratios remain extremely close to 1, pro-
viding strong empirical justification for the approximation rj,ϱ (⇀) ⇓ 1 in our analysis.
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φ Percentage in [1→ φ, 1 + φ]
5e-02 97.85%
5e-03 82.46%
5e-04 71.51%

Table 10: Fraction of response tokens whose importance ratios fall within [1→φ, 1+φ] for various
choices of φ.

G TRAINING EVOLUTION COMPARISON

In this section, we assess the robustness and stability of our method by retraining
Qwen2.5-Math-1.5B using GRPO, RLOO, and their VIP-augmented counterparts (GRPO+VIP,
RLOO+VIP) across five random seeds. Figures 6 and 7 report the mean and standard deviation for
multiple performance metrics (best@32, maj@32, mean@32).

To ensure that all training trajectories are directly comparable, every model is trained on the same
dataset under identical optimization settings: the same fixed ordering of 17k training prompts,
one epoch of training, a batch size of 512, mini-batch size of 64, and rollout budget per batch of 512
* 8. As a result, each gradient step corresponds to the same amount of data and computation across
all methods.

Across all seeds and evaluation checkpoints, we observe consistent and pronounced improvements
from using VIP:

(i) Faster early-stage learning. VIP yields substantial gains in the early phase of training. For
example, on AIME2024 mean@32, RLOO+VIP reaches an accuracy of 0.0316 by step 10, whereas
RLOO reaches only 0.0056—a 6⇔ increase. Similar trends appear in both best@32 and maj@32

metrics across AIME2024 and AIME2025.

(ii) Steeper and more reliable improvement per gradient step. VIP consistently increases the
slope of the learning curve. Its trajectories rise smoothly and monotonically, while the baselines
(particularly GRPO on AIME2025 best@32) often progress slowly or temporarily plateau between
steps 10–20. This shows that variance-aware allocation accelerates the effective learning rate with-
out introducing instability.

(iii) Increased training stability. VIP reduces variance across seeds and produces smoother learn-
ing curves, reflecting more stable gradient updates. This aligns with the goal of variance-informed
allocation: reducing gradient noise directly translates into more predictable and reliable optimization
dynamics.

Together, these results demonstrate that VIP improves both the speed and the stability of GRPO
and RLOO training, leading to faster convergence and consistently higher performance throughout
the entire training trajectory.
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(a) AIME 2024, best@32 (b) AIME 2024, maj@32 (c) AIME 2024, mean

(d) AIME 2025, best@32 (e) AIME 2025, maj@32 (f) AIME 2025, mean

Figure 6: GRPO vs. GRPO+VIP on AIME 2024 and 2025 across different accuracy metrics.

(a) AIME 2024, best@32 (b) AIME 2024, maj@32 (c) AIME 2024, mean

(d) AIME 2025, best@32 (e) AIME 2025, maj@32 (f) AIME 2025, mean

Figure 7: RLOO vs. RLOO+VIP on AIME 2024 and 2025 across different accuracy metrics.
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