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A PROOFS OF TECHNICAL RESULTS

A.1 PROOFS OF SECTION4]

Proof of Proposition We recall the expression of éq:

G, =

S|

SRy -+ S RZ.
j=1 k=1

The expectation of G, is:

j=1

1 n 5 5 n n 5 5
:E[EZRJ ]_ngz Ry, J]

j=1 j=1k=1
1 o 1 o

= - Z]E[R] ik n2 Z E[RyZ;]

j=1 j=1k=1
=E[RZ] —E[RZ] =0 (by Assumption [4.1(i)).
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Next we compute each term. We find for C;:

1 . 1 LR
C1=E|— ZRij = —E > R;Z,

SM‘ —

|-

(zn:IE [~j2 ?} + E [RJZJ] E [szk} (independence between j and k)
(

nE {R2Zﬂ +n(n — 1)(E[RZ])2) (identically distributed)

[

e (2] + "~ Yirz)

BIR) (1 + o) + " 2 (EIR))?

1w+ o%) + LR 24d).

H 31—31~3

E

We next compute for C:

2
n

n o 1 n n n n L o
J=1lk=1 k=1k'=1j=1j'=1

We can decompose the quadruple sum by whether the indices are equal or not. There are four
index-pattern types:

L]

When k = k" and j = j': there are n? such terms, each term is E[R?Z?] = (u% + 0%)E[R?].
Total contribution to Cs is

Ty = n?(u% + o3)E[R?).

* When k = k" and j # j": there are n 2(n — 1) such terms. For any fixed k and distinct j, 5/,
E[R ]E[Z Z ;1] = u%E[R?]. Total contribution to C is

Ty = n%(n — 1)u%E[R?].

When k # k" and j = j: there are n?(n — 1) such terms. For distinct k, k', E[Ry Ry Z%] =
E[Ry R/ |E[Z?] = (4% + 0%)(E[R])?. Total contribution to Cs is

T3 = n*(n — 1)(ny + 0%)(E[R))*.

* When k # k' and j # j": there are n?(n — 1)% such terms. For all indices different,
E[Ry Ry Z;Z;| = u%(E[R])2. Total contribution to Cs is

Ty = n(n — 12 (E[R))2.
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Therefore, we find
1
Cy = F(Tl + T+ T3+ Ty)
1 ~ .
= — [n?(k} + oHEIRY) + 0 (n — DuE[R?)
+n2(n = 1)(1 + o3) (BIR])? + n*(n — 1) (E[R])?]

~ 2 ol ~ n—1 n—1
= E[R?] (’;Z + ng) + (E[R])? ( ny + n20§> .

We next compute for C's:
9 noo n noo 9 n n no
=8| 2 (Y az) [z )| = 26N S Rz k)
j=1 j'=1k=1 j=1j'=1k=1

We can decompose the triplet sum by whether the indies are equal or not. There are five index-
pattern types:

« When j = k = j’: there are n such terms. For each j, E[R2Z?] = E[R%|E[Z?] = (u} +
0%)E[R?]. Total contribution:
Ty = n(id + 03)E[R?).

e When j = k # j': there are n(n — 1) such terms. For each j and j' # j, E[?Z—ZJ—/] =
E[R2|E(Z; Z;] = E[R?|E|Z;|E[Z;/] = E[R?]u%. Total contribution is
Ty = n(n — 1)E[R?4%,.
* When j = j' # k: there are n(n — 1) such terms. For each j and k # j, E[R,; f}?k] =
E[R;Ry|E[Z?] = (1% + 0%)(E[R])?. Total contribution is
Ty = n(n — 1)(uZ + 03 (E[R])*.
* When k = j' # j: there are n(n — 1) such terms. For each j and k # j, E[R;Z; Ry Zy] =
E[R;R,|E[Z; Zk] = u%(E[R])?. Total contribution is
Ty = n(n — 1) (B[R]

* When j, j, k are all distinct: there are n(n — 1)(n — 2) such terms. For each triple of distinct
indices, E[R; Z; R Z;/] = pn%(E[R])?. Total contribution is

Ty = n(n — 1)(n — 2)3 (ER]).

Therefore, we find

2
C3=$(T1+T2+T3+T4+T5)

= | + o R)E[R] + n(n — DE[R?|u

+n(n—1)(u% + o%) (EIR

2

n

)
= 1)(n - 2% (E[R])
= E[R?] ( us + éa%) + (E[R])? (
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Group terms with E[R?] and (E[R])? coefficients:

Lo 1, 1y 0% 2 5 2 o

(Mz " n"Z> " (n ) T \ntr ez

n—1, n—1, n—-1, n—-2 5, 2n-2 ,

- Mz+( e A L Mzt 507 |

We simplify each bracket to obtain:
~ n—1 n—1 ,

Var(Gy) = Oy +Co = Cy = “—=0% (E[RQ] - (E[R])Z) = obah.

Ci1+0Cy—C5 = E[R2]

+ (E[R])?

For a given prompt, R takes 1 with probability p and —1 with probability 1 — p, leading to its
variance of 4p(1 — p). We obtain the final variance of the per-prompt gradient estimator:

Var(Gy) = % ~4p(1 - p).

This completes the proof. O

Proof of Proposition We recall the expression of G

7j=1 j=1
1 _n o 1 n o
= ElR;Z;] — E|R.Z
nz [] ]] n(n —1) 4 Z [ kJ]
j=1 Jj=1k=1
k#j
= E[RZ] — E[RZ] (by Assumption [4.1(7))
=0.
The variance of éq is:
Var(G,)
= E[G}] - (E[G4)* = E[G}] - 0 = E[G7]
- 2
I ED Y PR o oF ¥/
B né"7"7 nn-1)4 e
j=1 j=1k=1
L k#j
- 2 2
1 no 1 non. 9 no n.o.n.
=E| 5 RiZj | + 55 | 2D BZi | — o | B2 | | DD B,
n? |\ 4 n?(n —1)2 | 4 n?(n—1) \ 4
j=1 j=1k=1 j=1 j=1k=1
L k#j k#j
- 2 2
BN 5oy P20 [ ) IS S b o) o) 10 [N ) I b o SR B D gl gy %2
o n2 \ 4 777 n2(n —1)2 ki n2(n—1) | 4 7 c ki
7j=1 Jj=1k=1 j=1 j=1k=1
! = (=
Evel) 20, 20,
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The first term C} is already computed in the proof of Proposition and we have:

Cy = E[R?)(

Next, we consider the term Cy:

Cy=E

1

2

2

1

=2 -2 EIR
L+ 1oz

D*(

n—1

n

().

I [ - [T n—1 n—1
Bl (S| | =i (424 %)+ mip (M ).
j=1k=1
2 [ 5 - = 5 5 o (2 2 o (2n—2
E|= > R;Z > RiZy || =E[RY (n 2+ 202) + (E[R])? ( —p
i j=1 §'=1k=1
1 (&5 - A T ~ o (n—1,
E 2 R;Z; =E[R°]| —puz + —oz | + (E[R]) o Hz )
j=1
Therefore,
C :E[~2] MQ + 1 0_2 o 2 ’u2 + o
’ (n=12"7 " (n-12"7 \(n-12"7 nmn-12"7 n
- 2 2 1
E[R])2 n 2 2 2 2
+ ( [R]) [(n I)MZ + (TL 1) zZ <7’L 1 Z ’I’L(’I’L— l)UZ + TL( _ 1)/”LZ
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=K 21 | 22 [ E 2 2 2 .
R | i + gy | (BIRD? | + =0
We compute Cj5 as follows:
9 noo n noo
Cs=E R;Z; RiZ;
n2(n—1) ; J J) j/z:l 2 J
L k#j’
9 noo n noo noo
B PO RjZJ‘) > ReZy - RJ"ZJ">
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We can utilize the computation of ”7303 and n2C; from the proof of Proposition to have:

Plugging these terms to the computation of C'5 yields us:

2

C3 = ng(n_l){]E[Rz] (n24% +no%) + (B[R))? (n*(n — V% + n(n — 1)02)

~ [BIR?] (n4i% + no) + (BIR))? (n(n — 1)ud) ] }

~ B 2 iy 20 (- i+ o)
— 5] (20 ) + iR (22 + 2o
We have:
Var(Gy) = Cy + Gy — Cy = B[R?] ( . 1o§> + (BR))? ( ila%)
— %4 (B(R)? - (E[R)?)
= n"_% Var(R).

For a given prompt, R takes 1 with probability p and —1 with probability 1 — p, leading to its
variance of 4p(1 — p). We obtain the final variance of the per-prompt gradient estimator:

2
0z

-4p(1 — p).
7 4(l-p)

This completes the proof. O

Var(G,) =

A.2 PROOFS OF SECTION[3]

Proof of Theorem For clarity and continuity, we restate problem (6)) before proceeding with the

proof:

by ato

qEB;

o Stw-c (10)

qEB;

L<n,<U VqeB.
Let V({ny}) be the objective function of the above problem. We compute the first and second
derivatives of the objective function with respect to each coordinate n,:

o _ g2

n3

ong ;

Since ng > L > 3, so for all q 3 d—v < 0. Thus, V is decreasing with respect to each n, on the
q

feasible set.
For the second derivatives:
0*V 0%V 2N, —
A 4 _ q
OngOng 474 8712

6
>0 Vg (Sincen,> L >3,anda, >0)

E[{>.RZ Z S fuZy || = B (020 + n0%) + (ELRD? (n2(n — D + 00— 1)
= =1k=1

E[(D Rz | | D RiZy || =E[RY(np + no%) + (B[R] (n(n — 1)p?).
J=1 j'=1

o%),
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Therefore, V' is convex and decreasing in each n, on the feasible set

neRB:an:C’, L<n,<UVWVq
qEB;

Hence, the minimizer exists and is unique whenever the feasible set is nonempty BL < C < BU.

The Lagrangian function is

L= Zaq +>‘ an +Z/‘q(L_”q)+ZVq(nq_

q€eB: q qEB: qeB;: q€eB;:

where A € R, and pg, v4 > 0 are Lagrangian multipliers. The KKT conditions are:

n

— aq qn +/\ g +vg=0 Vg,
q

Hqg =0, vg=>0 Vg,

te(ng — L) =0, v4(ng—U)=0 Vg,

Lénq SU qu

Z ng = C.

qEB:

We consider three cases of n:

* For each ¢ with L < ngy < U, the KKT stationarity condition is
Ng — 2
3
ny

where A is the Lagrange multiplier for the sum constraint. Note that the right-hand side is
decreasing in 1.

A=ay

?

For ng = L, the right-hand side is a, 252, and for n, = U, it is a,%=?. Therefore, for each ¢

— . . —2 . . .
and any A € (a,%2, ag2=2), there is at most one solution n, to a, "4~ = X in the interior
q

(L,U).IfA > aq LL_?, or A < aq%, there is no interior solution, and the optimum for n, must
be at a bound.

* If n, = L, then p14 > 0 and v, = 0. According to the KKT condition, we obtain:

—2
A= +hg 2

= Q=53 Lg Qq L3

* If n, = U, then iy = 0 and v, > 0. According to the KKT condition, we obtain:

U-2 U-2

A= T S 0

For a value of ), for each coordinate, the KKT solution for n,, is defined as:

U if A < aq U3 ,
n; (X\) = [ the unique solution to A = aq"jf; if aq o< g L32,
—2
L if A >aq L3 .

The coupling constraint ng = C is enforced by selecting A such that

S E D s\ =C.

qEB;

qEB;

2 . . . .
is decreasing and the projection preserves mono-

* . . . . . Ng—
Each n(A) is non-increasing in A since a,~%;

tonicity. Consequently, S(\) is also non-increasing. In particular:

20



Under review as a conference paper at ICLR 2026

* As A — —o0,n;(A) = U,s0 S(—0c0) = BU.
* As A — +o0,n;(A) = L, so S(+00) = BL.

Therefore, for any feasible C with BL < C' < BU, there exists a unique A* such that S(A\*) = C.
Moreover, because .S is non-increasing, finding A* can be done by bisection. If C' > BU or C <

BL, the problem is infeasible. O
Proof of Theorem[5.2] For clarity and continuity, we restate Problem [§| before proceeding with the
proof:
. 1
min Z aqn—q
qEB:
s.t. Z ng =C (1D
qEB:

L<n,<U VqebB

Let V({ny}) be the objective function of the above problem. We compute the first and second
derivatives of the objective function with respect to each coordinate n,:

ov 1

g -

Ing T(ng —1)?
Since ny > L > 3 and a, > 0, we have 5 V < 0 for all g. Thus, V' is decreasing with respect to
each n, on the feasible set.

For the second derivatives:
0’V 02V 1
— =0 V " =2 >0 V
Ongong 17 A CPVE 1

Therefore, V' is convex and decreasing in each n, on the feasible set

nGRB:anzC, L<n,<U
qEB;

Hence, the minimizer exists and is unique whenever the feasible set is nonempty (BL < C' < BU).

The Lagrangian function is

L= Zaq — +>‘ an +Zﬂq(L_nq)+Z’/q(”q

qEB: qEB, qEB, qEB:

where A € R, 4, 74 > 0. The KKT conditions are:

1
—aqm—FA—Mq—FVq:O Vq
q

/’LQZO7 VQZO VQ
fq(ng — L) =0, v4(ng—U) =0 Vq
L<n,<U Vq
an:(}.

qEB;

We consider three cases of n:

* For each ¢ with L < n, < U, the KKT stationarity condition is
1
(”q - 1)27

A =ay
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where A\ is the Lagrange multiplier for the sum constraint. Note that the right-hand side is

decreasing in n, since ny > L > 3.

For n, = L, the right-hand side is aqﬁ, and for n, = U, itis aqﬁ. Therefore, for each
1 1 . . _ /a 1 _

gand any \ € (aqm,aqm), there is one solution n, = /< + 1 to A=)z = A

in the interior (L, U). If A > aqﬁ or A < aqﬁ, there is no interior solution, and the

optimum for 1, must be at a bound.

* If ny = L, then p14 > 0 and v, = 0. According to the KKT condition, we obtain:

A=ay 2+uq2aq(

1
(L-1) L—1)2

* If ng = U, then pg = 0 and v, > 0. According to the KKT condition, we obtain:

1
)\:aqifl/q<aq
U -1)

For a value of A, for each coordinate, the KKT solution for n, is defined as:

U if X < aq piyye
ng(A\) = 4 /51 ifagptr <A< e
L if A > ag 25

The coupling constraint ;s nq = C is enforced by selecting A such that

S(A) = mi(\) =C.

qEB:

. . . . . 1 . . . .
Each n} () is non-increasing in A (since a, T2 18 decreasing and the projection preserves mono-
tonicity), so S(A) is also non-increasing. In particular:

* As A — —o0,n}(A\) = U,s0 S(—00) = BU.

* As A — +o0,n}(A) — L, so S(+00) = BL.

Therefore, for any feasible C with BL < C' < BU, there exists a unique A such that S(\) = C. If
C > BU or C' < BL, the problem is infeasible. O

B STATISTICAL TESTS FOR SECOND-ORDER UNCORRELATION
In this section, we provide statistical tests to validate the assumptions in our paper.

B.1 FIRST-ORDER CORRELATION TEST VIA FISHER’S METHOD
For each question g, consider the two random variables Rq and Zq, with n independent observations
{(Rq,ja Zq’j)}?:r

Compute per-question Pearson correlation. The sample Pearson correlation for question g is
ﬁq _ Z?:}(Rq,j - éq)(zq,j j Zq)
\/Z?:l(RQJ - Rq)2 Z?:1(Zq,j - Zq)2

where

R, =

SEES

n B B 1 n B
ZRq,jv Zg = n ZZq,j~
=1
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Compute per-question p-values. For each question ¢, we test the null hypothesis
H 0,q - Pqg = 0.
The p-value p, is obtained directly from the standard Pearson correlation test.

Combine p-values across questions using Fisher’s method. Let () be the total number of ques-
tions. Fisher’s method combines the per-question p-values {pq}qQ:1 into a single test statistic:

Q
2
XFisher — -2 Z lnp(I'
q=1

Under the global null hypothesis
Hoy:py =0 Vg,

the statistic X, follows a chi-squared distribution with 2Q) degrees of freedom:
X]%isher ~ X%Q'
Global p-value and decision rule. The global p-value for testing H across all questions is
Patobal = P (X30 = Xfisher) -
Given a significance level a (e.g., « = 0.05), we make the following decision:

* If pgobal < v, we reject the global null hypothesis Hy, which indicates that at least some of the
correlations p, are significantly different from zero across the questions.

* If peiobar = «, we fail to reject Ho, which supports the hypothesis that the correlations p, are
zero for all questions at the significance level a.

We conduct the correlation test described above on a benchmark of () = 600 questions, each with
n = 16 independent rollouts. For each question ¢, we compute the Pearson correlation between
R, and Z,, obtain the corresponding p-value p,, and aggregate across all questions using Fisher’s
method to compute the global p-value pqiopar.

We evaluate the policy model 7y, at four checkpoints during training of Qwen2.5-Math-1.5B,
corresponding to 0.0, 0.5, 1.0 epochs. At each checkpoint, we report the resulting pgioba values in
Table[5] Since all global p-values exceed the chosen significance level o« = 0.05, we do not reject the
null hypothesis, which supports our assumption that the correlations p, are zero across all questions.

Epoch Global p-value
Zy=1TH(6;) Z;=IH(5))l>
0.0 0.3230 0.7322
0.5 0.3050 0.1108
1.0 0.3050 0.2186

Table 5: Global p-values (pgiobal) across training epochs for owen2.5-Math-1.5B.

B.2 FIRST-ORDER CORRELATION TEST VIA EDGINGTON’S METHOD

For each question ¢, let p, denote the sample Pearson correlation computed from 7 independent
rollouts, and let p, be the corresponding two-sided p-value for testing the null hypothesis

H()’q S Pg = 0.
To aggregate evidence across all () questions, we apply Edgington’s sum-of-p method.

Sum of p-values. Each per-question p, is treated as a realization of a Uniform(0, 1) variable under
its null hypothesis. Edgington’s statistic is defined by the simple sum

Q
Ska = chp
g=1
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Null distribution. Under the global null hypothesis
Hy:py,=0 Vg,
each p, ~ Uniform(0, 1), and therefore
Spa ~ Irwin-Hall(Q),

with mean and variance

Q

E[SEd] = 5, Var(SEd) = %

For large (), Sgq is well approximated by a normal distribution:

N QR Q
SEd~N<2, 12)

Global p-value and decision rule. Small values of Sgq indicate joint evidence against Hy. The
corresponding one-sided global p-value is

_ & Sea — Q/2
Pglobal \/W )

where @ denotes the standard normal CDF. Given a significance level a = 0.5, we reject Hy when
Pglobal < a.

We set up the experiment identically to the Fisher’s method test in Appendix [B.T} using the same
benchmark of () = 600 questions, each with n = 16 independent rollouts. For each checkpoint of
the policy model 7g,, we compute the Edgington statistic and report the global p-value. Since all
global p-values exceed the chosen significance level o = 0.05, we do not reject the null hypothesis,
which supports our assumption that the correlations p, are zero across all questions.

Epoch Global p-value
Z;=1TH(3;) Z;=|H())]2
0.0 0.9125 0.7894
0.5 0.8963 0.3964
1.0 0.8912 0.2148

Table 6: Global p-values (pgiobar) across training epochs for gwen2 . 5-Math-1. 5B using Edging-
ton’s method.

B.3 EQUAL VARIANCE TEST VIA LEVENE’S TEST

In the numerical experiments, we have assumed that the variance for Zq is constant across different
prompts g. We proceed with a hypothesis test:

a2 2 / . 2 2
Hy:0z,=07,%q #q, Hy : Atleastone 0, # o7,

For each question g, consider the random variable Zq with n, independent observations {Zq, j };Z 1-

Transform observations for Levene’s test. Let Y, ; denote the absolute deviation from the per-
question median:

Yoj = |Zq; —median(Zy 1, ..., Zgn,)|-

Compute group means of transformed observations. The mean of the transformed observations

for question q is
1
Y, =— Z Yoj
ng

24
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and the overall mean across all questions is
_ 1 Q ng Q
P3N N-Yu
q=1j=1 q=1
Compute Levene’s test statistic. The test statistic is given by

N XL n (Y - Y
(Q - 1) ek it (Yay = Y)*

Under the null hypothesis that the variances are equal across questions,

Hy:o3 =03, Ya#d,

the statistic W approximately follows an F'-distribution with () — 1 and N — () degrees of freedom
W~ Fo1,nv-q-

Compute p-value and decision rule. The p-value for testing Hy is
PLevene = Pr(Fo_1,n-q > W).

Given a significance level a (e.g., « = 0.05), we make the following decision:

* If Prevene < @, wWe reject Hy, indicating that the variances of Zq differ across questions.

o If Prevene > @, we fail to reject Hy, the hypothesis that the variances are equal across all ques-
tions, at the significance level a.

We conduct the variance homogeneity test described above on a benchmark of () = 600 questions,
each with n = 16 independent rollouts. We perform Levene’s test across all questions to assess
the equality of variances. We evaluate the policy model 7, at four checkpoints during training of
Qwen2.5-Math-1. 5B, corresponding to 0.0, 0.5, 1.0 epochs. At each checkpoint, we report the
resulting global p-values prevene in Table [/} Since all ppevene €xceed the chosen significance level
o = 0.05, we can not reject the null hypothesis, which supports our assumption that the variances

2 .
07, are equal across all questions.

Epoch Global p-value
Z;=1TH(5;) Z;=|H(5))l2
0.0 0.5019 0.2705
0.5 0.4132 0.4785
1.0 0.3847 0.3847

Table 7: ppevene from Levene’s test across training epochs for Qwen?2.5-Math-1. 5B, assessing
variance homogeneity of Z,.

B.4 EQUAL VARIANCE TEST VIA O’BRIEN’S TEST

In the numerical experiments, we have assumed that the variance for Zq is constant across different
prompts g. We proceed with a hypothesis test:

52 2 / . 2 2
Hoy:0z,=07,%q #q, Hy : Atleastone 0, # o7,

For each question g, consider the random variable Zq with n, independent observations {Zq_, j };Ill.

Transform observations for O’Brien’s test. Let Y, ; denote O’Brien’s transformation of the ob-
servations:

(ng — 1~5)nq(2q,j -
(ng —1)

Z4)? — 0.552(ny — 1)
Yq,j = (n

¢ —2) ’
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where Zq is the sample mean for question ¢, and 55 is the unbiased sample variance for question q.

Compute group means of transformed observations. The mean of the transformed observations

for question g is
1
Yy=— E :Yq,jv
ng =

and the overall mean across all questions is

Mg

R Q
:NZZY‘M’ N:an.
q=1j=1 q=1

Compute O’Brien’s test statistic. The test statistic is given by

(N-Q) Zqul ng(Yy —Y)?
(Q—1) X% S (Ve — Y2

Under the null hypothesis that the variances are equal across questions,

Wop =

Hy:oy =03, Ya#d,

the statistic Wop approximately follows an F-distribution with @@ — 1 and N — () degrees of freedom
Wos ~ Fg_1,N—Q-

Compute p-value and decision rule. The p-value for testing Hy is

pos = Pr(Fg_1,n—q > Wos).

Given a significance level « (e.g., a = 0.05), we make the following decision:

* If pop < a, we reject Hy, indicating that the variances of Zq differ across questions.

e If pop > «, we fail to reject Hy, the hypothesis that the variances are equal across all questions,
at the significance level a.

We conduct the variance homogeneity test described above on a benchmark of () = 600 questions,
each with n = 16 independent rollouts. We perform O’Brien’s test across all questions to assess
the equality of variances. We evaluate the policy model 7y, at three checkpoints during training
of Qwen2.5-Math-1. 5B, corresponding to 0.0, 0.5, 1.0 epochs. At each checkpoint, we report
the resulting global p-values pop in Table @ Since all pog exceed the chosen significance level
o = 0.05, we cannot reject the null hypothesis, which supports our assumption that the variances

2 .
07, are equal across all questions.

Epoch Global p-value
Z;=1"H(5;) Z;=|H(5;)|l2
0.0 0.1612 0.3009
0.5 0.1215 0.2563
1.0 0.1229 0.2420

Table 8: pop from O’Brien’s test across training epochs for Qwen?2.5-Math-1.5B, assessing
variance homogeneity of Z,.

C ADDITIONAL INFORMATION ON NUMERICAL EXPERIMENTS

Hyperparameters. We curate a list of important training hyperparameters for our experiment in
Table[9]
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Table 9: Hyperparameter configuration.

Category  Hyperparameter Value / Setting
Optimizer Optimizer AdamW
Learning rate 1x10°6
Warm-up 20 rollout steps
rollout Prompt batch size 512
Responses per prompt  6/8/Dynamic
Training Mini-batch size 512
Max generation length 10 240 tokens
Temperature 1.0

C.1 ADDITIONAL INFORMATION ON ABLATION STUDIES

Inverse-accuracy allocation. We allocate more rollout budget to prompts with lower empirical
accuracy. Concretely, letting acc; denote the running accuracy estimate for prompt ¢, we set target
weights w; o« (1 — acc; + €) and normalize to meet the global budget and per-prompt bounds.

Inverse-variance allocation. We allocate more rollout budget to prompts whose answers exhibit
lower variance. Letting 02 be the (running) answer variance estimate, we set w; o 1/(0? + €) with
the same normalization.

Both heuristics are implemented via a continuously relaxed, constrained optimization that enforces
the total-budget and box constraints; we solve it with an online solver and then map fractional
solutions to integers using the rounding heuristic.

Comparison of Optimal Allocations Across Objectives
B=16, C=256, Box [4.0, 32.0]

304 —eo— Qur Adaptive Allocation

. Inverse-Accuracy heuristic
2 —e— |nverse-Variance heuristic
S 251
o
©
= 201
©
£
= 15 1
°
o 10 T

5 m

0.0 0.2 0.4 0.6 0.8 1.0
pq (per-prompt success probability)

Figure 3: Comparison of optimal rollout allocations produced by different heuristics versus our
proposed variance-aware allocation strategy. The figure plots the optimal number of rollouts n}
against prompt difficulty p;, highlighting how our method allocates budget differently from inverse-
accuracy and inverse-variance baselines.

C.2 PROMPT TEMPLATE.

During training, we only use one prompt template for every prompt in the dataset. There are two
prompt templates, one for mathematical reasoning and one for tool-augmented reasoning.
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Figure 4: Prompt template for mathematical reasoning

Solve the following math problem step by step. The last line of your
response should be of the form Answer: $Answer (without quotes)

where $Answer is the answer to the problem. Do not wrap $Answer with
\boxed{}.

current question: {{question}}

Below are two examples for format reference.
Example question 1: Solve for x: 3x - 5 = 16.

Response:
Add 5 to both sides: 3x = 21.
Divide both sides by 3: x = 7.
Answer: 7

Solve the current question. Remember to put your answer on its own line
after "Answer:".

Figure 5: Prompt template for tool augmented reasoning

In this environment you have access to a set of tools you can use to
assist with the user query.

You may perform multiple rounds of function calls.
In each round, you can call one or more functions.

Here are available functions in JSONSchema format:
\n'‘‘json\n{func_schemas}\n**"

In your response, you need to first think about the reasoning process in
the mind and then conduct function calling to get the information or
perform the actions if needed. \

The reasoning process and function calling are enclosed within <think>
</think> and <tool_call> </tool_call> tags. \

The results of the function calls will be given back to you after
execution, \

and you can continue to call functions until you get the final answer
for the user’s question. \

Finally, if you have got the answer, enclose it within \\boxed{{}} with
latex format and do not continue to call functions, \

i.e., <think> Based on the response from the function call, I get the
weather information. </think> The weather in Beijing on 2025-04-01
is \\[ \\boxed{{20C}} \\1].

For each function call, return a json object with function name and
arguments within <tool_call></tool_call> XML tags:

<tool_call>

{{"name": <function-name>, "arguments": <args—-json-object>}}

</tool_call>
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D ALGORITHMS

The algorithm capturing the complete flow the posterior update for the Gaussian Process is provided
in Algorithm [T]

Algorithm 1 Recursive GP Posterior Update

Require: Mini-batch B;; rollout allocation {nq} prior mean m;(D) € R?, kernel matrix ¥ €
RO*Q.
: for each g € B; do

# Run n, rollouts and observe outcomes Rj e{-1,1}
_ L n
Rq — ng Ejil RJ
! 6,1 — 6) )
. ggbserve — (gq)qGBt

. Partition m; and ¥ according to 53; and B
observe

DMy e <= My s + Zs%tzéfgt (g2 —my g, )
9: X* + EBFBF EBFBtEB,BtEBtBF
10: forq—ltono
11: if g € By then myy1(xq) = g else myi1(2q) < my g (z,) end if
12: end for ‘
13: pri1 = sigmoid(my41(D))
14: return {piy1}, met1

q=1°

1

2

3

4 Jq — sigmoid ™! (clip (Rq;
5: end for
6

7

8

Algorithm 2] presents our heuristic rounding procedure, which maps a continuous solution to a dis-
crete one while ensuring that the budget constraints remain satisfied.

Algorithm 2 Heuristic rounding for integer rollout allocation

Require: Solution {n}}, total budget C, bounds {L, U}, objective functions f,(-) for each ¢
: For each ¢, set g < Ln;J
C'rem — C qugt
for each q with 7y < U do

Compute incentive: A, < fo(fyg) — fq(fg + 1)
end for
while C\.,, > 0do

Select ¢* = arg maxg.q, <v Ay

Set fige  fige + 1
9:  Recompute Ags < for (Mg ) — fogr (Ngx + 1)
10: Crem — C(rem -
11: end while
12: return Integer allocation {7, } with 3

A U A

qutﬁq:CandLgﬁq < U forall q

E EXTENSION TO CONTINUOUS REWARDS

This section details the necessary adaptations to our predictive rollout allocation strategy for the case
where the reward R(0;) is a real-valued random variable. All definitions, assumptions, and notation
follow the main text unless otherwise stated.

E.1 GRADIENT VARIANCE FOR CONTINUOUS REWARDS

We first state the analogues of our variance propositions for the continuous reward setting. The
proofs are intermediate results from proofs for binary case in Appendix [Al
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Proposition E.1 (Dr. GRPO gradient variance, continuous reward). Let R(6;) = R be a real-
valued random variable with variance Var(R). IfAssumptionholds and Var(Z) = o2, then the

variance of the per-prompt projected Dr. GRPO gradient estimator with n rollouts is

(n_nii)a%\/ar(é).

Var(G) =
Proposition E.2 (RLOO gradient variance, continuous reward). Let R(6;) = R be a real-valued
random variable with variance Var(R). If Assumption holds and Var(Z) = o%, then the
variance of the per-prompt projected RLOO gradient estimator with n rollouts is

2 ~

Var(G) = n"_Z1Var(R).

E.2 GAUSSIAN PROCESS PREDICTION OF REWARD VARIANCE

For continuous rewards, the per-prompt gradient variance depends on Var(R,), which is not directly
observable prior to rollout. To predict this quantity, we replace the GP model for success probability
with a GP model for reward variance. Specifically, for each prompt ¢, we model the reward variance
as vg, = softplus(g(x4)) = log(1 + exp(g¢(x4))), where g; is a latent GP as in the main text.

After observing rewards {Rq i }?;1, we compute the sample variance fs\g and set the observation for

the latent variable as g, ; = log(exp(5;) — 1). The GP posterior update and recursive prediction
steps proceed identically, replacing the sigmoid link with the softplus link.

E.3 BUDGET ALLOCATION OPTIMIZATION

Given predicted reward variances \//a\r(}?q), we define a, = a%q\//a\r(]?q). The continuous relax-
ation of the rollout allocation problem for Dr. GRPO becomes

. ng—1
i {quBt %a q’l’Lg : quBt Mtq = O’ L = Nq < U7 Nq € qu} ’
and for RLOO,

1
i — = <n, < .
i {quBt % ng—1 quBt ng=0C, L<ng<U ng¢c RVQ}

The optimal solutions are given by Theorems [5.1) and [5.2]in the main text, now with the updated
definition of a,. The rounding procedure described in Appendix@ applies without modification.

F EMPIRICAL VALIDATION OF IMPORTANCE RATIOS IN PARTIALLY
OFF-PoLICY TRAINING

In the off-policy regime, importance ratios 7 ,(#) rarely deviate from 1. This indicates that even
partially off-policy training methods produce updates that are close to on-policy, a phenomenon
particularly pronounced in LLM post-training. Consequently, Assumption [3.1]is unlikely to be
restrictive in our setting.

To support this assumption empirically, we measure importance ratios on the response tokens
of off-policy samples from our training runs. Prompt and padding tokens are excluded from
this analysis. Our evaluation uses 2,560 prompts sampled across different stages of training for
Qwen?2.5-Math-1.5B, with 4 rollouts per prompt. We then collect the importance ratios for all
generated tokens and compute the fraction that falls within the interval [1 — a, 1 + ] for several
values of . The results are summarized in Table [T0l

These results confirm that the vast majority of importance ratios remain extremely close to 1, pro-
viding strong empirical justification for the approximation r; -(6) ~ 1 in our analysis.
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« Percentage in [1 — «, 1 + @
5e-02 97.85%
5e-03 82.46%
5e-04 71.51%

Table 10: Fraction of response tokens whose importance ratios fall within [1 — «, 1 + «] for various
choices of a.

G TRAINING EVOLUTION COMPARISON

In this section, we assess the robustness and stability of our method by retraining
Qwen2.5-Math-1. 5B using GRPO, RLOO, and their VIP-augmented counterparts (GRPO+VIP,
RLOO+VIP) across five random seeds. Figures [6|and[7|report the mean and standard deviation for
multiple performance metrics (best@32, maj@32, mean@32).

To ensure that all training trajectories are directly comparable, every model is trained on the same
dataset under identical optimization settings: the same fixed ordering of 17k training prompts,
one epoch of training, a batch size of 512, mini-batch size of 64, and rollout budget per batch of 512
* 8. As aresult, each gradient step corresponds to the same amount of data and computation across
all methods.

Across all seeds and evaluation checkpoints, we observe consistent and pronounced improvements
from using VIP:

(i) Faster early-stage learning. VIP yields substantial gains in the early phase of training. For
example, on AIME2024 mean @32, RLOO+VIP reaches an accuracy of 0.0316 by step 10, whereas
RLOO reaches only 0.0056—a 6 < increase. Similar trends appear in both best@32 and maj@32
metrics across AIME2024 and AIME2025.

(ii) Steeper and more reliable improvement per gradient step. VIP consistently increases the
slope of the learning curve. Its trajectories rise smoothly and monotonically, while the baselines
(particularly GRPO on AIME2025 best@32) often progress slowly or temporarily plateau between
steps 10-20. This shows that variance-aware allocation accelerates the effective learning rate with-
out introducing instability.

(iii) Increased training stability. VIP reduces variance across seeds and produces smoother learn-
ing curves, reflecting more stable gradient updates. This aligns with the goal of variance-informed
allocation: reducing gradient noise directly translates into more predictable and reliable optimization
dynamics.

Together, these results demonstrate that VIP improves both the speed and the stability of GRPO
and RLOO training, leading to faster convergence and consistently higher performance throughout
the entire training trajectory.
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Figure 6: GRPO vs. GRPO+VIP on AIME 2024 and 2025 across different accuracy metrics.
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Figure 7: RLOO vs. RLOO+VIP on AIME 2024 and 2025 across different accuracy metrics.
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