

A PROOFS OF TECHNICAL RESULTS

A.1 PROOFS OF SECTION 4

Proof of Proposition 4.2 We recall the expression of \tilde{G}_q :

$$\tilde{G}_q = \frac{1}{n} \sum_{j=1}^n (\tilde{R}_j - \frac{1}{n} \sum_{k=1}^n \tilde{R}_k) \tilde{Z}_j.$$

The expectation of \tilde{G}_q is:

$$\begin{aligned} \mathbb{E}[\tilde{G}_q] &= \mathbb{E}\left[\frac{1}{n} \sum_{j=1}^n (\tilde{R}_j - \frac{1}{n} \sum_{k=1}^n \tilde{R}_k) \tilde{Z}_j\right] \\ &= \mathbb{E}\left[\frac{1}{n} \sum_{j=1}^n \tilde{R}_j \tilde{Z}_j - \frac{1}{n^2} \sum_{j=1}^n \sum_{k=1}^n \tilde{R}_k \tilde{Z}_j\right] \\ &= \frac{1}{n} \sum_{j=1}^n \mathbb{E}[\tilde{R}_j \tilde{Z}_j] - \frac{1}{n^2} \sum_{j=1}^n \sum_{k=1}^n \mathbb{E}[\tilde{R}_k \tilde{Z}_j] \\ &= \mathbb{E}[\tilde{R} \tilde{Z}] - \mathbb{E}[\tilde{R} \tilde{Z}] = 0 \quad (\text{by Assumption 4.1(i)}). \end{aligned}$$

The variance of \tilde{G}_q is:

$$\begin{aligned} \text{Var}(\tilde{G}_q) &= \mathbb{E}[\tilde{G}_q^2] - (\mathbb{E}[\tilde{G}_q])^2 = \mathbb{E}[\tilde{G}_q^2] - 0 = \mathbb{E}[\tilde{G}_q^2] \\ &= \mathbb{E}\left[\left(\frac{1}{n} \sum_{j=1}^n \tilde{R}_j \tilde{Z}_j - \frac{1}{n^2} \sum_{j=1}^n \sum_{k=1}^n \tilde{R}_k \tilde{Z}_j\right)^2\right] \\ &= \mathbb{E}\left[\frac{1}{n^2} \left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j\right)^2 + \frac{1}{n^4} \left(\sum_{j=1}^n \sum_{k=1}^n \tilde{R}_k \tilde{Z}_j\right)^2 - \frac{2}{n^3} \left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j\right) \left(\sum_{j=1}^n \sum_{k=1}^n \tilde{R}_k \tilde{Z}_j\right)\right] \\ &= \underbrace{\mathbb{E}\left[\frac{1}{n^2} \left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j\right)^2\right]}_{\triangleq C_1} + \underbrace{\mathbb{E}\left[\frac{1}{n^4} \left(\sum_{j=1}^n \sum_{k=1}^n \tilde{R}_k \tilde{Z}_j\right)^2\right]}_{\triangleq C_2} - \underbrace{\mathbb{E}\left[\frac{2}{n^3} \left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j\right) \left(\sum_{j=1}^n \sum_{k=1}^n \tilde{R}_k \tilde{Z}_j\right)\right]}_{\triangleq C_3}. \end{aligned}$$

756 Next we compute each term. We find for C_1 :

$$\begin{aligned}
 C_1 &= \mathbb{E} \left[\frac{1}{n^2} \left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right)^2 \right] = \frac{1}{n^2} \mathbb{E} \left[\left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right)^2 \right] \\
 &= \frac{1}{n^2} \mathbb{E} \left[\sum_{j=1}^n \tilde{R}_j^2 \tilde{Z}_j^2 + \sum_{1 \leq j < k \leq n} \tilde{R}_j \tilde{Z}_j \tilde{R}_k \tilde{Z}_k \right] \\
 &= \frac{1}{n^2} \left(\sum_{j=1}^n \mathbb{E} [\tilde{R}_j^2 \tilde{Z}_j^2] + \sum_{1 \leq j < k \leq n} \mathbb{E} [\tilde{R}_j \tilde{Z}_j \tilde{R}_k \tilde{Z}_k] \right) \\
 &= \frac{1}{n^2} \left(\sum_{j=1}^n \mathbb{E} [\tilde{R}_j^2 \tilde{Z}_j^2] + \sum_{1 \leq j < k \leq n} \mathbb{E} [\tilde{R}_j \tilde{Z}_j] \mathbb{E} [\tilde{R}_k \tilde{Z}_k] \right) \quad (\text{independence between } j \text{ and } k) \\
 &= \frac{1}{n^2} \left(n \mathbb{E} [\tilde{R}^2 \tilde{Z}^2] + n(n-1) (\mathbb{E} [\tilde{R} \tilde{Z}])^2 \right) \quad (\text{identically distributed}) \\
 &= \frac{1}{n} \mathbb{E} [\tilde{R}^2 \tilde{Z}^2] + \frac{(n-1)}{n} (\mathbb{E} [\tilde{R} \tilde{Z}])^2 \\
 &= \frac{1}{n} \mathbb{E} [\tilde{R}^2] (\mu_Z^2 + \sigma_Z^2) + \frac{n-1}{n} \mu_z^2 (\mathbb{E} [\tilde{R}])^2 \\
 &= \mathbb{E} [\tilde{R}^2] \left(\frac{1}{n} \mu_Z^2 + \frac{1}{n} \sigma_Z^2 \right) + (\mathbb{E} [\tilde{R}])^2 \left(\frac{n-1}{n} \mu_z^2 \right).
 \end{aligned}$$

781 We next compute for C_2 :

$$C_2 = \mathbb{E} \left[\frac{1}{n^4} \left(\sum_{j=1}^n \sum_{k=1}^n \tilde{R}_k \tilde{Z}_j \right)^2 \right] = \frac{1}{n^4} \mathbb{E} \left[\sum_{k=1}^n \sum_{k'=1}^n \sum_{j=1}^n \sum_{j'=1}^n \tilde{R}_k \tilde{R}_{k'} \tilde{Z}_j \tilde{Z}_{j'} \right].$$

787 We can decompose the quadruple sum by whether the indices are equal or not. There are four
788 index-pattern types:

- 791 • When $k = k'$ and $j = j'$: there are n^2 such terms, each term is $\mathbb{E} [\tilde{R}^2 \tilde{Z}^2] = (\mu_Z^2 + \sigma_Z^2) \mathbb{E} [\tilde{R}^2]$.
792 Total contribution to C_2 is

$$T_1 = n^2 (\mu_Z^2 + \sigma_Z^2) \mathbb{E} [\tilde{R}^2].$$

- 795 • When $k = k'$ and $j \neq j'$: there are $n^2(n-1)$ such terms. For any fixed k and distinct j, j' ,
796 $\mathbb{E} [\tilde{R}_k^2 \tilde{Z}_j \tilde{Z}_{j'}] = \mathbb{E} [\tilde{R}_k^2] \mathbb{E} [\tilde{Z}_j \tilde{Z}_{j'}] = \mu_Z^2 \mathbb{E} [\tilde{R}^2]$. Total contribution to C_2 is

$$T_2 = n^2(n-1) \mu_Z^2 \mathbb{E} [\tilde{R}^2].$$

- 801 • When $k \neq k'$ and $j = j'$: there are $n^2(n-1)$ such terms. For distinct k, k' , $\mathbb{E} [\tilde{R}_k \tilde{R}_{k'} \tilde{Z}^2] =$
802 $\mathbb{E} [\tilde{R}_k \tilde{R}_{k'}] \mathbb{E} [\tilde{Z}^2] = (\mu_Z^2 + \sigma_Z^2) (\mathbb{E} [\tilde{R}])^2$. Total contribution to C_2 is

$$T_3 = n^2(n-1) (\mu_Z^2 + \sigma_Z^2) (\mathbb{E} [\tilde{R}])^2.$$

- 856 • When $k \neq k'$ and $j \neq j'$: there are $n^2(n-1)^2$ such terms. For all indices different,
857 $\mathbb{E} [\tilde{R}_k \tilde{R}_{k'} \tilde{Z}_j \tilde{Z}_{j'}] = \mu_Z^2 (\mathbb{E} [\tilde{R}])^2$. Total contribution to C_2 is

$$T_4 = n^2(n-1)^2 \mu_Z^2 (\mathbb{E} [\tilde{R}])^2.$$

810 Therefore, we find
 811

$$\begin{aligned}
 812 \quad C_2 &= \frac{1}{n^4} (T_1 + T_2 + T_3 + T_4) \\
 813 \\
 814 &= \frac{1}{n^4} \left[n^2(\mu_Z^2 + \sigma_Z^2) \mathbb{E}[\tilde{R}^2] + n^2(n-1)\mu_Z^2 \mathbb{E}[\tilde{R}^2] \right. \\
 815 &\quad \left. + n^2(n-1)(\mu_Z^2 + \sigma_Z^2)(\mathbb{E}[\tilde{R}])^2 + n^2(n-1)^2\mu_Z^2(\mathbb{E}[\tilde{R}])^2 \right] \\
 816 \\
 817 &= \mathbb{E}[\tilde{R}^2] \left(\frac{\mu_Z^2}{n} + \frac{\sigma_Z^2}{n^2} \right) + (\mathbb{E}[\tilde{R}])^2 \left(\frac{n-1}{n} \mu_Z^2 + \frac{n-1}{n^2} \sigma_Z^2 \right).
 818 \\
 819
 \end{aligned}$$

820 We next compute for C_3 :

$$\begin{aligned}
 821 \quad C_3 &= \mathbb{E} \left[\frac{2}{n^3} \left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right) \left(\sum_{j'=1}^n \sum_{k=1}^n \tilde{R}_k \tilde{Z}_{j'} \right) \right] = \frac{2}{n^3} \mathbb{E} \left[\sum_{j=1}^n \sum_{j'=1}^n \sum_{k=1}^n \tilde{R}_j \tilde{Z}_j \tilde{R}_k \tilde{Z}_{j'} \right].
 822 \\
 823 \\
 824
 \end{aligned}$$

825 We can decompose the triplet sum by whether the indices are equal or not. There are five index-
 826 pattern types:

827 • When $j = k = j'$: there are n such terms. For each j , $\mathbb{E}[\tilde{R}_j^2 \tilde{Z}_j^2] = \mathbb{E}[\tilde{R}_j^2] \mathbb{E}[\tilde{Z}_j^2] = (\mu_Z^2 + \sigma_Z^2) \mathbb{E}[\tilde{R}^2]$. Total contribution:

$$T_1 = n(\mu_Z^2 + \sigma_Z^2) \mathbb{E}[\tilde{R}^2].$$

828 • When $j = k \neq j'$: there are $n(n-1)$ such terms. For each j and $j' \neq j$, $\mathbb{E}[\tilde{R}_j^2 \tilde{Z}_j \tilde{Z}_{j'}] = \mathbb{E}[\tilde{R}_j^2] \mathbb{E}[\tilde{Z}_j \tilde{Z}_{j'}] = \mathbb{E}[\tilde{R}^2] \mathbb{E}[\tilde{Z}_j] \mathbb{E}[\tilde{Z}_{j'}] = \mathbb{E}[\tilde{R}^2] \mu_Z^2$. Total contribution is

$$T_2 = n(n-1) \mathbb{E}[\tilde{R}^2] \mu_Z^2.$$

829 • When $j = j' \neq k$: there are $n(n-1)$ such terms. For each j and $k \neq j$, $\mathbb{E}[\tilde{R}_j \tilde{Z}_j^2 \tilde{R}_k] = \mathbb{E}[\tilde{R}_j \tilde{R}_k] \mathbb{E}[\tilde{Z}_j^2] = (\mu_Z^2 + \sigma_Z^2)(\mathbb{E}[\tilde{R}])^2$. Total contribution is

$$T_3 = n(n-1)(\mu_Z^2 + \sigma_Z^2)(\mathbb{E}[\tilde{R}])^2.$$

830 • When $k = j' \neq j$: there are $n(n-1)$ such terms. For each j and $k \neq j$, $\mathbb{E}[\tilde{R}_j \tilde{Z}_j \tilde{R}_k \tilde{Z}_k] = \mathbb{E}[\tilde{R}_j \tilde{R}_k] \mathbb{E}[\tilde{Z}_j \tilde{Z}_k] = \mu_Z^2 (\mathbb{E}[\tilde{R}])^2$. Total contribution is

$$T_4 = n(n-1) \mu_Z^2 (\mathbb{E}[\tilde{R}])^2.$$

831 • When j, j', k are all distinct: there are $n(n-1)(n-2)$ such terms. For each triple of distinct
 832 indices, $\mathbb{E}[\tilde{R}_j \tilde{Z}_j \tilde{R}_k \tilde{Z}_{j'}] = \mu_Z^2 (\mathbb{E}[\tilde{R}])^2$. Total contribution is

$$T_5 = n(n-1)(n-2) \mu_Z^2 (\mathbb{E}[\tilde{R}])^2.$$

833 Therefore, we find
 834

$$\begin{aligned}
 835 \quad C_3 &= \frac{2}{n^3} (T_1 + T_2 + T_3 + T_4 + T_5) \\
 836 \\
 837 &= \frac{2}{n^3} \left[n(\mu_Z^2 + \sigma_Z^2) \mathbb{E}[\tilde{R}^2] + n(n-1) \mathbb{E}[\tilde{R}^2] \mu_Z^2 \right. \\
 838 &\quad \left. + n(n-1)(\mu_Z^2 + \sigma_Z^2) (\mathbb{E}[\tilde{R}])^2 + n(n-1) \mu_Z^2 (\mathbb{E}[\tilde{R}])^2 \right. \\
 839 &\quad \left. + n(n-1)(n-2) \mu_Z^2 (\mathbb{E}[\tilde{R}])^2 \right] \\
 840 \\
 841 &= \mathbb{E}[\tilde{R}^2] \left(\frac{2}{n} \mu_Z^2 + \frac{2}{n^2} \sigma_Z^2 \right) + (\mathbb{E}[\tilde{R}])^2 \left(\frac{2n-2}{n} \mu_Z^2 + \frac{2n-2}{n^2} \sigma_Z^2 \right).
 842 \\
 843
 \end{aligned}$$

864 Group terms with $\mathbb{E}[\tilde{R}^2]$ and $(\mathbb{E}[\tilde{R}])^2$ coefficients:

$$865 \quad C_1 + C_2 - C_3 = \mathbb{E}[\tilde{R}^2] \left[\left(\frac{1}{n} \mu_Z^2 + \frac{1}{n} \sigma_Z^2 \right) + \left(\frac{\mu_Z^2}{n} + \frac{\sigma_Z^2}{n^2} \right) - \left(\frac{2}{n} \mu_Z^2 + \frac{2}{n^2} \sigma_Z^2 \right) \right] \\ 866 \quad + (\mathbb{E}[\tilde{R}])^2 \left[\frac{n-1}{n} \mu_Z^2 + \left(\frac{n-1}{n} \mu_Z^2 + \frac{n-1}{n^2} \sigma_Z^2 \right) - \left(\frac{2n-2}{n} \mu_Z^2 + \frac{2n-2}{n^2} \sigma_Z^2 \right) \right]. \\ 867$$

871 We simplify each bracket to obtain:

$$872 \quad \text{Var}(\tilde{G}_q) = C_1 + C_2 - C_3 = \frac{n-1}{n^2} \sigma_Z^2 \left(\mathbb{E}[\tilde{R}^2] - (\mathbb{E}[\tilde{R}])^2 \right) = \frac{n-1}{n^2} \sigma_Z^2 \sigma_R^2. \\ 873$$

874 For a given prompt, \tilde{R} takes 1 with probability p and -1 with probability $1-p$, leading to its
875 variance of $4p(1-p)$. We obtain the final variance of the per-prompt gradient estimator:

$$876 \quad \text{Var}(\tilde{G}_q) = \frac{\sigma_Z^2(n-1)}{n^2} \cdot 4p(1-p). \\ 877$$

878 This completes the proof. \square

880 *Proof of Proposition 4.3* We recall the expression of \tilde{G}_q :

$$881 \quad \tilde{G}_q = \frac{1}{n} \sum_{j=1}^n \left(\tilde{R}_j - \frac{1}{n-1} \sum_{\substack{k=1 \\ k \neq j}}^n \tilde{R}_k \right) \tilde{Z}_j.$$

885 The expectation of \tilde{G}_q is:

$$886 \quad \mathbb{E}[\tilde{G}_q] = \mathbb{E} \left[\frac{1}{n} \sum_{j=1}^n \left(\tilde{R}_j - \frac{1}{n-1} \sum_{\substack{k=1 \\ k \neq j}}^n \tilde{R}_k \right) \tilde{Z}_j \right] \\ 887 \\ 888 \quad = \mathbb{E} \left[\frac{1}{n} \sum_{j=1}^n \tilde{R}_j \tilde{Z}_j - \frac{1}{n(n-1)} \sum_{j=1}^n \sum_{\substack{k=1 \\ k \neq j}}^n \tilde{R}_k \tilde{Z}_j \right] \\ 889 \\ 890 \quad = \frac{1}{n} \sum_{j=1}^n \mathbb{E}[\tilde{R}_j \tilde{Z}_j] - \frac{1}{n(n-1)} \sum_{j=1}^n \sum_{\substack{k=1 \\ k \neq j}}^n \mathbb{E}[\tilde{R}_k \tilde{Z}_j] \\ 891 \\ 892 \quad = \mathbb{E}[\tilde{R} \tilde{Z}] - \mathbb{E}[\tilde{R} \tilde{Z}] \\ 893 \\ 894 \quad = 0. \quad (\text{by Assumption 4.1(i)}) \\ 895 \\ 896 \\ 897$$

901 The variance of \tilde{G}_q is:

$$902 \quad \text{Var}(\tilde{G}_q) \\ 903 \quad = \mathbb{E}[\tilde{G}_q^2] - (\mathbb{E}[\tilde{G}_q])^2 = \mathbb{E}[\tilde{G}_q^2] - 0 = \mathbb{E}[\tilde{G}_q^2] \\ 904 \\ 905 \quad = \mathbb{E} \left[\left(\frac{1}{n} \sum_{j=1}^n \tilde{R}_j \tilde{Z}_j - \frac{1}{n(n-1)} \sum_{j=1}^n \sum_{\substack{k=1 \\ k \neq j}}^n \tilde{R}_k \tilde{Z}_j \right)^2 \right] \\ 906 \\ 907 \quad = \mathbb{E} \left[\frac{1}{n^2} \left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right)^2 + \frac{1}{n^2(n-1)^2} \left(\sum_{j=1}^n \sum_{\substack{k=1 \\ k \neq j}}^n \tilde{R}_k \tilde{Z}_j \right)^2 - \frac{2}{n^2(n-1)} \left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right) \left(\sum_{j=1}^n \sum_{\substack{k=1 \\ k \neq j}}^n \tilde{R}_k \tilde{Z}_j \right) \right] \\ 908 \\ 909 \quad = \mathbb{E} \underbrace{\left[\frac{1}{n^2} \left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right)^2 \right]}_{\triangleq C_1} + \mathbb{E} \underbrace{\left[\frac{1}{n^2(n-1)^2} \left(\sum_{j=1}^n \sum_{\substack{k=1 \\ k \neq j}}^n \tilde{R}_k \tilde{Z}_j \right)^2 \right]}_{\triangleq C_2} - \mathbb{E} \underbrace{\left[\frac{2}{n^2(n-1)} \left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right) \left(\sum_{j=1}^n \sum_{\substack{k=1 \\ k \neq j}}^n \tilde{R}_k \tilde{Z}_j \right) \right]}_{\triangleq C_3}.$$

918 The first term C_1 is already computed in the proof of Proposition 4.2 and we have:
919

$$920 \quad C_1 = \mathbb{E}[\tilde{R}^2] \left(\frac{1}{n} \mu_Z^2 + \frac{1}{n} \sigma_Z^2 \right) + (\mathbb{E}[\tilde{R}])^2 \left(\frac{n-1}{n} \mu_Z^2 \right).$$

922 Next, we consider the term C_2 :
923

$$\begin{aligned} 924 \quad C_2 &= \mathbb{E} \left[\frac{1}{n^2(n-1)^2} \left(\sum_{j=1}^n \sum_{\substack{k=1 \\ k \neq j}}^n \tilde{R}_k \tilde{Z}_j \right)^2 \right] \\ 925 \\ 926 \\ 927 \\ 928 \quad &= \mathbb{E} \left[\frac{1}{n^2(n-1)^2} \left(\left(\sum_{j=1}^n \sum_{k=1}^n \tilde{R}_k \tilde{Z}_j \right) - \left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right) \right)^2 \right] \\ 929 \\ 930 \\ 931 \\ 932 \quad &= \frac{1}{n^2(n-1)^2} \left(\mathbb{E} \left[\left(\sum_{j=1}^n \sum_{k=1}^n \tilde{R}_k \tilde{Z}_j \right)^2 \right] - 2 \mathbb{E} \left[\left(\sum_{j=1}^n \sum_{k=1}^n \tilde{R}_k \tilde{Z}_j \right) \left(\sum_{j'=1}^n \tilde{R}_{j'} \tilde{Z}_{j'} \right) \right] + \mathbb{E} \left[\left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right)^2 \right] \right). \\ 933 \\ 934 \\ 935 \end{aligned}$$

936 We can utilize the computation from the proof of Proposition 4.2 to have:
937

$$\begin{aligned} 938 \quad \mathbb{E} \left[\frac{1}{n^4} \left(\sum_{j=1}^n \sum_{k=1}^n \tilde{R}_k \tilde{Z}_j \right)^2 \right] &= \mathbb{E}[\tilde{R}^2] \left(\frac{\mu_Z^2}{n} + \frac{\sigma_Z^2}{n^2} \right) + (\mathbb{E}[\tilde{R}])^2 \left(\frac{n-1}{n} \mu_Z^2 + \frac{n-1}{n^2} \sigma_Z^2 \right), \\ 939 \\ 940 \\ 941 \quad \mathbb{E} \left[\frac{2}{n^3} \left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right) \left(\sum_{j'=1}^n \sum_{k=1}^n \tilde{R}_k \tilde{Z}_{j'} \right) \right] &= \mathbb{E}[\tilde{R}^2] \left(\frac{2}{n} \mu_Z^2 + \frac{2}{n^2} \sigma_Z^2 \right) + (\mathbb{E}[\tilde{R}])^2 \left(\frac{2n-2}{n} \mu_Z^2 + \frac{2n-2}{n^2} \sigma_Z^2 \right), \\ 942 \\ 943 \\ 944 \quad \mathbb{E} \left[\frac{1}{n^2} \left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right)^2 \right] &= \mathbb{E}[\tilde{R}^2] \left(\frac{1}{n} \mu_Z^2 + \frac{1}{n} \sigma_Z^2 \right) + (\mathbb{E}[\tilde{R}])^2 \left(\frac{n-1}{n} \mu_Z^2 \right). \\ 945 \\ 946 \\ 947 \end{aligned}$$

948 Therefore,
949

$$\begin{aligned} 950 \quad C_2 &= \mathbb{E}[\tilde{R}^2] \left[\frac{n}{(n-1)^2} \mu_Z^2 + \frac{1}{(n-1)^2} \sigma_Z^2 - \left(\frac{2}{(n-1)^2} \mu_Z^2 + \frac{2}{n(n-1)^2} \sigma_Z^2 \right) + \frac{1}{n(n-1)^2} \mu_Z^2 + \frac{1}{n(n-1)^2} \sigma_Z^2 \right] \\ 951 \\ 952 \\ 953 \quad &+ (\mathbb{E}[\tilde{R}])^2 \left[\frac{n}{(n-1)} \mu_Z^2 + \frac{1}{(n-1)} \sigma_Z^2 - \left(\frac{2}{n-1} \mu_Z^2 + \frac{2}{n(n-1)} \sigma_Z^2 \right) + \frac{1}{n(n-1)} \mu_Z^2 \right] \\ 954 \\ 955 \quad &= \mathbb{E}[\tilde{R}^2] \left[\frac{n^2-2n+1}{n(n-1)^2} \mu_Z^2 + \frac{n-1}{n(n-1)^2} \sigma_Z^2 \right] + (\mathbb{E}[\tilde{R}])^2 \left[\frac{n^2-2n+1}{n(n-1)} \mu_Z^2 + \frac{n-2}{n(n-1)} \sigma_Z^2 \right] \\ 956 \\ 957 \\ 958 \quad &= \mathbb{E}[\tilde{R}^2] \left[\frac{1}{n} \mu_Z^2 + \frac{1}{n(n-1)} \sigma_Z^2 \right] + (\mathbb{E}[\tilde{R}])^2 \left[\frac{n-1}{n} \mu_Z^2 + \frac{n-2}{n(n-1)} \sigma_Z^2 \right]. \\ 959 \\ 960 \end{aligned}$$

961 We compute C_3 as follows:
962

$$\begin{aligned} 963 \quad C_3 &= \mathbb{E} \left[\frac{2}{n^2(n-1)} \left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right) \left(\sum_{j'=1}^n \sum_{\substack{k=1 \\ k \neq j'}}^n \tilde{R}_k \tilde{Z}_{j'} \right) \right] \\ 964 \\ 965 \\ 966 \quad &= \mathbb{E} \left[\frac{2}{n^2(n-1)} \left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right) \left(\sum_{j'=1}^n \sum_{k=1}^n \tilde{R}_k \tilde{Z}_{j'} - \sum_{j'=1}^n \tilde{R}_{j'} \tilde{Z}_{j'} \right) \right] \\ 967 \\ 968 \\ 969 \quad &= \frac{2}{n^2(n-1)} \left(\mathbb{E} \left[\left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right) \left(\sum_{j'=1}^n \sum_{k=1}^n \tilde{R}_k \tilde{Z}_{j'} \right) \right] - \mathbb{E} \left[\left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right) \left(\sum_{j'=1}^n \tilde{R}_{j'} \tilde{Z}_{j'} \right) \right] \right). \\ 970 \\ 971 \end{aligned}$$

972 We can utilize the computation of $\frac{n^3}{2}C_3$ and n^2C_1 from the proof of Proposition 4.2 to have:
 973

$$974 \mathbb{E} \left[\left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right) \left(\sum_{j'=1}^n \sum_{k=1}^n \tilde{R}_k \tilde{Z}_{j'} \right) \right] = \mathbb{E}[\tilde{R}^2] (n^2 \mu_Z^2 + n \sigma_Z^2) + (\mathbb{E}[\tilde{R}])^2 (n^2(n-1) \mu_Z^2 + n(n-1) \sigma_Z^2), \\ 975 \\ 976 \mathbb{E} \left[\left(\sum_{j=1}^n \tilde{R}_j \tilde{Z}_j \right) \left(\sum_{j'=1}^n \tilde{R}_{j'} \tilde{Z}_{j'} \right) \right] = \mathbb{E}[\tilde{R}^2] (n \mu_Z^2 + n \sigma_Z^2) + (\mathbb{E}[\tilde{R}])^2 (n(n-1) \mu_Z^2).$$

977 Plugging these terms to the computation of C_3 yields us:
 978

$$979 C_3 = \frac{2}{n^2(n-1)} \left\{ \mathbb{E}[\tilde{R}^2] (n^2 \mu_Z^2 + n \sigma_Z^2) + (\mathbb{E}[\tilde{R}])^2 (n^2(n-1) \mu_Z^2 + n(n-1) \sigma_Z^2) \right. \\ 980 \\ 981 \left. - \left[\mathbb{E}[\tilde{R}^2] (n \mu_Z^2 + n \sigma_Z^2) + (\mathbb{E}[\tilde{R}])^2 (n(n-1) \mu_Z^2) \right] \right\} \\ 982 \\ 983 = \mathbb{E}[\tilde{R}^2] \cdot \frac{2(n^2 - n)}{n^2(n-1)} \mu_Z^2 + (\mathbb{E}[\tilde{R}])^2 \cdot \frac{2n(n-1)}{n^2(n-1)} ((n-1) \mu_Z^2 + \sigma_Z^2) \\ 984 \\ 985 = \mathbb{E}[\tilde{R}^2] \left(\frac{2}{n} \mu_Z^2 \right) + (\mathbb{E}[\tilde{R}])^2 \left(\frac{2n-2}{n} \mu_Z^2 + \frac{2}{n} \sigma_Z^2 \right).$$

986 We have:
 987

$$988 \text{Var}(\tilde{G}_q) = C_1 + C_2 - C_3 = \mathbb{E}[\tilde{R}^2] \left(\frac{1}{n-1} \sigma_Z^2 \right) + (\mathbb{E}[\tilde{R}])^2 \left(-\frac{1}{n-1} \sigma_Z^2 \right) \\ 989 \\ 990 = \frac{\sigma_Z^2}{n-1} (\mathbb{E}[\tilde{R}])^2 - (\mathbb{E}[\tilde{R}])^2 \\ 991 \\ 992 = \frac{\sigma_Z^2}{n-1} \text{Var}(\tilde{R}).$$

993 For a given prompt, \tilde{R} takes 1 with probability p and -1 with probability $1-p$, leading to its
 994 variance of $4p(1-p)$. We obtain the final variance of the per-prompt gradient estimator:
 995

$$1000 \text{Var}(\tilde{G}_q) = \frac{\sigma_Z^2}{n-1} \cdot 4p(1-p).$$

1001 This completes the proof. □
 1002

1003 A.2 PROOFS OF SECTION 5

1004 *Proof of Theorem 5.1* For clarity and continuity, we restate problem (6) before proceeding with the
 1005 proof:
 1006

$$1007 \min \quad \sum_{q \in \mathcal{B}_t} a_q \frac{n_q - 1}{n_q^2} \\ 1008 \text{s.t.} \quad \sum_{q \in \mathcal{B}_t} n_q = C \\ 1009 \quad L \leq n_q \leq U \quad \forall q \in \mathcal{B}_t. \quad (10)$$

1010 Let $V(\{n_q\})$ be the objective function of the above problem. We compute the first and second
 1011 derivatives of the objective function with respect to each coordinate n_q :
 1012

$$1013 \frac{\partial V}{\partial n_q} = -a_q \frac{n_q - 2}{n_q^3}.$$

1014 Since $n_q \geq L \geq 3$, so for all q , $\frac{\partial V}{\partial n_q} < 0$. Thus, V is decreasing with respect to each n_q on the
 1015 feasible set.
 1016

1017 For the second derivatives:
 1018

$$1019 \frac{\partial^2 V}{\partial n_q \partial n_{q'}} = 0 \quad \forall q \neq q', \quad \frac{\partial^2 V}{\partial n_q^2} = a_q \frac{2n_q - 6}{n_q^4} \geq 0 \quad \forall q \quad (\text{Since } n_q \geq L \geq 3, \text{ and } a_q \geq 0)$$

1026 Therefore, V is convex and decreasing in each n_q on the feasible set
 1027

$$1028 \quad \left\{ n \in \mathbb{R}^B : \sum_{q \in \mathcal{B}_t} n_q = C, \quad L \leq n_q \leq U \quad \forall q \right\}.$$

$$1029$$

$$1030$$

1031 Hence, the minimizer exists and is unique whenever the feasible set is nonempty $BL \leq C \leq BU$.
 1032

1033 The Lagrangian function is

$$1034 \quad \mathcal{L} = \sum_{q \in \mathcal{B}_t} a_q \frac{n_q - 1}{n_q^2} + \lambda \left(\sum_{q \in \mathcal{B}_t} n_q - C \right) + \sum_{q \in \mathcal{B}_t} \mu_q (L - n_q) + \sum_{q \in \mathcal{B}_t} \nu_q (n_q - U)$$

$$1035$$

$$1036$$

1037 where $\lambda \in \mathbb{R}$, and $\mu_q, \nu_q \geq 0$ are Lagrangian multipliers. The KKT conditions are:
 1038

$$1039 \quad -a_q \frac{n_q - 2}{n_q^3} + \lambda - \mu_q + \nu_q = 0 \quad \forall q,$$

$$1040$$

$$1041 \quad \mu_q \geq 0, \quad \nu_q \geq 0 \quad \forall q,$$

$$1042 \quad \mu_q (n_q - L) = 0, \quad \nu_q (n_q - U) = 0 \quad \forall q,$$

$$1043 \quad L \leq n_q \leq U \quad \forall q,$$

$$1044$$

$$1045 \quad \sum_{q \in \mathcal{B}_t} n_q = C.$$

$$1046$$

1047 We consider three cases of n_q :
 1048

- 1049 • For each q with $L < n_q < U$, the KKT stationarity condition is
 1050

$$1051 \quad \lambda = a_q \frac{n_q - 2}{n_q^3},$$

$$1052$$

1053 where λ is the Lagrange multiplier for the sum constraint. Note that the right-hand side is
 1054 decreasing in n_q .
 1055

1056 For $n_q = L$, the right-hand side is $a_q \frac{L-2}{L^3}$, and for $n_q = U$, it is $a_q \frac{U-2}{U^3}$. Therefore, for each q
 1057 and any $\lambda \in (a_q \frac{U-2}{U^3}, a_q \frac{L-2}{L^3})$, there is at most one solution n_q to $a_q \frac{n_q - 2}{n_q^3} = \lambda$ in the interior
 1058 (L, U) . If $\lambda \geq a_q \frac{L-2}{L^3}$ or $\lambda \leq a_q \frac{U-2}{U^3}$, there is no interior solution, and the optimum for n_q must
 1059 be at a bound.
 1060

- 1061 • If $n_q = L$, then $\mu_q \geq 0$ and $\nu_q = 0$. According to the KKT condition, we obtain:
 1062

$$1063 \quad \lambda = a_q \frac{L-2}{L^3} + \mu_q \geq a_q \frac{L-2}{L^3}.$$

$$1064$$

- 1065 • If $n_q = U$, then $\mu_q = 0$ and $\nu_q \geq 0$. According to the KKT condition, we obtain:
 1066

$$1067 \quad \lambda = a_q \frac{U-2}{U^3} - \nu_q \leq a_q \frac{U-2}{U^3}.$$

$$1068$$

1069 For a value of λ , for each coordinate, the KKT solution for n_q is defined as:
 1070

$$1071 \quad n_q^*(\lambda) = \begin{cases} U & \text{if } \lambda \leq a_q \frac{U-2}{U^3}, \\ \text{the unique solution to } \lambda = a_q \frac{n_q - 2}{n_q^3} & \text{if } a_q \frac{U-2}{U^3} < \lambda < a_q \frac{L-2}{L^3}, \\ L & \text{if } \lambda \geq a_q \frac{L-2}{L^3}. \end{cases}$$

$$1072$$

$$1073$$

1074 The coupling constraint $\sum_{q \in \mathcal{B}_t} n_q = C$ is enforced by selecting λ such that
 1075

$$1076 \quad S(\lambda) \triangleq \sum_{q \in \mathcal{B}_t} n_q^*(\lambda) = C.$$

$$1077$$

1078 Each $n_q^*(\lambda)$ is non-increasing in λ since $a_q \frac{n_q - 2}{n_q^3}$ is decreasing and the projection preserves mono-
 1079 tonicity. Consequently, $S(\lambda)$ is also non-increasing. In particular:

- As $\lambda \rightarrow -\infty$, $n_q^*(\lambda) \rightarrow U$, so $S(-\infty) = BU$.
- As $\lambda \rightarrow +\infty$, $n_q^*(\lambda) \rightarrow L$, so $S(+\infty) = BL$.

Therefore, for any feasible C with $BL \leq C \leq BU$, there exists a unique λ^* such that $S(\lambda^*) = C$. Moreover, because S is non-increasing, finding λ^* can be done by bisection. If $C > BU$ or $C < BL$, the problem is infeasible. \square

Proof of Theorem 5.2 For clarity and continuity, we restate Problem 8 before proceeding with the proof:

$$\begin{aligned}
\min \quad & \sum_{q \in \mathcal{B}_t} a_q \frac{1}{n_q} \\
\text{s.t.} \quad & \sum_{q \in \mathcal{B}_t} n_q = C \\
& L \leq n_q \leq U \quad \forall q \in \mathcal{B}_t
\end{aligned} \tag{11}$$

Let $V(\{n_q\})$ be the objective function of the above problem. We compute the first and second derivatives of the objective function with respect to each coordinate n_q :

$$\frac{\partial V}{\partial n_q} = -a_q \frac{1}{(n_q - 1)^2}$$

Since $n_q \geq L \geq 3$ and $a_q > 0$, we have $\frac{\partial V}{\partial n_q} \leq 0$ for all q . Thus, V is decreasing with respect to each n_q on the feasible set.

For the second derivatives:

$$\frac{\partial^2 V}{\partial n_q \partial n_{q'}} = 0 \quad \forall q \neq q', \quad \frac{\partial^2 V}{\partial n_q^2} = 2a_q \frac{1}{(n_q - 1)^3} > 0 \quad \forall q$$

Therefore, V is convex and decreasing in each n_g on the feasible set

$$\left\{ n \in \mathbb{R}^B : \sum_{q \in \mathcal{B}_t} n_q = C, \quad L \leq n_q \leq U \right\}.$$

Hence, the minimizer exists and is unique whenever the feasible set is nonempty ($BL \leq C \leq BU$).

The Lagrangian function is

$$\mathcal{L} = \sum_{q \in \mathcal{B}_*} a_q \frac{1}{n_q - 1} + \lambda \left(\sum_{q \in \mathcal{B}_*} n_q - C \right) + \sum_{q \in \mathcal{B}_*} \mu_q (L - n_q) + \sum_{q \in \mathcal{B}_*} \nu_q (n_q - U)$$

where $\lambda \in \mathbb{R}$, $\mu_a, \nu_a \geq 0$. The KKT conditions are:

$$\begin{aligned}
& -a_q \frac{1}{(n_q - 1)^2} + \lambda - \mu_q + \nu_q = 0 & \forall q \\
& \mu_q \geq 0, \quad \nu_q \geq 0 & \forall q \\
& \mu_q(n_q - L) = 0, \quad \nu_q(n_q - U) = 0 & \forall q \\
& L \leq n_q \leq U & \forall q \\
& \sum_{q \in \mathcal{B}_t} n_q = C. &
\end{aligned}$$

We consider three cases of n_a :

- For each q with $L \leq \eta_q \leq U$, the KKT stationarity condition is

$$\lambda = a_q \frac{1}{(n-1)^2},$$

1134 where λ is the Lagrange multiplier for the sum constraint. Note that the right-hand side is
 1135 decreasing in n_q since $n_q \geq L \geq 3$.
 1136

1137 For $n_q = L$, the right-hand side is $a_q \frac{1}{(L-1)^2}$, and for $n_q = U$, it is $a_q \frac{1}{(U-1)^2}$. Therefore, for each
 1138 q and any $\lambda \in (a_q \frac{1}{(U-1)^2}, a_q \frac{1}{(L-1)^2})$, there is one solution $n_q = \sqrt{\frac{a_q}{\lambda}} + 1$ to $a_q \frac{1}{(n_q-1)^2} = \lambda$
 1139 in the interior (L, U) . If $\lambda \geq a_q \frac{1}{(L-1)^2}$ or $\lambda \leq a_q \frac{1}{(U-1)^2}$, there is no interior solution, and the
 1140 optimum for n_q must be at a bound.
 1141

- 1142 • If $n_q = L$, then $\mu_q \geq 0$ and $\nu_q = 0$. According to the KKT condition, we obtain:
 1143

$$1144 \quad \lambda = a_q \frac{1}{(L-1)^2} + \mu_q \geq a_q \frac{1}{(L-1)^2}.$$

- 1145 • If $n_q = U$, then $\mu_q = 0$ and $\nu_q \geq 0$. According to the KKT condition, we obtain:
 1146

$$1147 \quad \lambda = a_q \frac{1}{(U-1)^2} - \nu_q \leq a_q \frac{1}{(U-1)^2}.$$

1150 For a value of λ , for each coordinate, the KKT solution for n_q is defined as:
 1151

$$1152 \quad n_q^*(\lambda) = \begin{cases} U & \text{if } \lambda \leq a_q \frac{1}{(U-1)^2}, \\ 1153 \quad \sqrt{\frac{a_q}{\lambda}} + 1 & \text{if } a_q \frac{1}{(U-1)^2} < \lambda < a_q \frac{1}{(L-1)^2}, \\ 1154 \quad L & \text{if } \lambda \geq a_q \frac{1}{(L-1)^2}. \end{cases}$$

1155 The coupling constraint $\sum_{q \in \mathcal{B}_t} n_q = C$ is enforced by selecting λ such that
 1156

$$1157 \quad S(\lambda) := \sum_{q \in \mathcal{B}_t} n_q^*(\lambda) = C.$$

1158 Each $n_q^*(\lambda)$ is non-increasing in λ (since $a_q \frac{1}{(n_q-1)^2}$ is decreasing and the projection preserves mono-
 1159 tonicity), so $S(\lambda)$ is also non-increasing. In particular:
 1160

- 1161 • As $\lambda \rightarrow -\infty$, $n_q^*(\lambda) \rightarrow U$, so $S(-\infty) = BU$.
 1162
- 1163 • As $\lambda \rightarrow +\infty$, $n_q^*(\lambda) \rightarrow L$, so $S(+\infty) = BL$.
 1164

1165 Therefore, for any feasible C with $BL \leq C \leq BU$, there exists a unique λ such that $S(\lambda) = C$. If
 1166 $C > BU$ or $C < BL$, the problem is infeasible. \square
 1167

1171 B STATISTICAL TESTS FOR SECOND-ORDER UNCORRELATION

1172 In this section, we provide statistical tests to validate the assumptions in our paper.
 1173

1174 B.1 FIRST-ORDER CORRELATION TEST VIA FISHER'S METHOD

1175 For each question q , consider the two random variables \tilde{R}_q and \tilde{Z}_q , with n independent observations
 1176

$$1177 \quad \{(\tilde{R}_{q,j}, \tilde{Z}_{q,j})\}_{j=1}^n.$$

1178 **Compute per-question Pearson correlation.** The sample Pearson correlation for question q is
 1179

$$1180 \quad \hat{\rho}_q = \frac{\sum_{j=1}^n (\tilde{R}_{q,j} - \bar{\tilde{R}}_q)(\tilde{Z}_{q,j} - \bar{\tilde{Z}}_q)}{\sqrt{\sum_{j=1}^n (\tilde{R}_{q,j} - \bar{\tilde{R}}_q)^2 \sum_{j=1}^n (\tilde{Z}_{q,j} - \bar{\tilde{Z}}_q)^2}},$$

1181 where
 1182

$$1183 \quad \bar{\tilde{R}}_q = \frac{1}{n} \sum_{j=1}^n \tilde{R}_{q,j}, \quad \bar{\tilde{Z}}_q = \frac{1}{n} \sum_{j=1}^n \tilde{Z}_{q,j}.$$

1188 **Compute per-question p -values.** For each question q , we test the null hypothesis
 1189
 1190
$$H_{0,q} : \rho_q = 0.$$

1191 The p -value p_q is obtained directly from the standard Pearson correlation test.
 1192
 1193 **Combine p -values across questions using Fisher's method.** Let Q be the total number of ques-
 1194 tions. Fisher's method combines the per-question p -values $\{p_q\}_{q=1}^Q$ into a single test statistic:
 1195
 1196
$$\chi_{\text{Fisher}}^2 = -2 \sum_{q=1}^Q \ln p_q.$$

1197 Under the global null hypothesis
 1198
 1199
$$H_0 : \rho_q = 0 \quad \forall q,$$

1200 the statistic χ_{Fisher}^2 follows a chi-squared distribution with $2Q$ degrees of freedom:
 1201
 1202
$$\chi_{\text{Fisher}}^2 \sim \chi_{2Q}^2.$$

1203 **Global p -value and decision rule.** The global p -value for testing H_0 across all questions is
 1204
 1205
$$p_{\text{global}} = \Pr(\chi_{2Q}^2 \geq \chi_{\text{Fisher}}^2).$$

1206 Given a significance level α (e.g., $\alpha = 0.05$), we make the following decision:
 1207
 1208

- If $p_{\text{global}} < \alpha$, we reject the global null hypothesis H_0 , which indicates that at least some of the correlations ρ_q are significantly different from zero across the questions.
- If $p_{\text{global}} \geq \alpha$, we fail to reject H_0 , which supports the hypothesis that the correlations ρ_q are zero for all questions at the significance level α .

1209 We conduct the correlation test described above on a benchmark of $Q = 600$ questions, each with
 1210 $n = 16$ independent rollouts. For each question q , we compute the Pearson correlation between
 1211 \tilde{R}_q and \tilde{Z}_q , obtain the corresponding p -value p_q , and aggregate across all questions using Fisher's
 1212 method to compute the global p -value p_{global} .

1213 We evaluate the policy model π_{θ_t} at four checkpoints during training of Qwen2.5-Math-1.5B,
 1214 corresponding to 0.0, 0.5, 1.0 epochs. At each checkpoint, we report the resulting p_{global} values in
 1215 Table 5. Since all global p -values exceed the chosen significance level $\alpha = 0.05$, we do not reject the
 1216 null hypothesis, which supports our assumption that the correlations ρ_q are zero across all questions.
 1217

Epoch	Global p -value	
	$\tilde{Z}_j = \mathbb{1}^\top H(\tilde{o}_j)$	$\tilde{Z}_j = \ H(\tilde{o}_j)\ _2$
0.0	0.3230	0.7322
0.5	0.3050	0.1108
1.0	0.3050	0.2186

1218 Table 5: Global p -values (p_{global}) across training epochs for Qwen2.5-Math-1.5B.
 1219

1220 B.2 FIRST-ORDER CORRELATION TEST VIA EDGINGTON'S METHOD

1221 For each question q , let $\hat{\rho}_q$ denote the sample Pearson correlation computed from n independent
 1222 rollouts, and let p_q be the corresponding two-sided p -value for testing the null hypothesis
 1223

$$H_{0,q} : \rho_q = 0.$$

1224 To aggregate evidence across all Q questions, we apply Edgington's sum-of- p method.
 1225

1226 **Sum of p -values.** Each per-question p_q is treated as a realization of a $\text{Uniform}(0, 1)$ variable under
 1227 its null hypothesis. Edgington's statistic is defined by the simple sum
 1228

$$S_{\text{Ed}} = \sum_{q=1}^Q p_q.$$

1242 **Null distribution.** Under the global null hypothesis
 1243

$$1244 \quad H_0 : \rho_q = 0 \quad \forall q,$$

1245 each $p_q \sim \text{Uniform}(0, 1)$, and therefore
 1246

$$1247 \quad S_{\text{Ed}} \sim \text{Irwin-Hall}(Q),$$

1248 with mean and variance
 1249

$$1250 \quad \mathbb{E}[S_{\text{Ed}}] = \frac{Q}{2}, \quad \text{Var}(S_{\text{Ed}}) = \frac{Q}{12}.$$

1251 For large Q , S_{Ed} is well approximated by a normal distribution:
 1252

$$1253 \quad S_{\text{Ed}} \approx \mathcal{N}\left(\frac{Q}{2}, \frac{Q}{12}\right).$$

1256 **Global p -value and decision rule.** Small values of S_{Ed} indicate joint evidence against H_0 . The
 1257 corresponding one-sided global p -value is

$$1258 \quad p_{\text{global}} = \Phi\left(\frac{S_{\text{Ed}} - Q/2}{\sqrt{Q/12}}\right),$$

1261 where Φ denotes the standard normal CDF. Given a significance level $\alpha = 0.5$, we reject H_0 when
 1262 $p_{\text{global}} < \alpha$.
 1263

1264 We set up the experiment identically to the Fisher’s method test in Appendix B.1, using the same
 1265 benchmark of $Q = 600$ questions, each with $n = 16$ independent rollouts. For each checkpoint of
 1266 the policy model π_{θ_t} , we compute the Edgington statistic and report the global p -value. Since all
 1267 global p -values exceed the chosen significance level $\alpha = 0.05$, we do not reject the null hypothesis,
 1268 which supports our assumption that the correlations ρ_q are zero across all questions.
 1269

Epoch	Global p -value	
	$\tilde{Z}_j = \mathbb{1}^\top H(\tilde{o}_j)$	$\tilde{Z}_j = \ H(\tilde{o}_j)\ _2$
0.0	0.9125	0.7894
0.5	0.8963	0.3964
1.0	0.8912	0.2148

1276 Table 6: Global p -values (p_{global}) across training epochs for Qwen2.5-Math-1.5B using Edging-
 1277 ton’s method.
 1278

1280 B.3 EQUAL VARIANCE TEST VIA LEVENE’S TEST 1281

1282 In the numerical experiments, we have assumed that the variance for \tilde{Z}_q is constant across different
 1283 prompts q . We proceed with a hypothesis test:
 1284

$$1285 \quad H_0 : \sigma_{Z_q}^2 = \sigma_{Z_{q'}}^2, \quad \forall q \neq q', \quad H_1 : \text{At least one } \sigma_{Z_q}^2 \neq \sigma_{Z_{q'}}^2.$$

1287 For each question q , consider the random variable \tilde{Z}_q with n_q independent observations $\{\tilde{Z}_{q,j}\}_{j=1}^{n_q}$.
 1288

1289 **Transform observations for Levene’s test.** Let $Y_{q,j}$ denote the absolute deviation from the per-
 1290 question median:
 1291

$$1291 \quad Y_{q,j} = |\tilde{Z}_{q,j} - \text{median}(\tilde{Z}_{q,1}, \dots, \tilde{Z}_{q,n_q})|.$$

1292 **Compute group means of transformed observations.** The mean of the transformed observations
 1293 for question q is
 1294

$$1295 \quad \bar{Y}_q = \frac{1}{n_q} \sum_{j=1}^{n_q} Y_{q,j},$$

1296 and the overall mean across all questions is
 1297

$$1298 \quad \bar{Y} = \frac{1}{N} \sum_{q=1}^Q \sum_{j=1}^{n_q} Y_{q,j}, \quad N = \sum_{q=1}^Q n_q.$$

$$1299$$

$$1300$$

1301 **Compute Levene's test statistic.** The test statistic is given by
 1302

$$1303 \quad W = \frac{(N - Q) \sum_{q=1}^Q n_q (\bar{Y}_q - \bar{Y})^2}{(Q - 1) \sum_{q=1}^Q \sum_{j=1}^{n_q} (Y_{q,j} - \bar{Y}_q)^2}.$$

$$1304$$

$$1305$$

1306 Under the null hypothesis that the variances are equal across questions,
 1307

$$1308 \quad H_0 : \sigma_{Z_q}^2 = \sigma_{Z_{q'}}^2, \quad \forall q \neq q',$$

$$1309$$

1310 the statistic W approximately follows an F -distribution with $Q - 1$ and $N - Q$ degrees of freedom
 1311 $W \sim F_{Q-1, N-Q}$.

1312 **Compute p -value and decision rule.** The p -value for testing H_0 is
 1313

$$1314 \quad p_{\text{Levene}} = \Pr(F_{Q-1, N-Q} \geq W).$$

$$1315$$

1316 Given a significance level α (e.g., $\alpha = 0.05$), we make the following decision:
 1317

- 1317 • If $p_{\text{Levene}} < \alpha$, we reject H_0 , indicating that the variances of \tilde{Z}_q differ across questions.
- 1318 • If $p_{\text{Levene}} \geq \alpha$, we fail to reject H_0 , the hypothesis that the variances are equal across all ques-
 1319 tions, at the significance level α .

1320 We conduct the variance homogeneity test described above on a benchmark of $Q = 600$ questions,
 1321 each with $n = 16$ independent rollouts. We perform Levene's test across all questions to assess
 1322 the equality of variances. We evaluate the policy model π_{θ_t} at four checkpoints during training of
 1323 Qwen2.5-Math-1.5B, corresponding to 0.0, 0.5, 1.0 epochs. At each checkpoint, we report the
 1324 resulting global p -values p_{Levene} in Table 7. Since all p_{Levene} exceed the chosen significance level
 1325 $\alpha = 0.05$, we can not reject the null hypothesis, which supports our assumption that the variances
 1326 $\sigma_{Z_q}^2$ are equal across all questions.
 1327

1328 Epoch	1329 Global p -value	
	1330 $\tilde{Z}_j = \mathbb{1}^\top H(\tilde{o}_j)$	1330 $\tilde{Z}_j = \ H(\tilde{o}_j)\ _2$
1331 0.0	0.5019	0.2705
1332 0.5	0.4132	0.4785
1333 1.0	0.3847	0.3847

1334 Table 7: p_{Levene} from Levene's test across training epochs for Qwen2.5-Math-1.5B, assessing
 1335 variance homogeneity of \tilde{Z}_q .
 1336

1338 **B.4 EQUAL VARIANCE TEST VIA O'BRIEN'S TEST**

1340 In the numerical experiments, we have assumed that the variance for \tilde{Z}_q is constant across different
 1341 prompts q . We proceed with a hypothesis test:
 1342

$$1343 \quad H_0 : \sigma_{Z_q}^2 = \sigma_{Z_{q'}}^2, \quad \forall q \neq q', \quad H_1 : \text{At least one } \sigma_{Z_q}^2 \neq \sigma_{Z_{q'}}^2.$$

$$1344$$

1345 For each question q , consider the random variable \tilde{Z}_q with n_q independent observations $\{\tilde{Z}_{q,j}\}_{j=1}^{n_q}$.
 1346

1347 **Transform observations for O'Brien's test.** Let $Y_{q,j}$ denote O'Brien's transformation of the ob-
 1348 servations:
 1349

$$Y_{q,j} = \frac{(n_q - 1.5)n_q(\tilde{Z}_{q,j} - \bar{\tilde{Z}}_q)^2 - 0.5s_q^2(n_q - 1)}{(n_q - 1)(n_q - 2)},$$

1350 where \tilde{Z}_q is the sample mean for question q , and s_q^2 is the unbiased sample variance for question q .
 1351

1352 **Compute group means of transformed observations.** The mean of the transformed observations
 1353 for question q is

$$1354 \quad \bar{Y}_q = \frac{1}{n_q} \sum_{j=1}^{n_q} Y_{q,j},$$

1357 and the overall mean across all questions is

$$1358 \quad \bar{Y} = \frac{1}{N} \sum_{q=1}^Q \sum_{j=1}^{n_q} Y_{q,j}, \quad N = \sum_{q=1}^Q n_q.$$

1362 **Compute O'Brien's test statistic.** The test statistic is given by
 1363

$$1364 \quad W_{\text{OB}} = \frac{(N - Q) \sum_{q=1}^Q n_q (\bar{Y}_q - \bar{Y})^2}{(Q - 1) \sum_{q=1}^Q \sum_{j=1}^{n_q} (Y_{q,j} - \bar{Y}_q)^2}.$$

1367 Under the null hypothesis that the variances are equal across questions,
 1368

$$1369 \quad H_0 : \sigma_{Z_q}^2 = \sigma_{Z_{q'}}^2, \quad \forall q \neq q',$$

1371 the statistic W_{OB} approximately follows an F -distribution with $Q - 1$ and $N - Q$ degrees of freedom
 1372 $W_{\text{OB}} \sim F_{Q-1, N-Q}$.

1373 **Compute p -value and decision rule.** The p -value for testing H_0 is
 1374

$$1375 \quad p_{\text{OB}} = \Pr(F_{Q-1, N-Q} \geq W_{\text{OB}}).$$

1376 Given a significance level α (e.g., $\alpha = 0.05$), we make the following decision:
 1377

- 1378 • If $p_{\text{OB}} < \alpha$, we reject H_0 , indicating that the variances of \tilde{Z}_q differ across questions.
 1379
- 1380 • If $p_{\text{OB}} \geq \alpha$, we fail to reject H_0 , the hypothesis that the variances are equal across all questions,
 1381 at the significance level α .

1382 We conduct the variance homogeneity test described above on a benchmark of $Q = 600$ questions,
 1383 each with $n = 16$ independent rollouts. We perform O'Brien's test across all questions to assess
 1384 the equality of variances. We evaluate the policy model π_{θ_t} at three checkpoints during training
 1385 of Qwen2.5-Math-1.5B, corresponding to 0.0, 0.5, 1.0 epochs. At each checkpoint, we report
 1386 the resulting global p -values p_{OB} in Table 8. Since all p_{OB} exceed the chosen significance level
 1387 $\alpha = 0.05$, we cannot reject the null hypothesis, which supports our assumption that the variances
 1388 $\sigma_{Z_q}^2$ are equal across all questions.
 1389

1390 Epoch	1391 Global p -value	
	$\tilde{Z}_j = \mathbb{1}^\top H(\tilde{o}_j)$	$\tilde{Z}_j = \ H(\tilde{o}_j)\ _2$
1393 0.0	0.1612	0.3009
1394 0.5	0.1215	0.2563
1395 1.0	0.1229	0.2420

1396 Table 8: p_{OB} from O'Brien's test across training epochs for Qwen2.5-Math-1.5B, assessing
 1397 variance homogeneity of \tilde{Z}_q .
 1398

1400 **C ADDITIONAL INFORMATION ON NUMERICAL EXPERIMENTS**
 1401

1402 **Hyperparameters.** We curate a list of important training hyperparameters for our experiment in
 1403 Table 9.

Table 9: Hyperparameter configuration.

Category	Hyperparameter	Value / Setting
Optimizer	Optimizer	AdamW
	Learning rate	1×10^{-6}
	Warm-up	20 rollout steps
rollout	Prompt batch size	512
	Responses per prompt	6/8/Dynamic
Training	Mini-batch size	512
	Max generation length	10 240 tokens
	Temperature	1.0

C.1 ADDITIONAL INFORMATION ON ABLATION STUDIES

Inverse-accuracy allocation. We allocate more rollout budget to prompts with lower empirical accuracy. Concretely, letting acc_i denote the running accuracy estimate for prompt i , we set target weights $w_i \propto (1 - \text{acc}_i + \epsilon)$ and normalize to meet the global budget and per-prompt bounds.

Inverse-variance allocation. We allocate more rollout budget to prompts whose answers exhibit lower variance. Letting σ_i^2 be the (running) answer variance estimate, we set $w_i \propto 1/(\sigma_i^2 + \epsilon)$ with the same normalization.

Both heuristics are implemented via a continuously relaxed, constrained optimization that enforces the total-budget and box constraints; we solve it with an online solver and then map fractional solutions to integers using the rounding heuristic.

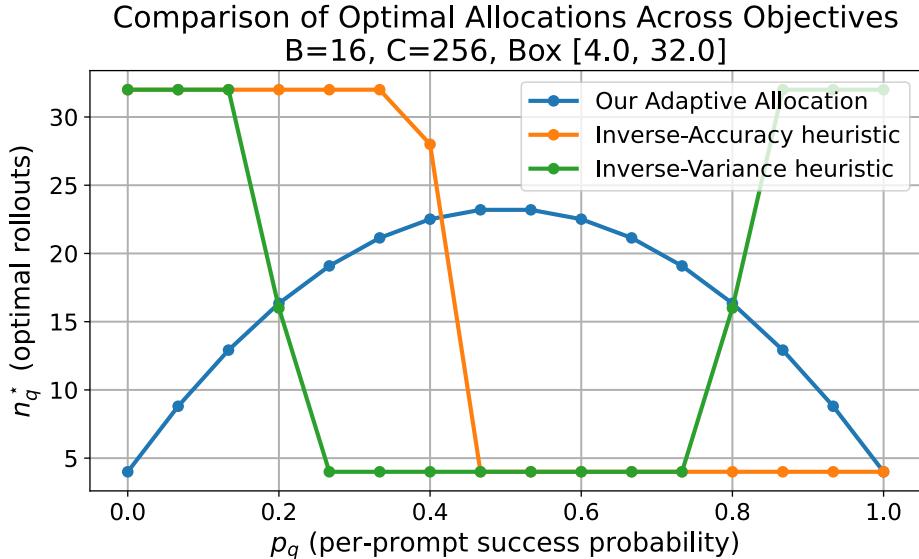


Figure 3: Comparison of optimal rollout allocations produced by different heuristics versus our proposed variance-aware allocation strategy. The figure plots the optimal number of rollouts n_i^* against prompt difficulty p_i , highlighting how our method allocates budget differently from inverse-accuracy and inverse-variance baselines.

C.2 PROMPT TEMPLATE.

During training, we only use one prompt template for every prompt in the dataset. There are two prompt templates, one for mathematical reasoning and one for tool-augmented reasoning.

1458
1459
1460
1461

Figure 4: Prompt template for mathematical reasoning

```

1462 Solve the following math problem step by step. The last line of your
1463 response should be of the form Answer: $Answer (without quotes)
1464 where $Answer is the answer to the problem. Do not wrap $Answer with
1465 \boxed{}.
1466 current question: {{question}}
1467
1468 Below are two examples for format reference.
1469 Example question 1: Solve for x: 3x - 5 = 16.
1470
1471 Response:
1472 Add 5 to both sides: 3x = 21.
1473 Divide both sides by 3: x = 7.
1474 Answer: 7
1475
1476 Solve the current question. Remember to put your answer on its own line
1477 after "Answer:".
1478
1479
1480
1481
1482
1483
```

Figure 5: Prompt template for tool augmented reasoning

```

1484 In this environment you have access to a set of tools you can use to
1485 assist with the user query.
1486
1487 You may perform multiple rounds of function calls.
1488
1489 In each round, you can call one or more functions.
1490
1491 Here are available functions in JSONSchema format:
1492   \n'''json\n{func_schemas}\n'''\\n
1493
1494 In your response, you need to first think about the reasoning process in
1495 the mind and then conduct function calling to get the information or
1496 perform the actions if needed. \
1497 The reasoning process and function calling are enclosed within <think>
1498 </think> and <tool_call> </tool_call> tags. \
1499 The results of the function calls will be given back to you after
1500 execution, \
1501 and you can continue to call functions until you get the final answer
1502 for the user's question. \
1503 Finally, if you have got the answer, enclose it within \boxed{{}} with
1504 latex format and do not continue to call functions, \
1505 i.e., <think> Based on the response from the function call, I get the
1506 weather information. </think> The weather in Beijing on 2025-04-01
1507 is \[ \boxed{20C} \].
1508
1509 For each function call, return a json object with function name and
1510 arguments within <tool_call></tool_call> XML tags:
1511 <tool_call>
1512   [{"name": <function-name>, "arguments": <args-json-object>}]
1513 </tool_call>
1514
1515
1516
1517
1518
1519
1520
1521
```

1512 **D ALGORITHMS**
15131514 The algorithm capturing the complete flow the posterior update for the Gaussian Process is provided
1515 in Algorithm 1
15161517 **Algorithm 1** Recursive GP Posterior Update
1518

1519 **Require:** Mini-batch \mathcal{B}_t ; rollout allocation $\{n_q\}_{q=1}^{\mathcal{B}_t}$; prior mean $m_t(\mathcal{D}) \in \mathbb{R}^Q$, kernel matrix $\Sigma \in$
1520 $\mathbb{R}^{Q \times Q}$;
1521 1: **for** each $q \in \mathcal{B}_t$ **do**
1522 2: # Run n_q rollouts and observe outcomes $\tilde{R}_j \in \{-1, 1\}$
1523 3: $\bar{R}_q \leftarrow \frac{1}{n_q} \sum_{j=1}^{n_q} \tilde{R}_j$
1524 4: $\hat{g}_q \leftarrow \text{sigmoid}^{-1} \left(\text{clip} \left(\frac{\bar{R}_q + 1}{2}, \epsilon, 1 - \epsilon \right) \right)$
1525 5: **end for**
1526 6: $g_t^{\text{observe}} \leftarrow (\hat{g}_q)_{q \in \mathcal{B}_t}$
1527 7: Partition m_t and Σ according to \mathcal{B}_t and \mathcal{B}_t^c
1528 8: $m_{t, \mathcal{B}_t^c}^* \leftarrow m_{t, \mathcal{B}_t^c} + \Sigma_{\mathcal{B}_t^c \mathcal{B}_t} \Sigma_{\mathcal{B}_t \mathcal{B}_t}^{-1} (g_t^{\text{observe}} - m_{t, \mathcal{B}_t})$
1529 9: $\Sigma^* \leftarrow \Sigma_{\mathcal{B}_t^c \mathcal{B}_t^c} - \Sigma_{\mathcal{B}_t^c \mathcal{B}_t} \Sigma_{\mathcal{B}_t \mathcal{B}_t}^{-1} \Sigma_{\mathcal{B}_t \mathcal{B}_t^c}$
1530 10: **for** $q = 1$ **to** Q **do**
1531 11: **if** $q \in \mathcal{B}_t$ **then** $m_{t+1}(x_q) \leftarrow \hat{g}_q$ **else** $m_{t+1}(x_q) \leftarrow m_{t, \mathcal{B}_t^c}^*(x_q)$ **end if**
1532 12: **end for**
1533 13: $\hat{p}_{t+1} = \text{sigmoid}(m_{t+1}(\mathcal{D}))$
1534 14: **return** $\{\hat{p}_{t+1}\}, m_{t+1}$

1536
1537 Algorithm 2 presents our heuristic rounding procedure, which maps a continuous solution to a dis-
1538 crete one while ensuring that the budget constraints remain satisfied.
15391540 **Algorithm 2** Heuristic rounding for integer rollout allocation

1541 **Require:** Solution $\{n_q^*\}$, total budget C , bounds $\{L, U\}$, objective functions $f_q(\cdot)$ for each q
1542 1: For each q , set $\hat{n}_q \leftarrow \lfloor n_q^* \rfloor$
1543 2: $C_{\text{rem}} \leftarrow C - \sum_{q \in \mathcal{B}_t} \hat{n}_q$
1544 3: **for** each q with $\hat{n}_q < U$ **do**
1545 4: Compute incentive: $\Delta_q \leftarrow f_q(\hat{n}_q) - f_q(\hat{n}_q + 1)$
1546 5: **end for**
1547 6: **while** $C_{\text{rem}} > 0$ **do**
1548 7: Select $q^* = \arg \max_{q: \hat{n}_q < U} \Delta_q$
1549 8: Set $\hat{n}_{q^*} \leftarrow \hat{n}_{q^*} + 1$
1550 9: Recompute $\Delta_{q^*} \leftarrow f_{q^*}(\hat{n}_{q^*}) - f_{q^*}(\hat{n}_{q^*} + 1)$
1551 10: $C_{\text{rem}} \leftarrow C_{\text{rem}} - 1$
1552 11: **end while**
1553 12: **return** Integer allocation $\{\hat{n}_q\}$ with $\sum_{q \in \mathcal{B}_t} \hat{n}_q = C$ and $L \leq \hat{n}_q \leq U$ for all q

1554

1555

1556

1557 **E EXTENSION TO CONTINUOUS REWARDS**
1558

1559

1560 This section details the necessary adaptations to our predictive rollout allocation strategy for the case
1561 where the reward $R(\tilde{o}_j)$ is a real-valued random variable. All definitions, assumptions, and notation
1562 follow the main text unless otherwise stated.

1563

1564 **E.1 GRADIENT VARIANCE FOR CONTINUOUS REWARDS**

1565

1566

1567

1568 We first state the analogues of our variance propositions for the continuous reward setting. The
1569 proofs are intermediate results from proofs for binary case in Appendix A.

1566
 1567 **Proposition E.1** (Dr. GRPO gradient variance, continuous reward). *Let $R(\tilde{o}_j) = \tilde{R}$ be a real-
 1568 valued random variable with variance $\text{Var}(\tilde{R})$. If Assumption 4.1 holds and $\text{Var}(\tilde{Z}) = \sigma_Z^2$, then the
 1569 variance of the per-prompt projected Dr. GRPO gradient estimator with n rollouts is*

$$1570 \quad \text{Var}(\tilde{G}) = \frac{(n-1)\sigma_Z^2}{n^2} \text{Var}(\tilde{R}).$$

1573 **Proposition E.2** (RLOO gradient variance, continuous reward). *Let $R(\tilde{o}_j) = \tilde{R}$ be a real-valued
 1574 random variable with variance $\text{Var}(\tilde{R})$. If Assumption 4.1 holds and $\text{Var}(\tilde{Z}) = \sigma_Z^2$, then the
 1575 variance of the per-prompt projected RLOO gradient estimator with n rollouts is*

$$1577 \quad \text{Var}(\tilde{G}) = \frac{\sigma_Z^2}{n-1} \text{Var}(\tilde{R}).$$

1580 E.2 GAUSSIAN PROCESS PREDICTION OF REWARD VARIANCE

1581 For continuous rewards, the per-prompt gradient variance depends on $\text{Var}(\tilde{R}_q)$, which is not directly
 1582 observable prior to rollout. To predict this quantity, we replace the GP model for success probability
 1583 with a GP model for reward variance. Specifically, for each prompt q , we model the reward variance
 1584 as $v_{q,t} = \text{softplus}(g_t(x_q)) = \log(1 + \exp(g_t(x_q)))$, where g_t is a latent GP as in the main text.
 1585 After observing rewards $\{\tilde{R}_{q,j}\}_{j=1}^{n_q}$, we compute the sample variance \tilde{s}_q^2 and set the observation for
 1586 the latent variable as $\hat{g}_{q,t} = \log(\exp(\tilde{s}_q^2) - 1)$. The GP posterior update and recursive prediction
 1587 steps proceed identically, replacing the sigmoid link with the softplus link.

1589 E.3 BUDGET ALLOCATION OPTIMIZATION

1591 Given predicted reward variances $\widehat{\text{Var}}(\tilde{R}_q)$, we define $a_q := \sigma_{Z_q}^2 \widehat{\text{Var}}(\tilde{R}_q)$. The continuous relax-
 1592 ation of the rollout allocation problem for Dr. GRPO becomes

$$1594 \quad \min \left\{ \sum_{q \in \mathcal{B}_t} a_q \frac{n_q - 1}{n_q^2} : \sum_{q \in \mathcal{B}_t} n_q = C, L \leq n_q \leq U, n_q \in \mathbb{R} \forall q \right\},$$

1597 and for RLOO,

$$1599 \quad \min \left\{ \sum_{q \in \mathcal{B}_t} a_q \frac{1}{n_q - 1} : \sum_{q \in \mathcal{B}_t} n_q = C, L \leq n_q \leq U, n_q \in \mathbb{R} \forall q \right\}.$$

1602 The optimal solutions are given by Theorems 5.1 and 5.2 in the main text, now with the updated
 1603 definition of a_q . The rounding procedure described in Appendix D applies without modification.

1605 F EMPIRICAL VALIDATION OF IMPORTANCE RATIOS IN PARTIALLY 1606 OFF-POLICY TRAINING

1608 In the off-policy regime, importance ratios $r_{j,\tau}(\theta)$ rarely deviate from 1. This indicates that even
 1609 partially off-policy training methods produce updates that are close to on-policy, a phenomenon
 1610 particularly pronounced in LLM post-training. Consequently, Assumption 3.1 is unlikely to be
 1611 restrictive in our setting.

1613 To support this assumption empirically, we measure importance ratios on the response tokens
 1614 of off-policy samples from our training runs. Prompt and padding tokens are excluded from
 1615 this analysis. Our evaluation uses 2,560 prompts sampled across different stages of training for
 1616 Qwen2.5-Math-1.5B, with 4 rollouts per prompt. We then collect the importance ratios for all
 1617 generated tokens and compute the fraction that falls within the interval $[1 - \alpha, 1 + \alpha]$ for several
 1618 values of α . The results are summarized in Table 10.

1619 These results confirm that the vast majority of importance ratios remain extremely close to 1, pro-
 1620 viding strong empirical justification for the approximation $r_{j,\tau}(\theta) \approx 1$ in our analysis.

α	Percentage in $[1 - \alpha, 1 + \alpha]$
5e-02	97.85%
5e-03	82.46%
5e-04	71.51%

Table 10: Fraction of response tokens whose importance ratios fall within $[1 - \alpha, 1 + \alpha]$ for various choices of α .

G TRAINING EVOLUTION COMPARISON

In this section, we assess the robustness and stability of our method by retraining Qwen2.5-Math-1.5B using GRPO, RLOO, and their VIP-augmented counterparts (GRPO+VIP, RLOO+VIP) across **five random seeds**. Figures 6 and 7 report the mean and standard deviation for multiple performance metrics (*best@32*, *maj@32*, *mean@32*).

To ensure that all training trajectories are directly comparable, **every model is trained on the same dataset under identical optimization settings**: the same fixed ordering of 17k training prompts, one epoch of training, a batch size of 512, mini-batch size of 64, and rollout budget per batch of $512 * 8$. As a result, each gradient step corresponds to the same amount of data and computation across all methods.

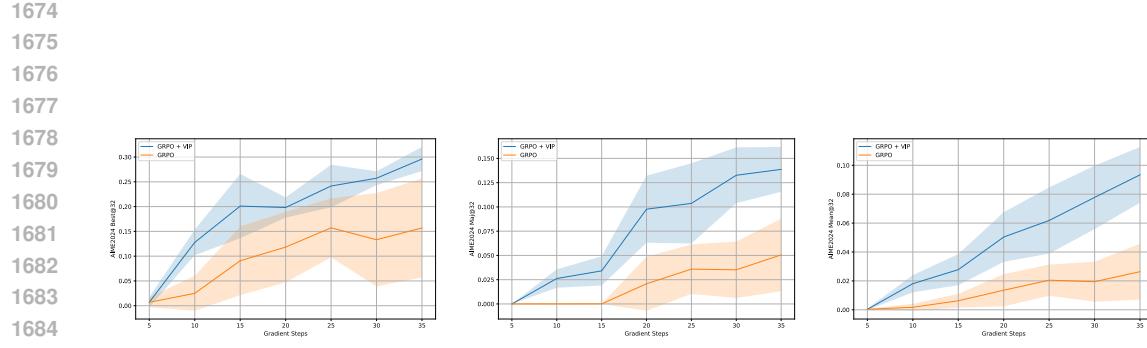
Across all seeds and evaluation checkpoints, we observe consistent and pronounced improvements from using VIP:

(i) Faster early-stage learning. VIP yields substantial gains in the early phase of training. For example, on AIME2024 *mean@32*, RLOO+VIP reaches an accuracy of **0.0316** by step 10, whereas RLOO reaches only **0.0056**—a **6× increase**. Similar trends appear in both *best@32* and *maj@32* metrics across AIME2024 and AIME2025.

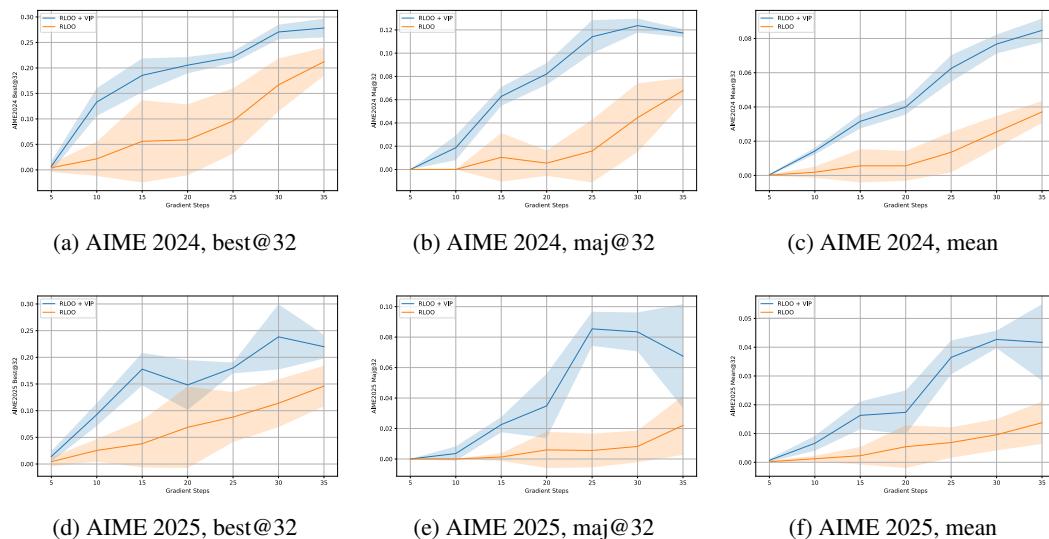
(ii) Steeper and more reliable improvement per gradient step. VIP consistently increases the slope of the learning curve. Its trajectories rise smoothly and monotonically, while the baselines (particularly GRPO on AIME2025 *best@32*) often progress slowly or temporarily plateau between steps 10–20. This shows that variance-aware allocation accelerates the effective learning rate without introducing instability.

(iii) Increased training stability. VIP reduces variance across seeds and produces smoother learning curves, reflecting more stable gradient updates. This aligns with the goal of variance-informed allocation: reducing gradient noise directly translates into more predictable and reliable optimization dynamics.

Together, these results demonstrate that VIP improves both the **speed** and the **stability** of GRPO and RLOO training, leading to faster convergence and consistently higher performance throughout the entire training trajectory.



(a) AIME 2024, best@32 (b) AIME 2024, maj@32 (c) AIME 2024, mean (d) AIME 2025, best@32 (e) AIME 2025, maj@32 (f) AIME 2025, mean



(a) AIME 2024, best@32 (b) AIME 2024, maj@32 (c) AIME 2024, mean (d) AIME 2025, best@32 (e) AIME 2025, maj@32 (f) AIME 2025, mean

Figure 7: RLOO vs. RLOO+VIP on AIME 2024 and 2025 across different accuracy metrics.