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Abstract

In the era of foundation models and Large Language Models (LLMs), Euclidean1

space has been the de facto geometric setting for machine learning architectures.2

However, recent literature has demonstrated that this choice comes with funda-3

mental limitations. At a large scale, real-world data often exhibits inherently4

non-Euclidean structures, such as multi-way relationships, hierarchies, symmetries,5

and non-isotropic scaling, in a variety of domains, such as languages, vision, and6

the natural sciences. It is challenging to effectively capture these structures within7

the constraints of Euclidean spaces. This position paper argues that moving beyond8

Euclidean geometry is not merely an optional enhancement but a necessity to main-9

tain the scaling law for the next-generation of foundation models. By adopting these10

geometries, foundation models could more efficiently leverage the aforementioned11

structures. Task-aware adaptability that dynamically reconfigures embeddings to12

match the geometry of downstream applications could further enhance efficiency13

and expressivity. Our position is supported by a series of theoretical and empirical14

investigations of prevalent foundation models. Finally, we outline a roadmap for15

integrating non-Euclidean geometries into foundation models, including strategies16

for building geometric foundation models via fine-tuning, training from scratch,17

and hybrid approaches.18

1 Introduction19

Figure 1: Manifolds with corresponding
graph structures or underlying relationships,
which represent different types of token rela-
tionships: hierarchical (left), uniform (mid-
dle), and cyclical (right) dependencies.

Foundation models, such as Large Language Models20

(LLMs), have emerged as a cornerstone of current AI21

advancements due to their ability to generalize across di-22

verse tasks with minimal fine-tuning [15, 36, 22, 115].23

Euclidean geometry has been the default framework for24

designing such models, largely driven by the natural com-25

patibility of Euclidean geometry with fundamental neural26

network operations—such as linear transformations, con-27

volutions, and attention mechanisms—which can be exe-28

cuted efficiently using standard linear algebra in Euclidean29

space. However, real-world datasets often exhibit im-30

plicit non-Euclidean structures, such as the hierarchical31

organization of natural language—including concept tax-32

onomies and entailment relationships [104, 136, 82]—as well as hierarchical relationships among33

object classes, scenes, and their constituent categories in visual data [51, 107]. Furthermore, non-34

Euclidean characteristics are inherent in biological data, such as protein structures [143] and RNA-seq35

data [76]. Given the non-Euclidean characteristics of training data, along with the challenges faced by36
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current foundation models—from hallucinations to computational inefficiencies—it becomes crucial37

to question whether Euclidean geometry should remain the default for foundation models.38

Position: The development of non-Euclidean foundation models is essential for effectively39

representing, modeling, and analyzing complex data structures and relationships in real-world40

applications. Particularly, this paper advocates for the development of non-Euclidean foundation41

models at the scale of billions of parameters, which is on both a much larger scale and a much broader42

geometric scope than existing research that focuses almost entirely on low-dimensional settings43

within specific geometries, such as the hyperbolic space. With arguments grounded in theoretical44

insights and experimental evidence, we contend that by aligning foundation models—whether visual,45

linguistic, or scientific—with the intrinsic geometries of their training data, we can improve three46

critical aspects of these models: representational capabilities, adaptability to diverse geometric47

structures, and scalability.48

Representational Capabilities. Euclidean space has limited capabilities to represent complex49

geometric structures with diverse local properties, resulting in significant distortion when embedding50

such data in low-dimensional Euclidean spaces [135]. In contrast, hyperbolic spaces, with their51

negative curvature, excel at representing hierarchical structures with minimal distortion in low52

dimensions [80, 120]. Similarly, spherical geometries, defined by positive curvature, are well-suited53

for modeling data with bounded structures and angular relationships [40, 41, 138].54

Adaptability. Incorporating non-Euclidean geometrical operations into foundation models provides55

substantially enhanced adaptability to the diverse geometric structures in training datasets, particularly56

in the case of large-scale datasets—as is typical for these models—where heterogeneity is inherent57

by design. This adaptability improves the models’ flexibility and transferability, as many instances of58

downstream tasks benefit from acknowledging the geometric structure in the data, such as knowl-59

edge graph completion [7, 145], social network analysis [156, 72], multi-label classification, drug60

discovery [111], user preferences recommendation [28, 155, 154], and code understanding [132].61

Scalability. Adapting foundation models to non-Euclidean geometry enables expressive lower-62

dimensional embeddings, reducing computational costs without sacrificing performance. A critical63

implication lies in the scaling laws of foundation models [65], where performance in Euclidean64

models follows a power-law scaling of the form L(N) ∝ N−α, with L and N being the loss and65

parameter count. This behavior reveals inherent inefficiencies in how Euclidean space handles66

increasing model complexity and data dimensionality. In contrast, Riemannian methods have shown67

promises to improve scaling by efficiently compressing information [20, 74]. For instance, hyperbolic68

spaces better captures long-range dependencies [136] and mixed-curvature approaches [55, 145]69

allow different model components to scale according to their optimal geometric properties.70

Roadmap. Moreover, we propose a roadmap for integrating non-Euclidean geometries into founda-71

tion models. This includes both adapting existing Euclidean models to incorporate these principles72

and developing foundation models from scratch. We also highlight key challenges and outline the73

steps required to advance this non-Euclidean vision, from architectural design to the creation of non-74

Euclidean libraries, given that existing frameworks such as DeepSpeed [116] and Flash Attention [33]75

are tailored exclusively for Euclidean models.76

2 Background and Preliminaries77

In this section, we give an overview of non-Euclidean spaces, particularly focusing on Riemannian78

manifolds. For more details please see [84] and Appendix A.79

2.1 Non-Euclidean Geometry Foundations80

Riemannian Manifolds. A smooth n-dimensional manifold M is a topological space that is locally81

Euclidean. Each point x is associated with a tangent space TxM, which is an n-dimensional vector82

space that acts as a first-order local approximation of M. A Riemannian metric g on M is a collection83

g := (gx)x∈M of positive definite bilinear forms gx(·, ·) : TxM× TxM → Rn, varying smoothly84

with x. gx induces the (sectional) curvature at point x, which measures how M deviates from flatness85

at x. A Riemannian manifold is a pairing (M, g). For example, Rn with the usual Euclidean inner86

product is a Riemannian manifold with constant curvature 0. gx can be seen as a generalization of87

inner products, where the norm of p ∈ TxM is ∥p∥g =
√
gx(p, p). The choice of g induces a global88
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distance function d(·, ·) on M. A geodesic between x, y is a local distance minimizing smooth curve.89

In particular, the shortest paths are geodesics. With certain assumption on the structure of M, one90

can define the exponential map expx : TxM → M for x ∈ M, and its inverse, the logarithmic91

map logx : M → TxM. Additionally, the parallel transport map PTx(v, w), where v, w ∈ TxM,92

generalizes translation, transporting w starting at x in the direction of v with no acceleration.93

2.2 Deep Learning in Non-Euclidean Spaces94

Recent years have witnessed an increasing interest in extending deep learning techniques to Rieman-95

nian manifolds. We discuss several advances for designing neural networks and Transformers in96

non-Euclidean geometries, as well as optimization on manifolds, with more details in Appendix A.97

Non-Euclidean Neural Networks. Several works have explored neural networks that leverage98

geodesic distance to perform neural network operations [21, 94, 17, 78]. Within hyperbolic learning,99

prior works have developed neural network layers [47, 123, 104, 26, 149], graph neural networks [91,100

23], vision models [10, 141], and residual neural networks [63]. In addition, extensive works have101

developed equivariant neural networks that encode spherical geometry as inductive bias [31, 41,102

32, 34, 42]. Neural networks for mixed curvature manifolds that encompass both hyperbolic and103

spherical models have also been proposed [55, 6]. Many Euclidean convex and stochastic optimization104

algorithms have been extended to manifold learning as well [139, 162, 11, 147, 148].105

Non-Euclidean Transformers. Significant advancements have been made toward Transformers106

in non-Euclidean spaces in recent studies. Prior works have developed attention mechanisms and107

additional essential operations, such as layer normalization, to develop Transformers in hyperbolic,108

spherical, and mixed curvature manifolds [56, 26, 123, 159, 81, 29].109

Nevertheless, there is a lack of works for non-Euclidean foundation models. These prior works110

almost all focus on low-dimensional settings, with few works that consider pre-trained models [27].111

3 Foundation Models Should Embrace Non-Euclidean Geometries112

Euclidean Foundation Models. Foundation models are typically trained on massive corpora to113

learn transferable representations that serve as a basis for downstream tasks [15]. Transformer-based114

language models [36, 22, 22, 113, 53], large-scale vision models such as Vision Transformer (ViT)115

and ResNet [39, 61], and multimodal foundation models like CLIP [112] and DALL-E [115], have116

achieve state-of-the-art performances in a vast amount of tasks across numerous domains.117

3.1 Limitations of Euclidean Geometry for Foundation Models118

The Euclidean assumption is that relationships between data points can be meaningfully characterized119

using distances measured in a flat space. However, theoretical and experimental works have demon-120

strated that Euclidean geometry, with its isotropic nature and uniform scaling, fails to capture121

the complex structures of real-world data, resulting in significant distortions [19, 95, 3, 58, 96].122

As a result, high-quality, low-distortion embeddings are often only possible in high-dimensional123

Euclidean space. Specifically, embeddings of complex structured data, such as hierarchies or trees,124

provably incur high rates of distortion [18, 95]. In this section, we highlight how the flat nature of125

the Euclidean space results in limitations and challenges for foundational models.126

Non-Applicability of the Nash Embedding Theorem. The Nash Embedding Theorem states that127

any Riemannian manifold M of dimension n admits an isometric embedding f into R2n+1 [103],128

seemingly to imply that non-Euclidean spaces would only reduce the embedding dimension by half.129

However, the isometric embedding here is defined to preserve the Riemannian metric, meaning that it130

is locally distance preserving—the length of any path is preserved. However, for the shortest path131

between points x, y ∈ M, its image under f is not necessarily the shortest path (i.e., Euclidean132

straight line) between f(x) and f(y). Conversely, measuring the embedding distortion is concerned133

with whether a map is globally distance preserving, or when the shortest path between x and y134

remains the shortest path between f(x) and f(y), which is defined by isometric embeddings between135

metric spaces. Note that an isometric embedding between Riemannian manifolds is in general136

not an isometric embedding between metric spaces.137
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We are concerned with global distance-preserving embeddings for foundational models, as the dis-138

tance between any pair of token embeddings is crucial for model training. Thus, the Nash Embedding139

Theorem is not applicable since global distortion could still arise from isometric embeddings between140

Riemannian manifolds. For this reason, by “isometry”, we refer to those between metric spaces.141

See Appendix A.2 for more details. As the Nash Embedding Theorem is not applicable, Euclidean142

embeddings suffer from several limitations, which we detail below.143

Dimensionality. Euclidean space requires high dimensionality to embed complex structures with low144

distortion. The following theorem shows the distortion-dimension tradeoff for Euclidean embeddings145

even in the simple case of unweighted token relationships, in the form of complete graphs.146

Theorem 3.1. (Matoušek [97]) Let X be an n-point metric space with uniform distance 1, i.e., an147

unweighted complete graph with n nodes. For ϵ > 0, the minimal d such that X can be embedded148

into Rd with distortion (1 + ϵ) is d = Ω
(

log(n)
ϵ2 log(1/ϵ)

)
149

For any p < 2, ϵ2 log(1/ϵ) tends to 0 faster than ϵp as ϵ → 0. As a result, Theorem 3.1 implies that d150

grows near-quadratically w.r.t. inverse distortion. Furthermore, any unweighted graph with n nodes151

can be isometrically embedded into an unweighted complete graph with n nodes. Thus Theorem 3.1152

implies the same dimensionality issue for embedding any unweighted graph in Euclidean space.153

Distortion. Non-trivial distortion could exist regardless of the dimension of the Euclidean space in154

the cases of more complex structures. The following theorem implies that a wide range of spaces155

cannot be isometrically embedded into Euclidean space, based on Markov convexity (Appendix A.3).156

Theorem 3.2. [83] Let (X, dX), (Y, dY ) be metric spaces. For every p ∈ N, denote Πp(X),Πp(Y )157

the Markov p-convexity constant of X and Y respectively. Let cY (X) = inf{dist(f) : f : X → Y }158

denote the minimum distortion of embedding X in Y . Then cY (X) ≥ Πp(X)
Πp(Y ) .159

When X models hierarchical token relationships, e.g., X = B2k is a complete binary tree of depth160

2k, the distortion for embedding binary trees of depth in any Euclidean space is at least Ω(1) ·
√
log k.161

When X represents circular or periodic dependencies in tokens, e.g., X is a ball of radius r in a162

vertex-transitive graph, the minimal distortion of embedding X into Rn for any n is Ω(
√
log r) [83].163

Moreover, non-trivial distortion exists when embedding other forms of topological space as well,164

including the sphere Sk ⊆ Rk+1, as shown in the following theorem.165

Theorem 3.3. [117] Let (X, dX) be a metric space with X = {a, b, c, d} and dX(a, b) = dX(a, c) =166

dX(a, d) = 2L and dX(b, d) = dX(c, d) = L for L ∈ R+. Then X admits no isometric embedding167

into Rn for any n.168

As these points can be isometrically embedded into Sk, Theorem 3.3 shows that Sk cannot be169

isometrically embedded into Rn for any n ∈ N, resulting in distortion when encoding rotational170

equivariance. In contrast, non-Euclidean geometry can provide a more natural representation of171

complex topological structures, reducing distortion and dimensionality of the embedding space.172

For instance, [120] showed that every finite tree admits an embedding into the hyperbolic plane H2173

with 1 + ϵ multiplicative distortion for any ϵ > 0, leading to O(1) distortion with low dimensionality.174

Take-away. The implications of the previous theoretical discussion are numerous: (1) Limited scala-175

bility. Theorem 3.1 highlights the distortion-dimension trade-off for Euclidean foundation models176

when embedding complex structures, which is reflected in the computational resources required in177

these models. Non-Euclidean geometry produces higher quality embeddings in significantly lower178

dimensions, offering enhanced model scalability; (2) Performance bottleneck. Theorem 3.2 and179

3.3 demonstrate that even in the case of an abundance of compute resources, the linear assumption180

in Euclidean foundation models could still incur significant distortion regardless of the embedding181

dimension for a wide range of topological structures, resulting in a performance upper bound.182

3.2 Non-Euclidean Geometry in Foundation Models183

In this section, we empirically assess embedding distortions for different geometries to validate our184

claims in Section 3.1 and demonstrate that non-Euclidean geometry is more suitable. We then analyze185

token embeddings in foundation models, showing that structures that align with non-Euclidean186

geometry are prevalent, highlighting the need for alternative geometric frameworks.187
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Table 1: δ-Hyperbolicity of the token embedding in various LLMs across several datasets. The
bottom 2 rows show the δ-hyperbolicity values of several metric spaces for reference.

Model arXiv C4 Common Crawl GitHub StackExchange Wikipedia

RoBERTa-Base [92] 0.15± 0.06 0.18± 0.04 0.17± 0.04 0.12± 0.04 0.17± 0.07 0.07± 0.05
LLaMA3.1-8B [53] 0.15± 0.05 0.16± 0.07 0.15± 0.06 0.12± 0.05 0.18± 0.06 0.10± 0.04
GPT-NeoX-20B [14] 0.14± 0.03 0.17± 0.06 0.15± 0.05 0.11± 0.04 0.14± 0.04 0.09± 0.03
Gemma2-9B [134] 0.17± 0.06 0.19± 0.04 0.20± 0.05 0.15± 0.05 0.18± 0.04 0.15± 0.03

Metric Space Sphere Space Dense Graph PubMed Graph Poincaré Space Tree Graph -
Reference δ values 0.99± 0.01 0.63± 0.01 0.40± 0.04 0.14± 0.01 0.0 -

Figure 2: Token frequency v.s. token count (left 2) and token norm vs token count (right 2) for
LLaMa3.1-8B and LLaMaGen. The datasets are chosen to be within the training corpus. The token-
frequency figures show the scale-free properties of the token inputs. The token norms figures reflect
this property for learned token embeddings to some extent, with token count decreasing exponentially
for high normed tokens at the right tail. However, the Euclidean embeddings stil do not fully capture
this property and deviate from it at the left tail. More statistics are shown in Appendix B.

Figure 3: Average (point-wise) distortion on
canonical graphs with 96 nodes, comparing four
spaces with total dimension 6. The least dis-
tortion is achieved by the space with the most
suitable geometry.

Geometry Tree Cycle Ring of Trees
|E| = 95, |V | = 96 |E| = 96, |V | = 96 |E| = 96, |V | = 96

R6 0.1036 0.1042 0.1060
H−1,6 0.0454 0.2356 0.0736
S1,6 0.1440 0.0011 0.1365
H−1,3 × S1,3 0.0624 0.1337 0.0686

Empirical Validation. We empirically vali-188

date our claim that Euclidean space fails to cap-189

ture complex structures faithfully and that non-190

Euclidean spaces are better suited for producing191

high-quality embeddings. Table 3 compares the192

average (point-wise) distortion of four geomet-193

ric spaces (R6, H−1,6, S1,6, and H−1,3×S1,3) in194

representing three canonical graphs (Tree, Cy-195

cle, and Ring of Trees) with 96 nodes, each196

corresponding to a different type of intrinsic to-197

ken relationships (hierarchical, cyclical, and both). The most suitable geometry varies by graph198

type—Lorentzian space (H−1,6) for trees, spherical space (S1,6) for cycles, and mixed geometry199

(H−1,3 × S1,3) for rings of trees—emphasizing the importance of selecting an appropriate geometry200

to minimize distortion.201

Figure 4: Distortion for embedding a Tree
with 96 nodes for varying dimensionality (log
scale). Non-Euclidean geometry achieves
smaller distortion with significantly fewer di-
mensions and has better scaling.

We also compute the distortion value against varying di-202

mensionality. An example is shown in Figure 4 for the203

case of a tree with 96 nodes, plotted on log-scale for vis-204

ibility. The hybrid manifold is a product of hyperbolic205

and spherical spaces, each with half the dimension. The206

4-dimensional hyperbolic space achieves a significantly207

smaller distortion than Euclidean embeddings with 50208

dimensions. This reflects Takeaway 1 in Section 3.1,209

where non-Euclidean geometry achieves superior perfor-210

mance with significantly fewer dimensions. Additionally,211

distortion continues to decrease for hyperbolic and hy-212

brid spaces but plateaus for Euclidean space, reflecting213

Takeaway 2, where Euclidean space has theoretical upper214

bounds for embedding trees but non-Euclidean geometry215

has the potential to continue the performance scaling law216

at high dimensionality. See Appendix B for additional plots of other graph types.217

Hierarchies in Token Embeddings. Based on the above results validating Euclidean embeddings’218

limitations, we further show that these structures which Euclidean spaces struggles to embed is219

prevalent in foundation models. To explore the intrinsic structure within the representations of220

foundation models, we utilize δ-hyperbolicity [54], which quantifies the extent to which a metric221
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space deviates globally from a tree metric (see Appendix C). Each token is treated as a point in a222

discrete metric space X , and a graph is constructed based on similarity scores between each pair.223

We evaluate the hyperbolicity of token embeddings in LLMs, where lower values suggest a tree-like224

structure. As shown in Table 1, the consistently low δ-hyperbolicity values suggest hierarchical225

structures within each prompt across diverse datasets.226

We also analyze the global token embedding distribution in LLMs and pre-trained vision models using227

datasets included in the models’ training corpus [137, 53, 130]. Figure 2 plots token input frequency228

distributions and their occurrences in the dataset on a log scale, revealing a scale-free structure among229

the token embeddings. This scale-free organization suggests an underlying hierarchical structure [9],230

where a small number of high-frequency tokens act as hubs within the semantic network. The figure231

also shows token norm distributions for learned embeddings, where the count for high-norm embed-232

dings decreases exponentially at the right tail, reinforcing the scale-free property. The non-Euclidean233

structures in token distribution are exhibited to some extent even in Euclidean models are most234

likely attributed to the models being optimized during training to maximize representational quality.235

However, the scale-free properties are still not yet fully captured by the Euclidean foundational model,236

where the count of embeddings with small norms still increases. See Appendix B for more statistics.237

Additional Structures. In addition to hierarchical structure, data may exhibit other structural238

characteristics, such as cycles and loops. Many real-world tasks, such as 3D shape analysis [41, 42],239

medical imaging [12, 152], and physics-informed machine learning [89, 90, 2, 31], can benefit from240

encoding data geometry as inductive bias. Euclidean operations, such as convolutional layers, encode241

only translation invariance [43], resulting in performance limitations for these tasks.242

3.3 The Necessity of Non-Euclidean Geometry for Foundation Models243

Here we further explore how non-Euclidean geometry could improve foundation model performance.244

(1) Addressing the limitations in capturing intrinsic token structures. Recent research shows that245

the attention mechanism plays a pivotal role in the expressive capacity of LLMs [1, 124, 142, 8].246

Lemma 3.4 (Balestriero et al. [8]). Let X ∈ RT×D(ℓ) be the input to the ℓ-th247

layer of an LLM, where T is sequence length and D(ℓ) is feature dimension. Atten-248

tion head h’s output at position i is in the convex hull of the first i rows of XVh,(ℓ):249

Headh,(ℓ)(X)i ∈ Hull
{
(Vh,(ℓ))

⊤xj | j = 1, . . . , i
}
. with bounded effective dimension: dimeff ≤250

#
{

Attnh,(ℓ)(X)i,j > 0 | j ∈ {1, . . . , i}
}
. Here, Attnh,(ℓ)(X) is the attention matrix for head h at251

layer ℓ: Attnh,(ℓ)(X) = softmaxcausal(XQh,(ℓ)K
⊤
h,(ℓ)X

⊤).252

This lemma highlights that next-token prediction in LLMs is strongly influenced by relationships253

encoded in previous tokens. As shown in Table 1, tokens exhibits non-Euclidean characteristics.254

Consequently, the standard Euclidean attention mechanism does not faithfully capture hierarchical255

syntax, periodic dependencies, and other complex token relationships, as demonstrated in Section 3.1.256

Utilizing non-Euclidean attention mechanisms instead could better capture previous token relation-257

ships by aligning with the intrinsic data structure, thus enhancing next-token prediction. For example,258

hyperbolic geometry compresses distances exponentially, ensuring that distant but structurally related259

tokens (e.g., a root concept and its distant co-occurrences in a prompt) remain meaningfully close,260

enabling attention mechanisms to efficiently capture long-range dependencies and hierarchies.261

(2) Alleviating distortion-dimension trade-offs. Recent studies examined how Euclidean-based262

LLMs encode hierarchies geometrically [108, 109], where a mapping function λ maps input text263

x to a vector λ(x) ∈ Rd, and an un-embedding layer assigns γ(y) ∈ Rd to each token y. The264

token probability distribution is given by P (y | x) = exp(λ(x)⊤γ(y))∑
y′∈Vocab exp(λ(x)

⊤γ(y′))
. To unify the different265

spaces, the embedding and unembedding spaces can be reformulated using transformations g(y) =266

A(γ(y) − γ̄0), ℓ(x) = A−⊤λ(x), where the Euclidean inner product serves as the causal inner267

product. This framework shows that Euclidean LLMs encode hierarchical concepts orthogonally,268

where parent (e.g., animal) and child (e.g., bird, mammal) vectors are perpendicular. However, this269

orthogonal representation demands high dimensionality, which scales significantly as hierarchical270

relationships grow more complex [58]. Non-Euclidean spaces offer a more efficient alternative,271

preserving hierarchical relationships while significantly reducing dimensionality [104, 105].272
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Figure 5: Roadmap for integrating non-Euclidean geometries into foundation models, includes
(a) fine-tuning existing Euclidean foundation models, (b) pretraining from scratch, and (c) hybrid
architectures. Four strategies are shown in (a), labeled with circled numbers 1-4, respectively:
geometric prompt tuning, geometric low-rank adaptation, geometric knowledge distillation, and
geometric transfer learning. All learnable components are highlighted in red in (a) and (c).

(3) Improved multi-modal heterogeneity modeling. Data from different modalities vary signifi-273

cantly due to contextual factors, use cases, cultural differences, and different interpretations of the274

same information. This complexity intensifies in multi-modal data, where each modality has distinct275

complex structures [87, 150, 88, 52, 68]. For instance, latent modality gap and distinct modality276

structures exist in the latent space due to initialization and the contrastive learning process, impacting277

downstream tasks [88]. Different modalities also exist on separate manifolds [144], making a unified278

Euclidean foundation model highly redundant in parameters and requiring varying degrees of prun-279

ing for different modalities. Thus, Euclidean space struggles to capture multi-modal cross-domain280

relationships, as its flat structure lacks the flexibility needed for multi-faceted interactions in the data.281

Non-Euclidean spaces exhibit much more geometric flexibility to enable multiple manifolds that282

encode different data distributions [151, 49, 48]. For instance, hyperbolic geometry excels in283

vision-language foundation models by effectively capturing hierarchical relationships [35, 107, 114],284

improving performance in tasks such as image-video-skeleton [86] and video-audio applications [66]285

while enhancing representation interpretability—higher-level hierarchical concepts lie closer to the286

origin with more specific concepts residing in more peripheral regions, enabling geodesic reasoning287

when navigating through concept hierarchies.288

4 Towards Non-Euclidean Foundation Models289

We propose a roadmap that explores three progressive approaches to incorporate non-Euclidean290

geometry in foundation models: fine-tuning existing Euclidean models, building non-Euclidean291

models from scratch, and developing a hybrid framework combining both for optimal performance.292

We also discuss key implementation challenges of the roadmap.293

4.1 Fine-tuning Existing Euclidean Foundation Models294

Off-the-shelf pre-trained Euclidean foundation models are strong starting points as they already295

encode rich information. An efficient strategy is to adapt them to non-Euclidean spaces, thereby296

retaining their original capabilities and enabling generalization to data with non-Euclidean structures.297

We propose four strategies, shown in Figure 5(a): (1) Geometric prompt tuning; (2) Geometric298

low-rank adaptation; (3) Geometric knowledge distillation; and (4) Geometric transfer learning.299

(1) Geometric Prompt Tuning. Prompt tuning offers a parameter-efficient alternative to full fine-300

tuning by introducing trainable, task-specific prompt tokens to the input, mitigating catastrophic301
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forgetting while requiring fewer trainable parameters. [75, 59]. Geometric prompts can be optimized302

through non-Euclidean spaces to better align with the data geometry to and adapt to downstream303

tasks. For instance, trainable prompt and token embeddings could be introduced to better capture the304

topological relationships between prompts and text inputs.305

(2) Geometric Low-Rank Adaptation. Low-Rank Adaptation (LoRA) offers an efficient way to306

adjust the model parameter space for downstream tasks [67]. To equip the pre-trained model with307

non-Euclidean geometry through geometric low-rank adaptation, low-rank matrix multiplications308

could be performed directly on the manifold after projecting the input into non-Euclidean spaces,309

which better models the underlying geometric structure of the data [157].310

(3) Geometric Knowledge Distillation. Distilling knowledge into non-Euclidean spaces refers to311

transferring knowledge from a large, complex teacher model to a smaller, more efficient student312

model by utilizing manifold properties to teach the student to better inherit the teacher model’s313

geometric structure. An example is minimizing the gap between each layer’s output of both models,314

especially in high-dimensional spaces [153, 60] and resource-limited applications.315

(4) Geometric Transfer Learning. Geometric transfer learning aims to help foundation models learn316

across domains with aligned geometries, ensuring a much more effective and consistent knowledge317

transfer. Geometry alignment objectives can be designed to supervise the transfer of geometric318

knowledge, such as hyperbolic contrastive learning for recommendation [160, 93], preserving the319

intrinsic structure of the target domain while retaining geometry-agnostic prior knowledge.320

4.2 Pretraining from Scratch321

Pretraining non-Euclidean foundation models requires addressing unique challenges. We outline322

key components for adapting models to complex curvature-aware structures; see also Figure 5(b). A323

detailed mathematical formulation is presented in Table 3 in the Appendix.324

Curvature Estimation. A manifold’s curvature determines its intrinsic geometric properties, such as325

distance metrics and learning dynamics. Curvature estimation methods vary based on data types. For326

graph data (e.g., networks, proteins), curvature can be derived from topological properties, such as327

Ollivier-Ricci curvature or Gromov hyperbolicity [106, 69, 157, 50]. For non-graph data (e.g., texts,328

images), curvature can be estimated from learned embeddings [73, 4] or techniques like Isomap [135]329

and UMAP [99]. One could also design learnable curvature within training pipelines using second-330

order statistics [49], reinforcement learning [46], and self-supervised learning [128, 127].331

Non-Euclidean Attention Mechanism. In non-Euclidean spaces, attention scores can be defined332

based on negative manifold distance −dM(x, y) between queries and keys instead of dot products [56,333

123, 26, 29], with closer node pairs receiving higher attention weights. To aggregate attention,334

unified manifold centroids or tangent space operations can be used [55, 29]. Linear attention335

mechanisms [159] can be employed to improve computational efficiency by approximating traditional336

attention through unified tangent space operations.337

Other Important Modules. Traditional Euclidean positional encodings [142, 126] do not preserve338

the manifold structure in non-Euclidean spaces. Several approaches for non-Euclidean positional339

encoding [26, 159, 44] were proposed to represent token positions while maintaining geometric340

integrity. Residual connections should be formulated using isometric operations [63, 141, 10] to341

preserve geometric information across layers. Layer and batch normalization must also be adapted to342

account for curvature [159, 10, 141]. Loss function must also satisfy geometric constraints, such as343

computing the probability distribution over tokens based on the manifold distance instead.344

4.3 Hybrid Architectures345

Hybrid architectures take a step further by merging both Euclidean and non-Euclidean foundation346

model architectures to provide a more universal inductive bias. We illustrate two promising strategies,347

also depicted in Figure 5(c).348

Dynamic Geometry Adaptation. An intuitive way for hybrid modeling is to design an efficient and349

geometry-aware mechanism that shifts dynamically between manifolds. Unified product manifold350

frameworks [129] could enable layers to integrate diverse learnable curvature values that adapt to351

fine-grained geometric structures. Mixture of Experts (MoE) [165] provides a natural framework for352
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hybrid paradigms to use a geometry-aware sparse routing network by selecting the most appropriate353

geometry considering input structure [57], addressing issues of distortion and heterogeneity.354

Multi-Manifold Attention. Multi-manifold attention could lead to more versatile underlying depen-355

dencies [79, 70], where the input is embedded into a collection of manifolds (including Euclidean)356

to represent differences in geometric structure across the dataset. These geometric attention maps are357

then fused to produce a highly discriminative map for improved attention guidance.358

4.4 Roadmap Implementation Challenges359

One concern for non-Euclidean foundation models is that non-Euclidean operations often more360

computationally intensive. In particular, tangent-space-enabled methods [47, 23, 141], although361

intuitive by taking advantage of the Euclidean structure of the tangent spaces, incur significant362

computation overhead due to multiple mappings to and from the tangent bundle. In comparison,363

methods that operate directly on the manifold [26, 159, 63], while still computationally more364

expensive than Euclidean methods, typically have similar computational complexity as their Euclidean365

counterparts. This type of operation could be promising for managing the computational efficiency of366

non-Euclidean foundation models. Additionally, non-Euclidean models require fewer dimensions to367

embed complex structures, as seen in our discussion in Section 3.1 and 3.2. This enables the potential368

for non-Euclidean models to match the performance of Euclidean models with fewer parameters to369

offset the computational overhead while offering additional benefits, such as the potential to continue370

the scaling law relationship between parameters and model performance.371

Additional challenges include gaps in current research for concrete analysis between embedding372

quality and model performance. Some previous works have shown that using manifolds that more373

accurately estimate the structure of the data could enhance performance in graph tasks and word374

embeddings [55]. However, to the best of our knowledge, there currently lacks conclusive work375

connecting distortion to downstream performance, which is challenging as it could require prior376

knowledge of the ground-truth data geometry, compute resources to train multiple foundation models,377

and isolating the effects of distortion. Future works in this aspect would provide valuable insights to378

support better development of non-Euclidean methods for foundation models.379

5 Alternative Views380

While non-Euclidean geometries have clear theoretical benefits, non-Euclidean operations add381

complexity, which might reduce some of the anticipated efficiency benefits. In addition to points men-382

tioned in Section 4.4, it is essential to develop libraries, such as [62] that optimize these computations,383

with efficient implementations of tensor operations that encode the underlying geometry.384

Another view is that as hardware capacities increase, simply scaling Euclidean models to higher385

dimensions might reduce distortion. However, as pointed out by Theorem 3.2 and 3.3, there is an386

upper bound in how much distortion reduction is possible. Previous works have also empirically387

shown that non-Euclidean models outperform Euclidean models even with scaled parameter counts,388

such as for equivariant and non-equivariant models [20]. Additionally, in many domains, such as389

molecular structures or rare languages, data scarcity results in brute-force scaling being ineffective.390

Non-Euclidean geometries, on the other hand, can capture important relationships even in lower-391

dimensional settings [120], making them efficient in data requirements, offering better performance392

scalability w.r.t. model size, and are more reliable for domains with limited high-quality data.393

6 Conclusion394

Foundation models benefit from embracing non-Euclidean geometry to resolve their inherent mis-395

match with the non-Euclidean nature of real-world data. Non-Euclidean geometries reduce distortion396

for embedding complex structures and relationships while enabling efficient representations, which397

is critical for trillion-parameter scaling. Aligning architectures with data geometry could mitigate398

hallucinations, boost efficiency, and unlock heterogeneous scaling. We encourage the community to399

consider three directions: unified curvature-adaptive foundation models, geometry-aware benchmarks,400

and studying manifold-emergent capability links. Embracing this paradigm will catalyze AI systems401

that better reflect the rich geometries of human knowledge and physical reality.402
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[97] Jiří Matoušek. Lectures on Discrete Geometry. Springer, 2002.643

[98] Hirotaka Matsumoto, Takahiro Mimori, and Tsukasa Fukunaga. Novel metric for hyperbolic644

phylogenetic tree embeddings. Biology Methods and Protocols, 6(1):bpab006, 2021.645

[99] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation646

and projection for dimension reduction. arXiv:1802.03426, 2018.647

[100] Pascal Mettes, Mina Ghadimi Atigh, Martin Keller-Ressel, Jeffrey Gu, and Serena Yeung.648

Hyperbolic deep learning in computer vision: A survey. International Journal of Computer649

Vision, pages 1–25, 2024.650

[101] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct651

electricity? a new dataset for open book question answering. In EMNLP, pages 2381–2391.652

Association for Computational Linguistics, 2018.653

[102] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and654

Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture model655

cnns. In CVPR, pages 5115–5124, 2017.656

[103] John Nash. C1 Isometric Embeddings. Annals of Mathematics, 60(3), 1954.657

[104] Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical represen-658

tations. NeurIPS, 30, 2017.659

[105] Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model660

of hyperbolic geometry. In ICML, pages 3779–3788, 2018.661

[106] Yann Ollivier. Ricci curvature of markov chains on metric spaces. Journal of Functional662

Analysis, 256(3):810–864, 2009.663

[107] Avik Pal, Max van Spengler, Guido Maria D’Amely di Melendugno, Alessandro Flaborea,664

Fabio Galasso, and Pascal Mettes. Compositional entailment learning for hyperbolic vision-665

language models. arXiv:2410.06912, 2024.666

[108] Kiho Park, Yo Joong Choe, Yibo Jiang, and Victor Veitch. The geometry of categorical and667

hierarchical concepts in large language models. arXiv:2406.01506, 2024.668

[109] Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the669

geometry of large language models. In Forty-first ICML, 2024.670

[110] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve671

simple math word problems? In Proceedings of the 2021 Conference of the North American672

Chapter of the Association for Computational Linguistics: Human Language Technologies,673

pages 2080–2094. Association for Computational Linguistics, 2021.674

[111] Aleksandar Poleksic. Hyperbolic matrix factorization improves prediction of drug-target675

associations. Scientific Reports, 13(1):959, 2023.676

[112] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini677

Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and678

Ilya Sutskever. Learning transferable visual models from natural language supervision. arXiv,679

2021.680

15



[113] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,681

Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified682

text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.683

[114] Sameera Ramasinghe, Violetta Shevchenko, Gil Avraham, and Ajanthan Thalaiyasingam.684

Accept the modality gap: An exploration in the hyperbolic space. In Proceedings of the685

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 27263–27272,686

2024.687

[115] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, et al. Zero-shot text-to-image688

generation. ICML, 2021.689

[116] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System690

optimizations enable training deep learning models with over 100 billion parameters. In KDD,691

pages 3505–3506, 2020.692

[117] P. L. Robinson. The sphere is not flat. In The American Mathematical Monthly, volume 113,693

2006.694

[118] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An695

adversarial winograd schema challenge at scale. arXiv:1907.10641, 2019.696

[119] Frederic Sala, Chris De Sa, Albert Gu, and Christopher Ré. Representation tradeoffs for697

hyperbolic embeddings. In ICML, pages 4460–4469. PMLR, 2018.698

[120] Rik Sarkar. Low distortion delaunay embedding of trees in hyperbolic plane. In International699

Symposium on Graph Drawing, pages 355–366. Springer, 2011.700

[121] Chandni Saxena, Mudit Chaudhary, and Helen Meng. Cross-lingual word embeddings in701

hyperbolic space. arXiv:2205.01907, 2022.702

[122] Rui Shi, Wei Zeng, Zhengyu Su, Hanna Damasio, Zhonglin Lu, Yalin Wang, Shing-Tung Yau,703

and Xianfeng Gu. Hyperbolic harmonic mapping for constrained brain surface registration.704

In Proceedings of the IEEE Conference on computer vision and pattern recognition, pages705

2531–2538, 2013.706

[123] Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. In707

ICLR, 2020.708

[124] Jiajun Song and Yiqiao Zhong. Uncovering hidden geometry in transformers via disentangling709

position and context. arXiv:2310.04861, 2023.710

[125] Mingyang Song, Yi Feng, and Liping Jing. Hisum: Hyperbolic interaction model for extractive711

multi-document summarization. In Proceedings of the ACM Web Conference 2023, pages712

1427–1436, 2023.713

[126] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer:714

Enhanced transformer with rotary position embedding. arXiv preprint arXiv:2104.09864,715

2021.716

[127] Li Sun, Zhongbao Zhang, Junda Ye, Hao Peng, Jiawei Zhang, Sen Su, and S Yu Philip. A717

self-supervised mixed-curvature graph neural network. In AAAI, volume 36, pages 4146–4155,718

2022.719

[128] Li Sun, Junda Ye, Hao Peng, Feiyang Wang, and S Yu Philip. Self-supervised continual graph720

learning in adaptive riemannian spaces. In AAAI, volume 37, pages 4633–4642, 2023.721

[129] Li Sun, Zhenhao Huang, Zixi Wang, Feiyang Wang, Hao Peng, and Philip Yu. Motif-aware722

riemannian graph neural network with generative-contrastive learning. In AAAI, 2024.723

[130] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.724

Autoregressive model beats diffusion: Llama for scalable image generation. arXiv:2406.06525,725

2024.726

16



[131] Dídac Surís, Ruoshi Liu, and Carl Vondrick. Learning the predictability of the future. In ICCV,727

pages 12607–12617, 2021.728

[132] Xunzhu Tang, Saad Ezzini, Haoye Tian, Yewei Song, Jacques Klein, Tegawende F Bissyande,729

et al. Hyperbolic code retrieval: a novel approach for efficient code search using hyperbolic730

space embeddings. arXiv:2308.15234, 2023.731

[133] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. Hyperbolic representation learning for fast732

and efficient neural question answering. In Proceedings of the Eleventh ACM International733

Conference on Web Search and Data Mining, pages 583–591, 2018.734

[134] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, et al.735

Gemma 2: Improving open language models at a practical size. arXiv:2408.00118, 2024.736

[135] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework for737

nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.738

[136] Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincaré glove: Hyperbolic739

word embeddings. In ICLR, 2019.740

[137] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-741

thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez,742

Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation743

language models. arXiv:2302.13971, 2023.744

[138] Daniel J Trosten, Rwiddhi Chakraborty, Sigurd Løkse, Kristoffer Knutsen Wickstrøm, Robert745

Jenssen, and Michael C Kampffmeyer. Hubs and hyperspheres: Reducing hubness and746

improving transductive few-shot learning with hyperspherical embeddings. In ICCV, pages747

7527–7536, 2023.748

[139] Constantin Udriste. Convex Functions and Optimization Methods on Riemannian Manifolds,749

volume 297. Springer Science & Business Media, 1994.750

[140] Eugenio Urdapilleta, Francesca Troiani, Federico Stella, and Alessandro Treves. Can rodents751

conceive hyperbolic spaces? Journal of the Royal Society Interface, 12(107):20141214, 2015.752

[141] Max van Spengler, Erwin Berkhout, and Pascal Mettes. Poincaré resnet. CVPR, 2023.753

[142] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,754

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, pages 5998–6008,755

2017.756

[143] Amelia Villegas-Morcillo, Victoria Sanchez, and Angel M Gomez. Foldhsphere: deep hyper-757

spherical embeddings for protein fold recognition. BMC bioinformatics, 22:1–21, 2021.758

[144] Hanzhang Wang, Jiawen Zhang, and Qingyuan Ma. Exploring intrinsic dimension for vision-759

language model pruning. In Forty-first ICML.760

[145] Shen Wang, Xiaokai Wei, Cicero Nogueira Nogueira dos Santos, Zhiguo Wang, Ramesh761

Nallapati, Andrew Arnold, Bing Xiang, Philip S Yu, and Isabel F Cruz. Mixed-curvature762

multi-relational graph neural network for knowledge graph completion. In TheWebConf, pages763

1761–1771, 2021.764

[146] Maurice Weber, Daniel Y. Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexan-765

drov, Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul766

Chalamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish,767

and Ce Zhang. Redpajama: an open dataset for training large language models. NeurIPS768

Datasets and Benchmarks Track, 2024.769

[147] Melanie Weber and Suvrit Sra. Projection-free nonconvex stochastic optimization on Rieman-770

nian manifolds. IMA Journal of Numerical Analysis, 42(4):3241–3271, 2021.771

[148] Melanie Weber and Suvrit Sra. Riemannian Optimization via Frank-Wolfe Methods. Mathe-772

matical Programming, 2022.773

17



[149] Melanie Weber, Manzil Zaheer, Ankit Singh Rawat, Aditya Menon, and Sanjiv Kumar. Robust774

large-margin learning in hyperbolic space. In NeurIPS, 2020.775

[150] Yiwei Wei, Shaozu Yuan, Ruosong Yang, Lei Shen, Zhangmeizhi Li, Longbiao Wang, and776

Meng Chen. Tackling modality heterogeneity with multi-view calibration network for multi-777

modal sentiment detection. In Proceedings of the 61st Annual Meeting of the Association for778

Computational Linguistics (Volume 1: Long Papers), pages 5240–5252, 2023.779
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A Comprehensive Background and Related Works819

A.1 Riemannian Geometry and Non-Euclidean Foundations820

Riemannian Manifolds. A smooth n-dimensional manifold M is a topological space in which each821

point x ∈ M has a neighborhood Ux ⊆ M that is locally Euclidean, meaning that there exists a822

homeomorphism between Ux and an open subset of Rn.823

Tangent Space. Each point x ∈ M is associated with a tangent space TxM, which is an n-824

dimensional vector space serving as a first-order local approximation of M at x. This space825

encapsulates the possible directions in which one can move away from x on the manifold.826

Riemannian Metric. A Riemannian metric g on M is a collection of positive-definite bilinear827

forms gx(·, ·) : TxM× TxM → R, smoothly varying with x. The metric gx induces the sectional828

curvature at each point, which measures the extent to which the manifold deviates from flatness at x.829

A Riemannian manifold is then defined as the pair (M, g). For instance, Rn with the usual Euclidean830

inner product is a Riemannian manifold with zero curvature. The metric gx generalizes the notion of831

inner products, with the norm of a vector p ∈ TxM given by ∥p∥g =
√
gx(p, p). The choice of the832

Riemannian metric also induces a global distance function d(·, ·) on M.833

Geodesic. A geodesic between two points x and y is a smooth curve that locally minimizes the834

distance between these points. In particular, the shortest path between x and y is a geodesic.835

Exponential Map. Under certain conditions, one can define the exponential map expx : TxM → M,836

which lifts points from the tangent space TxM to the manifold M, by associating a vector in TxM837

to a point on M along a geodesic.838

Logarithmic Map. The logarithmic map logx : M → TxM is the inverse of the exponential map,839

provided certain assumptions on M hold.840

Geodesics and Geodesic Operations. The Riemannian metric gx can be viewed as a generalization841

of the inner product, where the norm of a vector p ∈ TxM is defined by ∥p∥g =
√

gx(p, p). The842

choice of g induces a global distance function d(·, ·) on M, where geodesics are the locally distance-843

minimizing curves. The length of a geodesic between two points determines the geodesic distance.844

The exponential map expx maps a vector v ∈ TxM to a point on M along the geodesic starting845

at x. The logarithmic map logx is the inverse of this process. Additionally, the parallel transport846

map PTx(v, w) transports vectors along geodesics, providing a canonical way to move vectors in847

a manner consistent with the underlying geometric structure. It canonically transports a vector w848

along a geodesic emanating from x with initial velocity v and zero acceleration. This generalizes the849

classical notion of translation in Euclidean space.850

Hyperbolic Spaces. Hyperbolic spaces are Riemannian manifolds with constant negative curvature,851

i.e., with curvature −K < 0. Common models for hyperbolic space include the Poincaré ball model852

PK,n and the Lorentz hyperboloid LK,n, which have been extensively studied in the context of853

deep learning [104, 47]. For points x,y ∈ LK,n, their inner product ⟨x,y⟩L is given by ⟨x,y⟩L =854

−xtyt + xT
s ys = xT gKn y with |∥x∥|L :=

√
|⟨x,x⟩L| being the Lorentzian norm. Formally, Ln is855

the point set Ln = {x ∈ Rn+1 : ⟨x,x⟩L = 1/K, xt > 0}. Pn,K is the n-dimensional sphere Sn856

with radius 1/
√
K, with the Riemannian metric gPx = λ2

xg
E , where λx := 2

1−c∥x∥2 and gE is the857

Euclidean metric. Other models, such as the Klein model, also exist. These models are isometric,858

meaning that there is a smooth correspondence between points in different models that preserves859

distances, angles, and geodesics. This property allows for the selection of the most suitable model for860

a given application.861

Spherical Spaces. Spherical spaces are Riemannian manifolds with constant positive curvature, i.e.,862

with curvature K > 0. An n-dimensional spherical space SK,n is an n-dimensional sphere of radius863

K− 1
2 , equipped with the Riemannian metric induced by the Euclidean metric on Rn+1.864

Mixed Curvature Spaces. A mixed curvature space M is defined as a product manifold consisting865

of Euclidean, spherical, and hyperbolic spaces. The Riemannian metric and geodesic operations for866

such a manifold are defined component-wise, enabling effective computational implementation for867

downstream tasks.868
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Generalized Riemannian Manifolds. Generalizations of Riemannian manifolds can be obtained869

by relaxing some of the assumptions in their classical definition. One notable generalization is the870

pseudo-Riemannian manifold, in which the metric g is an indefinite bilinear form, allowing for both871

positive and negative signs. This generalization is useful in contexts such as relativistic physics,872

where spacetime is modeled as a pseudo-Riemannian manifold.873

A.2 Non-Applicability of the Nash Embedding Theorem874

The Nash Embedding Theorem roughly states that any Riemannian manifold of dimension n admits875

an isometric embedding into R2n+1 [103]. While it may appear as if this allows for Euclidean876

embeddings of complex structures with no distortion and only twice the dimension, this is in fact a877

confusion in vocabulary between the notion of isometric embeddings between those of Riemannian878

manifolds and those of metric spaces.879

Definition A.1. Let (M, g), (M′, g′) be Riemannian manifolds. An isometric embedding of Rie-880

mannian manifolds is a smooth map f : M → M′ such that g = f∗g′. Let (X, dX), (Y, dY )881

be metrics spaces. An isometric embedding of metric spaces is a map f : X → Y such that882

dX(a, b) = dY (f(a), f(b)) for all a, b ∈ X .883

Hence in the former, which is also the isometric embedding afforded by the Nash Embedding884

Theorem, the map f preserves the Riemannian metric, i.e. the inner product on the tangent bundle. As885

a result, the isometry is locally distance preserving, in the sense that length of any path is preserved886

under f . However, given points x, y connected by a shortest path γ, the straight line path connecting887

f(x), f(y) in the co-domain is not necessarily f(γ) (note that f need not to be surjective). As a888

result, measuring the distortion of embeddings is concerned with whether f is globally distance889

preserving, or whether the shortest distance between f(x) and f(y) is the length of f(γ), which is890

defined by isometric embeddings between metric spaces. Note that an isometric embedding of891

Riemannian manifolds is in general not an isometric embedding of metric spaces. For instance,892

given the sphere S1, its usual Riemannian metric is inherited from the Riemannian metric for R2, i.e.893

the usual inner product. The identity map is then an isometric embedding S1 ↪→ R2 as Riemannian894

manifolds. However, the distance between points on the sphere does not coincide with the Euclidean895

distance of their image. As an example, antipodal points have distance π in S1 but distance 1 in R2.896

In the context of foundational models, we are concerned with globally distance preserving embeddings,897

as computing the distance between any pairs of token embeddings is crucial for model training. As898

a result, the Nash Embedding Theorem is not applicable since global distortion could still arise899

from isometries between Riemannian manifolds. For this reason, by "isometry", we refer to those900

between metric spaces unless otherwise specified, which captures the notion of distortion critical for901

foundational model embeddings.902

Definition A.2. Let (X, dX), (Y, dY ) be metric spaces equipped with the respective distance metrics903

and f : X → Y be a map. The bi-Lipschitz distortion of f is dist(f) = ∥f∥Lip∥f−1∥Lip, where904

∥f∥Lip is the (possibly infinite) Lipschitz-constant of f . For a pair of points (a, b) ∈ X2, the905

point-wise distortion is given by |dX(a,b)−dY (f(a)−f(b))|
dX(a,b) .906

Both notions of distortion measure the deviation of f from an isometry between metric spaces. Note907

that the minimum distortion in the case of bi-Lipschitz distortion is 1.908

A.3 Markov Convexity909

In this section we provide the relevant background on notion of Markov convexity. Let (X, dX) be a910

metric space. Then the Markov p–convexity constant Π (for a fixed positive integer p) of the metric911

space X is a universal constant (or ∞) define as follows:912

Definition A.3. Π is the smallest constant s.t. for any Markov chain on (Xt)t≥0 on a state space Ω,913

and every map f : Ω → X , and for any m ∈ N, we have914

∞∑
n=0

1

2np

∑
t∈Z

E
[
d
(
f(Xt), f(Xt+2n)

)p] ≤ Πp
∑
t∈Z

E
[
d
(
f(Xt), f(Xt+1)

)p]
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Roughly speaking, when Π < ∞, the p-th moment of one-step increments dominates the p-th915

moments of exponential length steps. Intuitively, measures how tightly local behaviors in X control916

and estimate global behaviors on the space, with lower values Π showing tighter control.917

A.4 Non-Euclidean Structure in the Real World918

Non-Euclidean Structures in Natural Language Processing. Language exhibits inherently hierar-919

chical structures - from concept taxonomies to entailment relationships - that challenge traditional920

Euclidean representations. These hierarchical relationships between linguistic units naturally manifest921

on non-Euclidean manifolds, particularly in hyperbolic space, which has emerged as a powerful922

framework for natural language processing [37, 85]. Foundational work has demonstrated that hyper-923

bolic embeddings can effectively capture word-level semantics [136] and concept hierarchies [82],924

leveraging the exponential volume growth of hyperbolic space to model tree-like linguistic structures.925

The success of hyperbolic representations has sparked various advanced applications: from question926

answering systems [133], privacy-preserving text representations [45], to multi-document summa-927

rization that captures document-level discourse structure [125]. Recent work has further extended928

these approaches to cross-lingual settings [121] and contextual language models [24], demonstrating929

the broad utility of non-Euclidean geometries in modern natural language processing.930

Non-Euclidean Structures in Computer Vision. Similar to NLP, many computer vision tasks in-931

volve data that naturally resides in intricate manifolds that are challenging to model using conventional932

Euclidean space [100]. For instance, visual entities often form inherent hierarchical relationships933

among object classes, between scenes and their constituent categories [51, 107], or scenes at varying934

levels of granularity [73]. In these scenarios, hyperbolic geometry provides a compelling alternative935

to the Euclidean representations in representing the exponential growth of hierarchical structures with936

minimal distortion [119]. Its advantages have been demonstrated across a wide range of applications,937

including image segmentation [4], action classification [25] video prediction [131], deformable 3D938

surfaces [94]. In parallel, hyperspherical learning has become integral to modern contrastive learning939

with cosine similarity, underpining tasks ranging from self-supervised learning [40] to long-tailed940

classification [71] and few-shot learning [138].941

Non-Euclidean Structures in Complex Networks. Networks, whether they represent social interac-942

tions, user purchasing preferences, or transportation systems, often exhibit complex, non-Euclidean943

relationships that traditional Euclidean models fail to capture effectively. Social networks, for ex-944

ample, are best described by graph structures where nodes (individuals) are connected by edges945

(relationships) that can be directional, weighted, or even exhibit hierarchical properties. These946

networks typically involve intricate dependencies and nonlinear relationships, requiring geometric947

frameworks beyond Euclidean space to model effectively.948

Non-Euclidean Structures in Natural Sciences. In natural science, many systems exhibit intricate949

structures that Euclidean space struggles to capture effectively. In biology, non-Euclidean geometries950

are integral to analyzing and modeling complex organic structures, such as protein folding [143],951

single-cell RNA-seq data [76, 38, 13], and phylogenetic trees [98], where hyperbolic and spherical952

geometries are commonly observed. In neuroscience, hyperbolic geometry is shown to be more effec-953

tive than Euclidean counterpart in modeling the brain’s cortical folding [140], brain surface [122], and954

hippocampal spatial representations [163], aiding in the study of spatial organization and connectivity.955

A.5 Deep Learning with Non-Euclidean Geometries956

Recent years have witnessed an increasing interest in extending deep learning techniques to Rieman-957

nian manifolds. Here we discuss in further detail the advances for designing neural networks and958

Transformers in non-Euclidean geometries, as well as optimization on manifolds.959

Geodesic Neural Networks. Geodesic neural networks leverage geodesic, particularly geodesic960

distances, to perform neural operations that preserve geometric structure on manifold-structured961

data [21]. Several works have developed geodesic convolutional layers by applying filters to local962

patches in geodesic polar coordinates [94], learning directionally sensitive filters along principal963

curvature directions [17], or learnable kernel functions that operate on local coordinate systems [102].964

More recent works such as GDGNN [78] have integrated geodesic operations with graph representa-965

tions.966
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Hyperbolic Neural Networks. Hyperbolic neural networks exploit the geometry of hyperbolic967

space to learn embeddings that reflect hierarchical relationships more effectively than their Euclidean968

counterparts [104]. HNN [47] and HNN++[123] developed many basic operations, such as hyper-969

bolic linear and convolutional layers, and multinomial logistic regression (MLR). HGCN [23] and970

HGNN [91] were then among the first to develop hyperbolic graph neural networks (GNNs). More971

recently, HyboNet [26] proposed a framework of hyperbolic neural networks that does not depend972

on the Euclidean tangent spaces; Poincaré ResNet [141] and HCNN [10] developed components for973

hyperbolic vision models; LResNet [63] proposed an efficient and stable residual connection method.974

Spherical Neural Networks. Spherical neural networks are designed for data that naturally reside975

on spheres or benefit from spherical symmetry. Spherical CNNs [31, 41] extended convolutions976

and pooling to preserve rotational symmetries. SphereNet [32] introduced a framework for learning977

spherical image representations by encoding distortion invariance into convolutional filters. Deep-978

Sphere [34] proposed a graph-based approach. SWSCNN [43] later proposed a fully spherical CNN979

that allows for anisotropic filters.980

Mix-curvature Neural Networks. Mix-curvature neural networks uses product spaces of the981

aforementioned manifolds to better model data that have local neighborhoods exhibiting different982

geometric properties. [55] developed the first learning framework on product spaces, introducing983

fundamental techniques such as mean and loss functions for embedding optimization. κ-GCN [6] then984

extended learning on product spaces to GCNs, introducing a unified and differentiable Gyrovector985

spaces framework to constant curvature spaces beyond hyperbolic manifolds.986

Non-Euclidean Transformers. Significant advancements have been made toward Transformers in987

non-Euclidean spaces in recent studies. Within hyperbolic learning, several works have proposed988

hyperbolic self-attention mechanisms [56, 26, 123] and hyperbolic linear attentions [159], enabling989

constructions of hyperbolic Transformers. Hyperbolic fine-tuning methods have also been developed990

for LLMs [158]. Recent works have also proposed hyperbolic vision Transformers [44]. Attention991

mechanisms have been developed for spherical spaces as well [81]. Further, Transformers have been992

developed for mixed curvature manifolds as well [29].993

Optimization on manifolds. Learning on manifolds often times require optimizing parameters with994

manifold constraints. Many classical convex optimization algorithms have been extended to the995

manifold-valued setting [139, 5, 161, 148]. Stochastic optimization on manifolds has been studied996

extensivley [16, 162, 11, 147], which includes extensions of algorithms such as SGD and Adam,997

which are suitable for training models on geometric domains.998

B Additional Statistics and Dataset Details999

In this section we give details regarding the datasets we used, as well as the show more statistic1000

results for more LLMs. We also show the distortion v.s. dimensionality plot for all graph here.1001

B.1 Distortion v.s. Dimensionality1002

In this section we provide more plots of the distortion of embedding graphs into manifold of vary-1003

ing dimensions. The plots are shown in Figure 6. In all cases, non-Euclidean geometry achieves1004

significantly smaller distortion with significantly fewer dimensions, reflecting Takeaway 1 in Sec-1005

tion 3.1. The distortion for Euclidean embeddings always plateaus, demonstrating that it is not suited1006

for embeddings each structures regardless of its dimension. On the other hand, the distortion for1007

non-Euclidean embeddings is still being reduced with increased dimensionality for 2 of the structures.1008

This reflects Takeaway 2 in Section 3.1.1009

B.2 Dataset Details1010

For the evaluation of token embedding distribution in LLMs, we incorporated a wide range of datasets,1011

including a subset of the RedPajama dataset [146] encompassing the arXiv, C4, Common Crawl,1012

GitHub, Wikipedia, and StackExchange datasets; math reasoning datasets such as GSM8K [30],1013

MATH50K [64],MAWPS [77], and SVAMP [110]; and common sense reasoning datasets, including1014

BoolQ, WinoGrande [118], and OpenBookQA [101].1015
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((a)) Tree ((b)) Cycle

((c)) Ring of Trees

Figure 6: Distortion of embedding a complete tree, cycle, and ring of tree into manifolds of different
dimensions (log scale). Each graph has 96 nodes. Euclidean embeddings is shown in blue. In all
cases, non-Euclidean geometry achieves significantly smaller distortion with significantly fewer
dimensions. The distortion for Euclidean embeddings always plateaus, demonstrating that it is not
suited for embeddings each structures regardless of its dimension.

Table 2: Hyperbolicity values δ for different metric spaces.

Sphere Space Dense Graph PubMed Graph Poincare Space Tree Graph

δ 0.99± 0.01 0.62± 0.01 0.40± 0.04 0.14± 0.01 0.0

B.3 More Statistics1016

In Figure 7 we show the statistics for token embeddings for more LLMs, including GPT-NeoX-1017

20B [14], OPT-13B [164], RoBERT-Base [92], Gemma2-9B [134], LLaMa3.1-8B [53], and LLaMa-1018

13B [137]. The top 2 rows show distribution of the norm of the token embeddings and the bottom1019

2 rows show the distribution of the frequency of each token embedding. The token frequency1020

distribution demonstrate scale-free property with power law decay, whereas the token norm show1021

rapid decreases in token count for higher normed tokens at the right tail. However, still none of the1022

Euclidean foundational models fully capture the underlying scale-free property of the distribution,1023

with all of them having an initial increase in token count against token norm for small normed token1024

embeddings.1025

C δ-Hyperbolicity Computation1026

Given any four points a, b, c, and w in a metric space, the Gromov product [a, c]w at w is bounded1027

below by the minimum of the Gromov products [a, b]w and [b, c]w, minus a slack term δ:1028

[a, c]w ≥ min([a, b]w, [b, c]w)− δ. (1)

The Gromov product between a and b with respect to w is defined as:1029

[a, b]w =
1

2
(d(a,w) + d(b, w)− d(a, b)) . (2)
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Figure 7: Token embeddings statistics for GPT-NeoX-20B, OPT-13B, RoBERT-Base, Gemma2-
9B, LLaMa3.1-8B, and LLaMa-13B. The top 2 rows show distribution of the norm of the token
embeddings and the bottom 2 rows show the distribution of the frequency of each token embedding.
The token frequency distribution demonstrate scale-free property with power law decay, whereas the
token norm show rapid decreases in token count for higher normed tokens at the right tail.

.

A metric space X is said to be δ-hyperbolic if this inequality holds for all choices of a, b, c, and w.1030

In geodesic metric spaces, δ-hyperbolicity implies that geodesic triangles satisfy the δ-slim property,1031

meaning that any point on one side of a geodesic triangle is at most a distance of δ from some point1032

on one of the other two sides.1033

In an exact tree metric, where the sides of any triangle intersect at a single point, the hyperbolicity1034

constant δ is zero. This follows from the fact that the four-point condition holds as an equality for all1035

points in the space.1036

D Foundational Operations for Pretraining Non-Euclidean Foundation1037

Models1038

Table 3 systematically compares foundational operations in Euclidean space with their adaptations to1039

non-Euclidean manifold spaces, highlighting critical geometric modifications required for pretraining1040

curvature-aware foundation models. Below, we explain the key components and their mathematical1041

formulations:1042
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Table 3: Geometric Foundation Model Operations: Euclidean vs. Manifold Formulations.
PTM:Parallel transport preserving vector properties during translation; expµM

: Exponential map
from tangent space at Fréchet mean µM; logµM

: Inverse exponential map projecting to tangent
space; Ret: Retraction mapping for parameter updates; Proj: Tangent space projection operator

Operation Euclidean Space Manifold Space
Curvature (K) K = 0 K ∈ R

Attention Score αqk = softmax
(

q·k⊤
√
dk

)
αM
qk = softmax

(
−d2

M(q,k)√
dk

)
Rotary PE QRoPE

i = Qi Rot(pi); KRoPE
i = Ki Rot(pi) QRoPEM

i = PTM(Qi,pi); KRoPEM
i = PTM(Ki,pi)

Residual Connection x(l+1) = x(l) + f(x(l)) x(l+1) = expx(l)(λ · f(x(l)))

Layer Norm x̂ = x−µ
σ x̂ = expµM

(
logµM

(x)

σM

)
Cross-Entropy Loss L = −

∑
t log pt L = −

∑
t log

exp(−dM(zt,z
∗))∑

t′ exp(−d2
M(zt,zt′ ))

Optimization θt+1 = θt − η∇θJ(θ) θt+1 = Retθt

(
−ηProjTθtM

∇J
)

FFN y = W2σ(W1x+ b1) + b2 y = exp0 (W2σ(log0(W1 ⊗ x⊕ b1)))

Attention Aggregation h =
∑

i αivi h = WeightedExpSum({vi}, {αi})

Curvature (K). In Euclidean space, curvature is fixed at K = 0, reflecting flat geometry. In manifold1043

spaces, curvature K ∈ R is a learnable or estimated parameter that defines the intrinsic geometry1044

(hyperbolic K < 0, spherical K > 0, or mixed). This value influences all subsequent operations,1045

requiring dynamic adjustments to distance metrics and parameter updates. Curvature estimation1046

methods (e.g., Ollivier-Ricci for graphs or learned embeddings for non-graph data) ensure geometric1047

consistency across tasks.1048

Attention Mechanism. Euclidean attention computes similarity via dot products αqk =1049

softmax
(

q·k⊤
√
dk

)
, while manifold attention replaces this with geodesic distance: αM

qk =1050

softmax
(

−d2
M(q,k)√
dk

)
. The negative squared distance prioritizes proximity on the manifold, pre-1051

serving geometric relevance. Aggregation uses weighted Fréchet means (via exponential maps) or1052

tangent space projections to combine features without violating curvature constraints.1053

Positional Encoding (Rotary PE). Euclidean positional encodings apply rotation matrices Rot(pi)1054

to query/key vectors. For manifolds, parallel transport PTM replaces rotations, translating positional1055

shifts along geodesics while preserving vector orientation relative to the manifold’s curvature. This1056

ensures positional relationships respect intrinsic geometry.1057

Residual Connections. Standard residuals x(l+1) = x(l) + f(x(l)) are replaced by manifold1058

equivalents: x(l+1) = expx(l)(λ · f(x(l))). Here, the exponential map exp projects tangent space1059

updates f(x(l)) onto the manifold, scaled by λ, to preserve geometric stability across layers.1060

Layer Normalization. Euclidean layer norm standardizes features via x̂ = x−µ
σ . On manifolds,1061

operations occur in the tangent space at the Fréchet mean µM: x̂ = expµM

(
logµM

(x)

σM

)
, where1062

logµM
maps points to the tangent space for normalization before reprojection.1063

Cross-Entropy Loss. The manifold loss L = −
∑

t log
exp(−dM(zt,z

∗))∑
t′ exp(−d2

M(zt,zt′ ))
replaces Euclidean1064

dot products with geodesic distances, ensuring probabilities reflect the manifold’s geometry. This1065

penalizes deviations in the curved space rather than in a flat embedding.1066

Optimization. Euclidean SGD θt+1 = θt − η∇θJ(θ) is adapted via retractions Retθt , which map1067

gradient steps −ηProjTθtM
∇J from the tangent space back to the manifold, ensuring updates respect1068

curvature constraints.1069

Feed-Forward Network (FFN). Manifold FFNs y = exp0 (W2σ(log0(W1 ⊗ x⊕ b1))) use Möbius1070

operations (⊗,⊕) for linear transformations and biases, followed by activation in the tangent space.1071

The exponential map exp0 ensures outputs remain on the manifold.1072
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Attention Aggregation. Instead of weighted sums h =
∑

i αivi, manifolds use WeightedExpSum,1073

which computes Fréchet means of values vi weighted by αi, ensuring aggregated features lie on the1074

manifold.1075

These adaptations collectively enable pretraining in non-Euclidean spaces by preserving geometric1076

integrity. Operations like parallel transport, exponential/log maps, and retractions ensure compat-1077

ibility with curvature, while specialized normalization and loss functions align learning dynamics1078

with the manifold’s intrinsic structure. The table underscores the necessity of redefining core com-1079

ponents—from attention to optimization—to build effective foundation models for hyperbolic and1080

mixed-curvature geometries.1081
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